Влияние примеси хрома на электронную структуру цементита Fe₃C

© Н.И. Медведева, Л.Е. Карькина*, А.Л. Ивановский

Институт химии твердого тела Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия * Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: ivanovskii@ihim.uran.ru

(Поступила в Редакцию 5 апреля 2005 г.)

Самосогласованным методом ПЛМТО исследовано влияние легирования цементита Fe₃C хромом на зонную структуру, межатомные взаимодействия, величины градиентов электрического поля и параметры асимметрии на ядрах Fe. Рост энергии когезии системы Fe₃C–Cr свидетельствует об усилении межатомных взаимодействий в решетке цементита в присутствии хрома. Наиболее энергетически выгодно заполнение хромом позиций типа FeII, содержащих восемь эквивалентных атомов железа.

Работа выполнена при поддержке Фонда ОАО "ММК", ИТЦ "Аусферр" и ФНиО "Интелс" (грант № 15-04-01) и Российского фонда фундаментальных исследований (грант № 05-03-32021).

PACS: 61.72.Ji, 71.55.Ak

Легирование углеродистых сталей является одним из наиболее эффективных методов оптимизации их свойств, который позволяет повышать прочностные характеристики при сохранении пластичности, увеличивать износостойкость, коррозийную стойкость сталей и т.д. Наиболее часто в качестве легирующих добавок используют Ni, Al, Si, Cu, Mo, V, Cr, W, Mn. Среди них наибольшее влияние на структуру цементита Fe₃C и его превращения при отпуске углеродистых сталей имеет хром, обладающий значительной растворимостью в Fe₃C. Цементит остается стабильным при концентрации Cr до 17-18%, при дальнейшем росте содержания хрома происходит превращение (Fe, Cr)₃C \rightarrow $(Fe, Cr)_3C + (Cr, Fe)_7C_3 \rightarrow (Cr, Fe)_7C_3$. При увеличении концентрации Cr до ~ 15% в цементите его твердость существенно (в 1.5 раза) растет [1-4].

Развитие представлений о фазовых и структурных превращениях в углеродистых сталях при их легировании требует детальных сведений о влиянии примесных элементов на их структурные и электронные свойства, которые могут быть получены с привлечением современных вычислительных методов теории конденсированного состояния. С их использованием к настоящему времени подробно исследованы зонная структура Fe₃C [5,6], его магнитные свойства и уравнение состояния [7], эффекты атомного разупорядочения и нестехиометрии по углеродной подрешетке [8], особенности поверхностных состояний некоторых высокосимметричных граней кристалла цементита [9].

В то же время сведения о действии примесей d металлов на зонную структуру, когезионные и магнитные характеристики Fe₃C остаются крайне ограниченными. Нам известна лишь одна работа [10], авторы которой в рамках приближения LDA (метод MO ЛКАО дискретного варьирования) выполнили расчеты кластера {Fe₄₆Cr₂C₁₀}, моделирующего систему Fe₃C–Cr. Найдено, что введение хрома приводит к некоторому росту заселенностей перекрывания состояний атомов железа (т.е. усилению связей Fe–Fe), тогда как связи Fe–C практически не меняются.

В настоящей работе самосогласованным зонным методом ПЛМТО изучено влияние примеси хрома на зонную структуру, магнитные и когезионные Fe_3C в зависимости от позиций, занимаемых Cr. Обсуждаются локальные распределения электронной плотности в системе Fe_3C-Cr , величины градиентов электрического поля и параметры асимметрии на ядрах Fe.

