Особенности структурных состояний в Pb_2CdWO_6 в интервале температур $15 \le T \le 770^{\circ}C$

© Н.В. Пруцакова, М.Ф. Куприянов, Ю.В. Кабиров

Ростовский государственный университет, 344090 Ростов-на-Дону, Россия

E-mail: shpilevay@mail.ru

(Поступила в Редакцию 9 марта 2005 г.)

В интервале температур $15-770^{\circ}$ С установлена корреляция между диэлектрическими и структурными особенностями кадмийвольфрамата свинца. При исследовании структуры Pb_2CdWO_6 в интервале $15 \le T \le 770^{\circ}$ С определены параметры ячеек и атомные параметры орторомбической фазы с пространственной группой $Pmc\,2_1$ ($15 \le T \le 380^{\circ}$ С) и кубической фазы с пространственной группой Fm3m ($380 \le T \le 770^{\circ}$ С). Установлено, что в орторомбической фазе антисегнетоэлектрическое состояние Pb_2CdWO_6 связано с антипараллельными смещениями атомов Pb. Найдено, что в кубической фазе атомы Cd имеют статические неупорядоченные смещения по направлениям типа [100].

Работа выполнена при поддержке гранта Российского фонда фундаментальных исследований (грант № 04-03-32039а).

PACS: 61.10.Nz, 64.70.Kb, 77.22.Ch

1. Введение

Исследования кристаллов и поликристаллических образцов Pb_2CdWO_6 (PCW) [1–4] показали, что они проявляют ряд необычных диэлектрических свойств в интервале температур $20 \le T \le 700^{\circ}C$. Несмотря на то что при температурах $400-420^{\circ}C$ ($f=37\,\mathrm{GHz}$) в [1] зафиксирован четкий фазовый переход первого рода, в [2–4] отмечаются лишь размытые максимумы диэлектрической проницаемости при $200 \le T \le 400^{\circ}$ (при более низких частотах измерительного поля). В [5] показано, что технология изготовления керамических образцов PCW сильно влияет на характер зависимостей $\varepsilon(T)$.

Рентгеноструктурные температурные исследования поликристаллического PCW [2] показали, что моноклинная перовскитовая подьячейка при 420°C становится кубической. Наличие сверхструктурных рефлексов, связанных с упорядочением атомов Cd и W в B-подрешетке перовскитовой структуры [2,3], позволяет характеризовать высокотемпературную фазу PCW пространственной группой O_h^5 (Fm3m). Вместе с тем истинная симметрия и атомная структура низкотемпературной фазы PCW не были определены. Попытка решить эту задачу при изучении кристаллов PCW существенно затрудняется наличием сложной двойниковой структуры [6].

Цель настоящей работы состоит в: 1) определении элементарной ячейки, пространственной группы симметрии и атомных параметров низкотемпературной фазы PCW; 2) изучении температурных зависимостей структурных параметров PCW в широкой окрестности фазового перехода ($15 \le T \le 770^{\circ}\mathrm{C}$); 3) выявлении деталей локальной структуры PCW и их роли в наблюдаемых аномалиях $\varepsilon(T)$.

2. Эксперимент

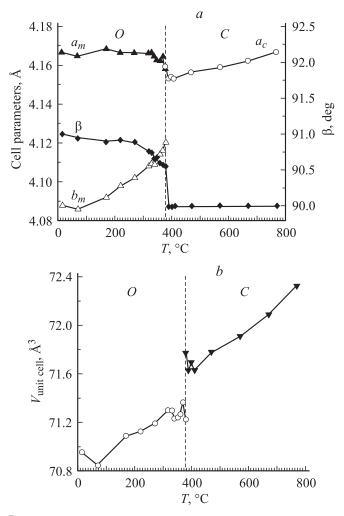
Для рентгеноструктурных и диэлектрических исследований использовались керамические образцы РСW, изготовленные методом горячего прессования [5]. Съемка дифракционных картин производилась на установке ДРОН-3М (Си K_{α} -излучение) методом Брэгга-Брентано в интервале углов $25 < 2\theta < 60^{\circ}$ с шагом сканирования детектора 0.08° и временем экспозиции в каждой точке 1 s с компьютерной записью информации. Температурная камера обеспечивала стабилизацию температуры на образце в каждой температурной точке с точностью $\pm 0.5\,\mathrm{K}$ в интервале $15 \le T \le 770^{\circ}\mathrm{C}$. Дифракционные профили обрабатывались с помощью программы PowderCell 2.2. Для диэлектрических измерений на керамический образец PCW в виде диска толщиной 1.9 mm и диаметром 10.5 mm наносились электроды из серебряной пасты. Емкость образца регистрировалась с помощью моста E7-8 (f = 1 kHz).

