Энергетический спектр теллурида свинца, имплантированного кислородом, по данным оптического поглощения

© А.Н. Вейс

Санкт-Петербургский государственный технический университет, 195251 Санкт-Петербург, Россия

(Получена 18 декабря 1996 г. Принята к печати 22 апреля 1997 г.)

Исследованы коэффициент термоэдс и спектры оптического поглощения в монокристаллическом PbTe, имплантированном кислородом и отожженном в вакууме. В валентной зоне PbTe:O⁺ обнаружен квазилокальный уровень, который может быть связан с кислородом.

Отжиг на воздухе или в атмосфере кислорода (так называемая активация) давно используется при создании фотоприемников на основе халькогенидов свинца [1-4]. Этим объясняется интерес к исследованию особенностей легирующего действия кислорода и энергетического спектра в активированных слоях. Объектами подобных исследований в большей части были поликристаллические пленки сульфида свинца. При этом было установлено, что в процессе активации снижается концентрация анионных вакансий V_{ch}, а тип проводимости в пленках инвертируется от электронного к дырочному. Эти факты легли в основу двух моделей, объясняющих особенности легирующего действия кислорода в халькогенидах свинца. Согласно одной из них, дырочный тип проводимости в активированных пленках обусловлен вакансиями свинца. Другая концепция связывает инверсию типа проводимости в активированных пленках с акцепторным действием кислорода.

Исследование электрофизических и фотоэлектрических свойств позволило предполагать, что в запрещенной зоне активированных пленок существуют два энергетических уровня — рекомбинации и прилипания (см. [1–4] и цитированные там работы). По-видимому, наиболее обоснованным является предположение [5] о том, что оба этих уровня связаны с межкристаллитными прослойками, по которым и осуществляется токоперенос в активированных пленках. Если же оба упомянутых уровня связывать с действием кислорода в матрице сульфида свинца [1–4], трудно понять причину столь сильной зависимости энергетических характеристик этих глубоких уровней от технологии изготовления пленок и методов их активации.

Таким образом, многочисленные экспериментальные исследования активированных поликристаллических пленок не позволили установить ни механизм легирующего действия кислорода, ни энергетический спектр этой примеси в халькогенидах свинца. В настоящей работе продолжено изучение этих вопросов. Однако в качестве объекта исследования в настоящей работе был выбран монокристаллический теллурид свинца с варьируемой концентрацией анионных вакансий. Уменьшение концентрации V_{ch} достигалось либо посредством введения в шихту акцепторной примеси таллия (в концентрации $N_{\rm TI} \leq 0.1 \, {\rm ar\%}$) и сверхстехиометрического теллура Те_{ехс}, увеличение — при помощи ионного легирования аргоном дозами $10^3 \div 10^4$ мкКл/см².

Для введения кислорода в исследуемые образцы был использован метод ионной имплантации (энергия ионов — 100 кэВ, ионный ток — 0.5 мкА/см²). Этот метод позволяет произвести легирование монокристаллов с высокой степенью слоевой однородности. Процесс ионной имплантации осуществлялся через предварительно подготовленные оптические поверхности образцов. Постимплантационный отжиг образцов производился в вакуумированных кварцевых ампулах в течение 1 ч при $T = 300^{\circ}$ С. После имплантации и отжига толщины экспериментальных образцов были уменьшены до значений *d* = 3 ÷ 6 мкм посредством механической шлифовки и полировки их обратных (по отношению к имплантации) сторон. На всех стадиях легирования и отжига в работе были исследованы спектры коэффициента оптического поглощения α и коэффициент термоэдс S зондовым методом. Эксперименты выполнены при температурах 96 и 300 К.

