Коэффициент линейного расширения биоморфного композита SiC/Si

© А.И. Шелых, Б.И. Смирнов, И.А. Смирнов, А.R. de Arellano-Lopez*, J. Martinez-Fernandez*, F.M. Varela-Feria*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

* Universidad de Sevilla,

41080 Sevilla, Spain

E-mail: Igor.Smirnov@mail.ioffe.ru

(Поступила в Редакцию 25 апреля 2005 г.)

В интервале температур $100-650\,\mathrm{K}$ измерен коэффициент линейного расширения β биоморфного композита SiC/Si — новой экокерамики канального типа, приготовленной на основе пористой канальной углеродной матрицы, полученной из дерева (белого эвкалипта) с помощью его пиролиза в атмосфере аргона, с последующей имплантацией в сквозные каналы этой матрицы расплавленного кремния и образованием 3C-SiC. Исследовались образцы SiC/Si с "избыточной" объемной концентрацией Si $\sim 30\%$ и пористостью $\sim 13-15\%$. Измерения проводились на образцах, вырезанных вдоль (β_{\parallel}) и поперек (β_{\perp}) направления роста дерева. Проведено сравнение полученных результатов $\beta(T)$ для SiC/Si с литературными данными для коэффициентов линейного расширения Si и 3C-SiC.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 04-03-33183), программы Президиума РАН (П-28) и Министерства науки и технологии Испании (проект MAT 2003-05202-C02-01).

PACS: 72.80.Tm, 65.40.De

Настоящая работа является продолжением проводимого нами цикла исследований физических свойств (модуля Юнга [1,2], удельного электросопротивления [3,4] и теплопроводности [4]) композита SiC/Si — биоморфной экокерамики (ecoceramics — environment conscious ceramics [5]).

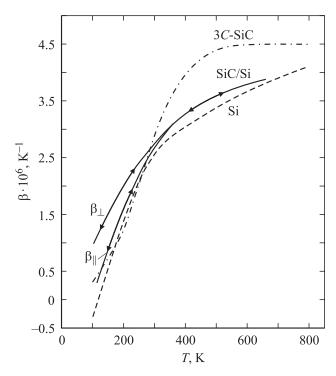
Биоморфные композиты конструируются на основе "канальных" пористых углеродных матриц, получаемых путем пиролиза (обугливания) в атмосфере аргона при 1300 К различных сортов дерева (эвкалипта, Sapele, дуба и др.), с последующей инфильтрацией в пустые сквозные каналы этих матриц (с диаметрами каналов от ~ 4 до $\sim 100\,\mu\text{m}$ [6]) расплавленного Si. После химической реакции Si с углеродной матрицей образуется 3C-SiC и затем при наличии "избыточного" Si конструируется композит 3C-SiC/Si [5]. Композиты в зависимости от сорта дерева образуют индивидуальные ячеистые (канальные) структуры, в которых 3C-SiC, пустые каналы и каналы, заполненные не вступившим в реакцию с углеродом матрицы "избыточным" кремнием, располагаются вдоль направления роста дерева.

Экокерамики SiC/Si являются весьма перспективными материалами для практических приложений, так как они обладают большой механической прочностью, противостоят окислению и коррозии, имеют небольшой вес (их плотность составляет $\sim 2.3 \, \text{g/cm}^3$) и могут быть использованы при достаточно высоких температурах.

В настоящей работе мы провели измерения в интервале температур $100-650\,\mathrm{K}$ коэффициента линейного расширения β биоморфного композита SiC/Si, полученного на основе пористой канальной углеродной матрицы белого эвкалипта.

Экспериментальные данные по измерению коэффициента линейного расширения экокерамики SiC/Si в литературе отсутствуют.

Исследованные образцы композита содержали, согласно оценкам на основании данных по рентгеноструктурному анализу, ~ 30 vol.% Si, а их пористость составляла $\sim 13-15$ vol.%. Исследование $\beta(T)$ проводилось с помощью кварцевого дилатометра на образцах размером $2\times 3\times 17$ mm, вырезанных как вдоль (β_{\parallel}) , так и поперек (β_{\perp}) направления роста дерева.


Измерения были выполнены на воздухе, что особенно важно для практического использования, поскольку эксплуатация большого числа объектов, выполненных на основе экокерамики SiC/Si, проходит на воздухе.

Полученные зависимости $\beta(T)$ для указанных образцов SiC/Si представлены на рисунке. Там же приведены литературные данные для $\beta(T)$ Si и 3*C*-SiC [7].

Видно, что при измерении $\beta_{\perp}(T)$ и $\beta_{\parallel}(T)$ SiC/Si до высоких температур их прямой и обратный ход совпадает, что указывает на отсутствие каких-либо изменений в образцах при высокотемпературном нагреве.

Анализ данных, приведенных на рисунке, позволяет выделить ряд особенностей, представляющих научный и практический интерес.