3. Результаты и обсуждение

На рентгенограммах PCW в интервале температур $15 \le T \le 380^{\circ}$ С наряду с отражениями, объясняемыми в рамках перовскитовой подъячейки, присутствуют сверхструктурные рефлексы двух типов, обусловленные векторами обратной решетки \mathbf{H}_1^s и \mathbf{H}_2^s . Векторы \mathbf{H}_1^s связаны с упорядоченным размещением атомов Cd и W по октаэдрическим позициям перовскитовой структуры, а \mathbf{H}_2^s — с антипараллельными смещениями атомов. В данной области температур определена орторомбическая (O) ячейка с трансляциями $\mathbf{A}_O = \mathbf{a}_m - \mathbf{c}_m$, $\mathbf{B}_0 = \mathbf{a}_m + \mathbf{c}_m$ и $\mathbf{C}_0 = \mathbf{2b}_m$ (где \mathbf{a}_m , \mathbf{b}_m и \mathbf{c}_m — векторы, описывающие моноклинную перовскитовую подъячейку). При $T > 380^{\circ}$ С рефлексы, обусловленные антипараллельными смещени-

Структурные параметры и длина межатомных связей металл–кислород $l_{(\mathrm{M-O})}$ для орторомбической (O) и кубической (C) фаз $\mathrm{Pb_2CdWO_6}$

${ m Pb_2CdWO_6}\;(O),\;\;T=15^{\circ}{ m C},$ пространственная группа $Pmc2_1=C_{2v}^2,$ $Z=2$					${ m Pb_2CdWO_6}$ $(C),\;\;T=770^{\circ}{ m C},\;\;$ пространственная группа $Fm3m=O_h^5,\;\;Z=4$					
$A_O = 5.8407(5) \text{ Å}$ $B_O = 5.9436 \text{ Å}$ $C_O = 8.1760 \text{ Å}$		$a_{m}=c_{m}=4.1666 ext{Å} \ b_{m}=4.0880 ext{Å} \ eta_{m}=91^{\circ}$			A = 8.3336 Å		$a_c = 4.1668 \text{Å}$ $lpha = 90^\circ$			
Атом	x	у	z	B , \mathring{A}^2	Атом	x	у	z	B, \mathring{A}^2	
PbI PbII Cd W OI OII OIII	0.000 0.500 0.500 0.000 0.230 0.230 0.500 0.000	0.000 0.500 0.000 0.500 0.250 0.740 0.000 0.500	0.525 0.000 0.250 0.750 0.250 0.220 0.000 0.000	0.9(2) 0.9 1.2 0.5 0.2 0.2 0.2 0.2	Pb Cd W O	0.250 0.000 0.500 0.263	0.250 0.000 0.500 0.000	0.250 0.000 0.500 0.000	1.2 2.7 0.4 0.2	
A	Атом		, ,			Атом		, ,		
M	О	$l_{ m (M-O)}$, Å			M	О	$l_{ m (M-O)}, { m \AA}$			
PbI PbI PbI PbII PbII PbII PbII Cd Cd Cd W W	OI OII OIII OIV OI OIII OIV OI OII OII O		3.00(2) 2.59 2.92 2.98 2.98 2.78 2.97 2.92 2.16 2.22 2.06 2.00 1.97 2.04		Pb Cd W	0 0 0		2.95 2.19 1.97		


ями атомов, исчезают, а рефлексы, связанные с дальным порядком в размещении атомов Cd и W, остаются. Сверхструктурная кубическая (C) ячейка при $T>380^{\circ}$ С характеризуется величиной $\mathbf{A}=\mathbf{2a}_c$, где \mathbf{a}_c — трансляция перовскитовой подъячейки.