1. Модель и метод расчета

Цементит имеет орторомбическую (простр. группа *Pbnm*) структуру с параметрами решетки a = 4.523, b = 5.089, c = 6.743 Å. Элементарная ячейка включает четыре формульные единицы и содержит восемь атомов Fe в "основных" (FeII) и четыре — в "специальных" (FeI) позициях. Четыре атома углерода расположены в тригонально-призматических междоузлиях подрешетки Fe. Координационные числа всех атомов железа и углерода равны 14 и 8 соответственно, при этом для FeII образуется 11 Fe–Fe и 3 Fe–C связи, для FeI — 12 Fe–Fe и 2 Fe–C связи. Углерод имеет два типа связей — 6 "ближних" и 2 "дальних". Межатомные расстояния a (FeI–FeI) > a (FeI–FeII) > a (FeI–FeII), тогда как a (FeI–C) = 2.04 Å> a (FeI–C) = 1.99 Å [11].

Исходную фазу Fe₃C моделировали 16-атомной ячейкой Fe₁₂C₄, в состав которой для достижения условия плотной упаковки структуры введены четыре "пустые" *muffin-tin* сферы. Легированную систему Fe₃C-Cr описывали ячейкой Fe₁₁CrC₄, что соответствует концентрации Cr $\sim 8\%$ (формальный состав системы Fe_{2.92}Cr_{0.08}C). Согласно ЯГР данным [12], в легированном цементите атомы хрома замещают преимущественно атомы железа FeII. Причины такого предпочтения остаются в насто-

ящее время невыясненными. Поэтому мы рассмотрели два варианта позиций замещения Cr→Fe: атом хрома (далее Cr1) замещает железо в позиции FeI или атом хрома (Cr2) замещает железо в позиции FeII. Расчеты выполнялись самосогласованным спин-неограниченным полно-потенциальным методом muffin-tin орбиталей (ПЛМТО) [13] с учетом скалярно-релятивистских эффектов. Использована форма обменно-корреляционного потенциала, предложенного в работе [14]. В результате получены плотности электронных состояний (ПС), атомные магнитные моменты (MM), градиенты электрического поля (ГЭП) на ядрах железа и параметры асимметрии η. Для оценки изменения сил межатомных взаимодействий вычислялись энергии когезии (E_{coh}) систем как разность полной энергии (E_{tot}) фазы и суммы энергий образующих ее свободных атомов.

2. Результаты и обсуждение

Плотности электронных состояний рассчитанных систем приведены на рис. 1–3. В согласии с предшествующими расчетами [5–9] получено, что заполненные состояния Fe₃C образуют две основные полосы, разделенные псевдощелью (рис. 1). Нижняя подполоса (в интервале от -8 до -5 eV) содержит в основном C2*p* состояния. Верхняя подполоса (от -5 eV до уровня Ферми) включает преимущественно Fe3*d* зоны с малой примесью 2*p* состояний углерода. Гибридизация Fe3*d*–C2*p* состояний незначительна, о чем свидетельствует малая плотность Fe3*d* состояний в интервале от -8 до -5 eV и малый вклад C2*p* состояний в верхнюю занятую подполосу.

Рис. 1. Полные плотности состояний: системы Fe₃C–Cr с примесью хрома в позиции I (вверху) и Fe₃C (внизу). Средняя панель — плотность *d*-состояний хрома в позиции I (Cr1). Здесь и на рис. 2 сплошные линии — состояния со спином вверх, штриховые — со спином вниз.

Рис. 2. Полная плотность состояний системы Fe₃C–Cr с примесью хрома в позиции II (вверху) и плостность *d*-состояний хрома в позиции II (Cr2) (внизу). Средняя панель — плотность *d*-состояний железа, усредненная по всем позициям в Fe₃Cr–Cr.

Уровень Ферми E_F в Fe₃C, который является ферромагнитным металлом, расположен между почти полностью занятыми Fe₃d-состояниями со спином вверх (Fe₃d[†]) и частично свободной полосой Fe₃d-состояний со спином вниз (Fe₃d[↓]). Плотности состояний на уровне Ферми $N(E_F)$ для спиновых подрешеток (Fe[†]-Fe[↓]) отличаются примерно в 2 раза.