Некоторые экспериментальные результаты показаны на рис. 1. Оптические данные, полученные в исходных образцах, характерны для теллурида свинца в отсутствие сильной самокомпенсации. Среди исходных образцов наибольшей сложностью обладали спектры $\alpha(\hbar\omega)$ в *p*-PbTe:Tl,Te_{exc}. В них (см. зависимость 1 на рис. 1), наряду с составляющими $\alpha_{\Sigma L}$, связанными с оптическими переходами электронов между экстермумами L_6^+ и Σ_5 валентной зоны, наблюдались колоколообразные особенности α_0 , обусловленные оптической перезарядкой примесных центров таллия [6] (на рис. 1 указанные полосы дополнительного поглощения отмечены стрелками). Энергетическая схема PbTe: Tl, Te_{exc} показана на рис. 2. Энергетическим уровням E_i (i = 0, 1...4) на схеме отвечают полосы α_i в спектрах оптического поглощения. Спектральные зависимости коэффициента оптического поглощения в PbTe: Ar⁺ были изучены ранее и приведены в [7]. В спектрах $\alpha(\hbar\omega)$ остальных образцов какихлибо полос заметной интенсивности, свидетельствующих о существовании в них локальных или квазилокальных состояний, не наблюдалось.

Имплантация примеси кислорода сопровождается инверсией типа проводимости $p \rightarrow n$. На это указывает

Рис. 1. Спектральные зависимости коэффициента поглощения в *p*-PbTe: Tl, Te_{exc} (1, 2, 4, 5) и *n*-PbTe, легированном за счет отклонения от стехиометрии, (3). T = 300 К. 1 — исходный образец; (2–5) — ионно-имплантированные образцы. Внедренные примеси: 2, 3 — O⁺; 4 — Ar⁺ и O⁺; 5 — Ar⁺. Доза имплантированного кислорода D_{O^+} , 10³ мкКл/см²: 1, 5 — 0; 2, 3 — 3; 4 — 2. Доза имплантированного аргона D_{Ar^+} , 10³ мкКл/см²: (1–3) — 0; 4 — 10; 5 — 3. Отжиг: 2 — не выполнен, (3–5) — выполнен.

не только изменение знака коэффициента термоэдс, но и результаты исследования спектров оптического поглощения. Как видно из рис. 1 (зависимость 2), в этих спектрах появляются характерные колоколообразные полосы дополнительного поглощения α_1 и α_2 , связанные с синглетным и дублетным термами вакансии халькогена [7,8]. Вклад неимплантированной части образцов проявляется в виде полос α_0 , связанных с таллием. Отжиг имплантированных кислородом образцов сопровождается обратной инверсией типа проводимости от электронного к дырочному. На это указывает изменение знака *S* и появление новых полос (α_3 , α_4) в спектрах оптического поглощения (рис. 1, зависимости *3*, *4*). Первая из упомянутых полос наблюдалась и ранее [6] в сильно компенсированном PbTe, легированном Na или Tl и сверхстехиометрическим свинцом, и была приписана собственным дефектам донорного типа, предположительно V_{ch} . Вторая (α_4) — не находит аналогов в литературных данных и указывает на существование в ионнолегированных кислородом и отожженных образцах нового квазилокального уровня, который можно связать с действием кислорода.

Энергии оптической перезарядки различных центров, обусловливающих появление колоколообразных особен-

Рис. 2. Энергетические схемы: (a, b) - p-PnTe:Tl,Te_{exc} в исходном состоянии (a) и после имплантации O⁺ (b); c - n-PbTe, легированный за счет отклонения от стехиометрии, после имплантанци O⁺ и отжига в вакууме. Стрелками показаны оптические переходы электронов, обусловливающие появление полос дополнительного поглощения в спектрах $\alpha(\hbar\omega)$.

Физика и техника полупроводников, 1997, том 31, № 12

ностей в спектрах $\alpha(\hbar\omega)$, были определены посредством расчета частотных зависимостей коэффициента дополнительного поглощения. При этом были использованы методики выделения колоколообразных составляющих из спектров оптического поглощения и расчета их спектральных зависимостей, подробно изложенные в [8]. Оказалось, что при $T = 300 \,\mathrm{K}$ энергия оптической перезарядки примесного центра таллия E_0 составляет 0.285 \pm 0.007 эВ, вакансии халькогена $E_3 = 0.245 \pm 0.010$ эВ, а центра, связанного с кислородом, $E_4 = 0.180 \pm 0.015$ эВ. Указанные значения E_0, E_3 и Е4 получены в результате усреднения данных для семи образцов, выполненного методами математической статистики с использованием распределения Стьюдента [9] с надежностью $t_S(n) = 0.95$. При понижении температуры до 96 К величины Е0, Е3 и Е4 уменьшаются до $0.22\pm0.02, 0.175\pm0.020$ и 0.14 ± 0.02 эВ соответственно. Отметим, что значения E_0 и E_3 , определенные для PbTe: O⁺, соответствуют данным для теллурида свинца, легированного натрием или таллием и сверхстехиометрическим свинцом [6].