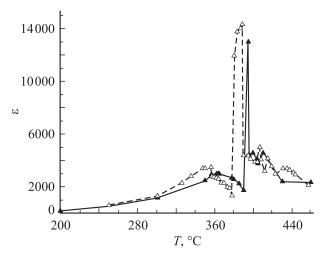
Обработка дифрактограмм РСW позволила определить пространственную группу симметрии O-фазы, а также температурные зависимости параметров ячеек и атомных параметров O- и C-фаз РСW во всем исследованном интервале температур. В таблице приведены структурные параметры O-фазы при 15° С и C-фазы при 770° С. В O-фазе атомы PbI, W и OIV помещены в правильную систему точек (2a), атомы Cd, PbII и OIII — в (2b), атомы OI, OII — в (4c). В C-фазе атомы Cd помещены в (4a), атомы Pb — в (8c), атомы O — в (24e). Координаты атомов x, y, z даны в долях периодов ячейки; Z — число формульных единиц, приходящихся на ячейку.

С целью подтверждения достоверности определения структуры в O-фазе проведен анализ чувствительности профильного фактора недостоверности R_p к ко-

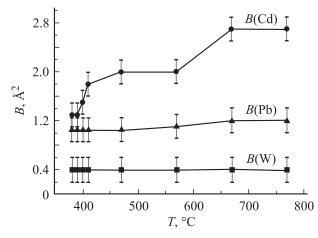
ординатным параметрам атомов. Установлено, что два минимума R_p , равных 7.5%, достигаются при величинах смещений $\delta z_{\rm PbI} = \pm 0.025$ (в зависимостях R_p от смещений атомов PbII, Cd, W и О наблюдаются узкие одиночные минимумы при значениях координат атомов, приведенных в таблице). Таким образом, сверхструктурные рефлексы на рентгенограммах PCW при $15 \leq T \leq 380^{\circ}$ С, обусловленные векторами обратной решетки \mathbf{H}_2^s , объясняются антипараллельными смещениями атомов Pb.

Определение координат атомов позволило рассчитать позиции центров тяжести атомов кислорода ближайшего окружения атомов Pb (кубооктаэдрическое окружение) и атомов Cd, W (октаэдрическое окружение). Найдено, что октаэдры CdO_6 и WO_6 являются электрически нейтральными (центры тяжести атомов O и атомов металлов совпадают), а кубооктаэдры $PbIO_{12}$ являются полярными (центры тяжести атомов O и атомов PbI не совпадают). Отметим, что октаэдры CdO_6 и WO_6 заметно различаются по размерам, а октаэдры CdO_6 сильно искажены (см. длины межатомных связей в таблице).

Рис. 1. Зависимости параметров перовскитовых подъячеек $Pb_2CdWO_6\ (a)$ и их объемов (b) от температуры.


На рис. 1 показаны зависимости параметров перовскитовых подьячеек (a) и их объемов (b) от температуры. Обращают на себя внимание особенности в зависимостях объемов перовскитовых подъячеек от температур: с понижением температуры наблюдается небольшое увеличение объема в интервале $380 \le T \le 420^{\circ}\mathrm{C}$ ($\Delta V = 0.2\,\mathrm{\mathring{A}}^3$), характерное для фазового перехода в сегнетоэлектрическую фазу, и резкое уменьшение объема перовскитовой подъячейки ($\Delta V = 0.5\,\mathrm{\mathring{A}}^3$) при появлении O-фазы ($T = 380^{\circ}\mathrm{C}$), которое является признаком фазового перехода в антисегнетоэлектрическую фазу.

Диэлектрические исследования PCW обнаружили наличие острого пика в зависимости $\varepsilon(T)$ (рис. 2) при 395°C и размытого максимума при 360°C. При охлаждении образца максимумы $\varepsilon(T)$ смещаются приблизительно на 5 K в область низких температур. При T>395°C приближенно выполняется закон КюриВейсса ($T_0=355$ °C, $C=2.18\cdot 10^5$ K).


Корреляция аномалий зависимостей $\varepsilon(T)$ вблизи 395°C с зависимостями объемов перовскитовых подъячеек от температуры дает основание считать, что в PCW в узком температурном интервале между

антисегнетоэлектрической O-фазой и параэлектрической C-фазой существует полярная сегнетоэлектрическая фаза, подобная наблюдаемым в $PbIn_{0.5}Nb_{0.5}O_3$ и $PbZrO_3$ [7], которую в данном эксперименте детально изучить не удалось. Мы полагаем, что природа размытого максимума $\varepsilon(T)$, также обнаруженного в [1,3,5] ниже основного пика ($T_c=395^{\circ}C$), не связана с наличием дефектов разного рода [8], поскольку наблюдается его температурный гистерезис, как и у основного пика $\varepsilon(T)$. Вероятно, появление размытого максимума $\varepsilon(T)$ при $360^{\circ}C$ обусловлено перестройкой локальной структуры при понижении температуры и исчезновением статических неупорядоченных смещений атомов Cd, что находит отражение в значительном скачке объема перовскитовой подъячейки в O-фазе вблизи $360^{\circ}C$.