Так, в интервале температур $100-350\,\mathrm{K}$ наблюдается анизотропия в поведении $\beta(T)$, а при $T>350\,\mathrm{K}$ она исчезает. При этом в области проявления анизотропии $\beta(T)$ выполняется соотношение $\beta_{\perp}>\beta_{\parallel}$ (при $200\,\mathrm{K}$ $\beta_{\perp}/\beta_{\parallel}\sim1.3$). Таким образом, расширение образца происходит легче, когда он имеет структуру типа "слоеного пирога", т. е. наблюдается чередование слоев Si и 3C-SiC.

Температурные зависимости коэффициентов линейного расширения 3C-SiC [7], Si [7] и образцов биоморфного композита SiC/Si на основе дерева белого эвкалипта с концентрацией Si ~ 30 vol.%, измеренных соответственно вдоль (β_{\parallel}) и поперек (β_{\perp}) направления роста дерева. Стрелки на кривых обозначают прямой и обратный ход при измерении $\beta_{\perp}(T)$ и $\beta_{\parallel}(T)$.

При исследовании температурной зависимости удельного электросопротивления (ρ) SiC/Si тоже была обнаружена анизотропия в поведении $\rho(T)$ [3]. Здесь также во всем исследованном интервале температур $(10-300\,\mathrm{K})$ из-за наличия граничного электросопротивления между слоями Si и 3C-SiC $\rho_\perp(T)$ было больше $\rho_\parallel(T)$ (ρ_\parallel и ρ_\perp — соответственно удельное электросопротивление SiC/Si, измеренное вдоль и поперек направления роста дерева).

Характерно также, что во всем исследованном интервале температур (особенно это проявляется при $T>300\,\mathrm{K}$) коэффициенты линейного расширения исследованных образцов (β_\perp и β_\parallel) SiC/Si имеют значения, близкие к величинам $\beta(T)$ для Si-материала с меньшим (хотя и незначительно) коэффициентом ангармоничности по сравнению с 3C-SiC.

В этой связи можно отметить еще один интересный факт, который наблюдался нами при измерении теплопроводности кристаллической решетки ($\kappa_{\rm ph}$) SiC/Si для образцов, вырезанных вдоль направления роста дерева [4]. Величина $\kappa_{\rm ph}$, как и коэффициент линейного расширения, связана с ангармоничностью тепловых упругих волн [7]. Экспериментально установлено [4], что $\kappa_{\rm ph}(T)$ SiC/Si при T>200 K, так же как и $\beta(T)$, стремится к значению $\kappa_{\rm ph}$, характерному для Si.

Таким образом, в результате проведенного цикла измерений $\beta(T)$ биоморфного композита SiC/Si можно сделать следующие основные выводы.

- 1) Полученные в эксперименте значения $\beta(T)$ образцов SiC/Si находятся в промежутке между величинами $\beta(T)$ для Si и 3C-SiC, при этом $\beta(T)$ SiC/Si во всем исследованном интервале температур $(100-650\,\mathrm{K})$ располагается ближе к данным для $\beta(T)$ Si.
- 2) В интервале 100—350 K наблюдается анизотропия в поведении $\beta(T)$ SiC/Si $(\beta_{\perp}/\beta_{\parallel}>1)$, которая исчезает при T>350 K.

Авторы благодарят Н.Ф. Картенко и Н.В. Шаренкову за проведение рентгеноструктурного анализа исследованных образцов и оценку концентрации кремния в них.

Список литературы

- Б.И. Смирнов, Ю.А. Буренков, Б.К. Кардашев, F.M. Varela-Feria, J. Martinez-Fernandez, A.R. de Arellano-Lopez. ФТТ 45, 3, 456 (2003).
- [2] Б.К. Кардашев, Ю.А. Буренков, Б.И. Смирнов, A.R. de Arellano-Lopez, J. Martinez-Fernandez, F.M. Varela-Feria. ФТТ 46, 10, 1811 (2004).
- [3] T.S. Orlova, B.I. Smirnov, A.R. de Arellano-Lopez, J. Martinez-Fernandez, R. Sepúlveda. ΦΤΤ 47, 2, 229 (2005).
- [4] Л.С. Парфеньева, Т.С. Орлова, Н.Ф. Картенко, Н.В. Шаренкова, Б.И. Смирнов, И.А. Смирнов, Н. Misiorek, A. Jezowski, F.M. Varela-Feria, J. Martinez-Fernandez, A.R. de Arellano-Lopez. ФТТ 47, 7, 1175 (2005).
- [5] A.R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, C. Dominguez, V. Fernando-Quero, M. Singh. Int. J. Appl. Cer. Technol. 1, 1, 1 (2004).
- [6] F.M. Varela-Feria, Ph.D. Thesis. Universidad de Sevilla (2004).
- [7] С.И. Новикова. Тепловое расширение твердых тел. Наука, М. (1974). 291 с.