В заключение кратко обсудим некоторые особенности полученных экспериментальных данных. Во-первых, оказалось, что интенсивность полос α_4 возрастает не только при увеличении дозы имплантированных ионов, но и при повышении концентрации анионных вакансий в исходных образцах. Этот результат не противоречит существующей концепции, согласно которой кислород занимает места в подрешетке халькогена, залечивая вакансии. Вовторых, в оптических спектрах отожженного в вакууме PbTe: O⁺ присутствуют полосы α_3 , приписываемые вакансиям халькогена. Как известно [10], отжиг ионноимплантированных халькогенидов свинца в существенно менее жестких условиях (25 мин при $T = 250^{\circ}$ C) обычно приводит к устранению всех радиационных дефектов, в том числе и вакансий. Это подтверждается и данными настоящей работы. Как видно из рис. 1 (зависимость 4), в спектре $\alpha(\hbar\omega)$ *p*-PbTe:Tl,Te_{exc}, имплантированного аргоном дозой 10⁴ мкКл/см² и отожженого в вакууме в течение 1 ч при $T = 300^{\circ}$ С, полоса α_3 отсутствует. Невозможность полностью устранить собственные дефекты в процессе отжига свидетельствуют о том, что кислород в РbTe обладает акцепторным действием, которое компенсируется вакансиями халькогена.

Таким образом, выполненные исследования показывают, что в результате ионной имплантации и отжига кислород занимает места вакансий халькогена и обладает в PbTe акцепторным действием. С примесью кислорода связан квазилокальный уровень E_4 , расположенный в глубине валентной зоны. Никаких других локальных или квазилокальных состояний, которые могли были бы быть связаны с кислородом или с ассоциатами, включающими кислород, в монокристаллическом PbTe:O⁺ не обнаружено.

Автор признателен И.О. Усову, выполнившему ионное легирование теллурида свинца.

Список литературы

- [1] Р. Быюб. Фотопроводимость твердых тел (М., ИЛ, 1962).
- [2] Л.Н. Неустроев, В.В. Осипов. ФТП, 18, 359 (1984).
- [3] Л.Н. Неустроев, В.В. Осипов. ФТП, 20, 59 (1986).
- [4] Л.Н. Неустроев, В.В. Осипов. ФТП, 20, 66 (1986).
- [5] В.В. Тетеркин, Ф.Ф. Сизов, Н.О. Таштанбаев, В.Б. Орлецкий, В.Д. Фотий. Тез. докл. III Всес. конф. "Материаловедение халькогенидных полупроводников" (Черновцы, ЧГУ, 1991) ч. 1, с. 88.
- [6] А.Н. Вейс, В.И. Кайданов, Р.Ю. Крупицкая. ФТП, 22, 349 (1988).
- [7] А.Н. Вейс. ФТП, **30**, 1144 (1996).
- [8] А.Н. Вейс, А.Ю. Рыданов, Н.А. Суворова. ФТП, 27, 701 (1993).
- [9] О.Н. Кассандрова, В.В. Лебедев. Обработка результатов наблюдений (М., Наука, 1970).
- [10] L. Palmetshofer. Appl. Phys. A, 34, 139 (1984).

Редактор Л.В. Шаронова

Oxygen implanted lead telluride energy spectrum deduced from optical absorption data

A.N. Veis

State Technical University, 195251 St. Petersdurg, Russia

Abstract The thermoelectric power and the spectral dependencies of optical absorption of a PbTe single crystal implanted with oxygen and annealed in vacuum were investigated. A quasi-local level which might be connected with oxygen was found in the valence band of PbTe: O^+ .