При замещении Сг обоих типов позиций (FeI, FeII) принципиальных изменений спектра полных спиновых ПС не происходит, состояния $3d^{\uparrow}$ остаются почти заполненными. Для системы Fe₃C–Cr уровень Ферми расположен в области локального пика $3d^{\downarrow}$ -состояний, вклады в $N(E_F)$ для спиновых подрешеток, как и в исходном цементите, отличаются примерно в 2 раза (рис. 1, 2). Кроме того, при энергиях от -4 eV для обоих случаев происходит незначительный сдвиг (0.1–0.2 eV) состояний со спином вверх и вниз в область высоких и низких энергий соответственно. Для хрома наблюдаются частичное опустошение 3d-состояний и появление резкого пика вакантных состояний выше уровня Ферми E_F .

Общее представление об эффектах изменения межатомных взаимодействий в цементите при его легировании дают величины энергии когезии. Получено, что $E_{\rm coh}$ легированных систем (7.59 и 7.60 eV/atom для Fe₃C-Cr(1) и Fe₃C-Cr(2) соответственно) больше, чем для Fe₃C ($E_{\rm coh} = 7.33$ eV/atom). Результат указывает на определенный рост межатомных взаимодействий в Fe₃C в присутствии хрома и объясняет увеличение стабильности цементита, легированного хромом, при изотермических отжигах [1–4].

На рис. 3 приводятся разностные ПС (РПС) — между ПС легированных систем $Fe_3C-Cr(1,2)$ и Fe_3C . Видно,

Рис. 3. Разность полных плотностей состояний системы Fe₃C–Cr с примесью хрома в позиции FeI (внизу) и позиции FeII (вверху) и плотности состояний Fe₃C.

что для обеих систем Fe₃C–Cr(1,2) величина $N(E_F)$ в сравнении с Fe₃C растет. С другой стороны, наблюдаются существенные отличия РПС в области C2*p* зоны (от -8 до -5 eV), где для Fe₃C–Cr(1) ПС уменьшается. Этот факт указывает на ослабление Cr(1)–С связи. Наоборот, положительная РПС для Fe₃C–Cr(2) свидетельствует о росте Cr(2)–С связывания. В верхней части валентной полосы (от -5 eV до E_F) уменьшение ПС легированного цементита (относительно Fe₃C) также заметнее для системы Fe₃C–Cr(1). Таким образом, замещение хромом позиции FeII приводит к росту межатомных взаимодействий, стабилизирующих систему, что согласуется с результатами расчетов E_{tot} Fe₃C–Cr(1,2), согласно которым более энергетически выгодной (на ~ 0.1 eV) является позиция замещения FeII.

В таблице приведены заселенности 3*d*-орбиталей (q)атомов в Fe₃C и Fe₃C–Cr(1,2). Заселенность Cr q_d^{\downarrow} близка соответствующей заселенности Fe, тогда как заселенность Cr q_d^{\uparrow} орбитали уменьшается более чем в 2 раза.

При замещении Cr — FeI заселенности остальных атомов железа FeI типа меняются мало. Для атомов типа FeII наблюдается частичный перенос заряда $q_d^{\uparrow} \rightarrow q_d^{\downarrow}$. В целом данный тип замещения не приводит к заметным изменениям в зарядовых состояниях железа. Средние MM в Fe₃C–Cr(1) составляют 1.9 и 1.6 μ_B на атомах типа FeI и FeII соответственно, что достаточно близко к экспериментальной величине среднего MM Fe₃C (1.78 μ_B , [15]). Атом хрома имеет MM = $-0.58 \mu_B$, на атомах углерода индуцирован MM около $-0.05 \mu_B$.