Обращают на себя внимание (см. таблицу) заметно бо́льшие величины параметров факторов Дебая—Валлера (B) атомов Cd по сравнению с остальными атомами как в O-фазе, так и в C-фазе. На рис. 3 приведены темпе-

Рис. 2. Зависимости диэлектрической проницаемости Pb_2CdWO_6 от температуры в режиме нагрева (сплошная линия) и охлаждения (штриховая линия).

Рис. 3. Зависимости тепловых параметров атомов Pb, Cd и W в Pb_2CdWO_6 от температуры в кубической фазе.

ратурные зависимости тепловых параметров В атомов Pb, Cd и W в C-фазе (в O-фазе B(Pb), B(Cd) и B(W)практически не зависят от температуры). Исходя из представлений о том, что к ослаблению интенсивностей дифракционных отражений приводят не только тепловые колебания атомов, но и статические неупорядоченные смещения атомов [9,10], в C-фазе была рассмотрена модель структуры PCW со статически неупорядоченными смещениями атомов Cd вдоль шести направлений типа [100]. Для этого атом Cd был помещен в 24-кратную правильную систему точек (24e); при смещениях Сd вдоль направлений типа [100] на 0.25 Å удалось снизить B (Cd) с 2.7 до 1.7 \mathring{A}^2 (с сохранением прежнего качества уточнения). Возможность существования такой модели структуры PCW со статически неупорядоченными смещениями атомов Cd наглядно обнаруживает стремление этих атомов иметь анизотропное кислородное окружение.

В заключение отметим, что атомы Cd в PCW находятся в октаэдрическом окружении атомов кислорода (как и в ильменитоподобной фазе CdTiO3 [11]) в отличие от других Cd-содержащих перовскитов с атомами Cd в кубооктаэдрическом окружении. Нами установлено, что высокая степень дальнего порядка в размещении существенно разноразмерных и разнозарядных ионов $\mathrm{Cd^{2+}}\ (R_i=0.99\,\mathrm{\mathring{A}})$ и $\mathrm{W^{6+}}\ (R_i=0.65\,\mathrm{\mathring{A}})$ способствует возникновению в перовскитовой структуре сильной анизотропии связей Pb с атомами кислорода ближайшего окружения, упорядочение которых и определяет стабилизацию антисегнетоэлектрического состояния в PCW в орторомбической фазе.

Список литературы

- [1] Ю.М. Поплавко, В.Г. Цыкалов, В.И. Молчанов, В.А. Исупов. ФТТ **10**, *5*, 1542 (1968).
- [2] В.С. Филипьев, Е.Г. Фесенко. Изв. АН СССР. Сер. физ. **29**, *6*, 894 (1965).
- [3] Ю.Е. Рогинская, Ю.Н. Веневцев. Кристаллография **10**, *3*, 341 (1965).
- [4] В.А. Исупов, Л.Т. Емельянова. Кристаллография **11**, *5*, 776 (1966).
- [5] Е.Г. Фесенко, А.Я. Данцигер, А.Н. Клевцов, Т.В. Рогач. ФТТ **11**, *11*, 3362 (1969).
- [6] Е.С. Гагарина, Г.А. Киоссе, М.Ф. Куприянов, Е.С. Цихоцкий, Т.И. Малиновский. ДАН СССР 273, 4, 874 (1983).
- [7] М.Ф. Куприянов, А.В. Турик, В.А. Коган, С.М. Зайцев, В.Ф. Жестоков. Кристаллография **29**, *4*, 794 (1984).
- [8] Л.А. Барабанов, В.Г. Гавриляченко, Е.С. Цихоцкий, Е.Г. Фесенко, М.Ф. Куприянов. Изв. АН СССР. Неорган. материалы 15, 9, 1612 (1979).
- [9] R. Comes, M. Lambert, A. Guinier. Acta Cryst. 26, 2, 224 (1970).
- [10] R. Kolesova, V. Kolesov, M. Kupriyanov, R. Skulski. Phase Trans. 68, 621 (1999).
- [11] Н.В. Шпилевая, М.Ф. Куприянов, Б.С. Кульбужев, Ю.В. Кабиров. ФТТ **46**, *9*, 1682 (2004).