При замещении Cr — FeII изменения зарядовых состояний атомов и их магнитных моментов более существенны. Как и для предыдущего случая, заселенности атомов железа типа FeI меняются в меньшей степени, наблюдается слабый зарядовый перенос $q_d^{\uparrow} \rightarrow q_d^{\downarrow}$. Среди FeII атомов (в ячейке) электронные конфигурации атомов Fe₆, Fe₉, Fe₁₀, Fe₁₁ и Fe₁₂ остаются близкими к таковым в Fe₃C (см. таблицу). Наибольшие изменения происходят для атома Fe₇, для которого получены минимальное значение q_d^{\uparrow} и максимальное q_d^{\downarrow} . В результате MM на атомах FeII меняются от 1.3 до 1.8 μ_B , но имеют приблизительно одинаковые значения (средний MM $\sim 1.8 \mu_B$) на атомах железа типа FeI. Атом хрома в позиции FeII также является магнитным (MM = $-0.51 \mu_B$), атомы углерода имеют такой же MM ($-0.5 \mu_B$), как в системе Fe₃C–Cr(1).

Легирование хромом влияет на локальные зарядовые распределения и определяемые ими характеристики. Для анализа этого эффекта для систем Fe₃C–Cr(1,2) проведены расчеты ГЭП на ядрах железа и параметров асимметрии η , которые сопоставлены с данными для Fe₃C в таблице. При замещении Cr \rightarrow FeI для атомов Fe₂ и Fe₃ величина ГЭП почти не меняется, параметр η незначительно растет. Наиболее существенны изменения для атома Fe₄, для которого меняется знак и направление главной компоненты тензора ГЭП. Отметим, что для

Заселенности *d*-орбиталей q_d^{\uparrow} и $q_d^{\downarrow}(e)$, величины ГЭП (V, 10^{21} V/m²) и параметры асимметрии η в цементите Fe₃C и легированных системах Fe₃C–Cr (1,2)

Система	Aтомы ¹	q_d^{\uparrow}	q_d^\downarrow	V	η
Fe ₃ C	FeI ²	3.99	2.04	-4.04	0.61
	FeII	3.89	2.16	-2.32	0.86
Fe ₃ C–Cr(1)	$Cr \to Fe_1$	1.65	2.20	9.54	0.29
	Fe ₂	3.97	2.05	-3.99	0.78
	Fe ₃	4.00	2.04	-4.13	0.69
	Fe ₄	3.93	2.09	3.57	0.91
		3.85	2.22	-2.15	0.89
	Fe ₆	3.81	2.25	-2.65	0.74
	Fe ₇	3.83	2.22	-2.64	0.80
	Fe ₈	3.84	2.21	-2.56	0.67
	Fe ₉	3.84	2.22	-2.16	0.88
	Fe ₁₀	3.79	2.28	-2.65	0.72
	Fe ₁₁	3.83	2.22	-2.60	0.63
	Fe ₁₂	3.83	2.23	-2.65	0.78
Fe ₃ C–Cr(2)	Fe ₁	3.89	2.15	-4.05	0.87
	Fe ₂	3.93	2.10	-3.86	0.86
	Fe ₃	3.94	2.09	-3.83	0.76
	Fe ₄	3.94	2.09	-3.96	0.70
	$Cr \rightarrow Fe_5$	1.70	2.18	-0.05	0.46
	Fe ₆	5.64 2.67	2.22	-2.98	0.00
	Fe7	5.07 2.79	2.40	-2.00	0.32
	Fe ₈	5./0 2.92	2.27	-2.55	0.87
	ге9 Бо	2.00	2.23	-2.99	0.95
	ге ₁₀	3.90	2.15	-2.32	0.85
	ге ₁₁ Бо	3.92	2.15	-2.34	0.93
	re ₁₂	3.90	2.13	-2.39	0.91

¹ Штриховой линией разделены атомы Fe, относящиеся к позициям I и II.

² Координаты (Å) FeI: (0.833, 0.040, 0.250), (0.667, 0.540, 0.250), (0.167, 0.960, 0.750), (0.333, 0.460, 0.750) н FeII: (0.333, 0.175, 0.065), (0.333, 0.175, 0.435), (0.167, 0.675, 0.065), (0.167, 0.675, 0.435), (0.667, 0.825, 0.935), (0.667, 0.825, 0.565), (0.833, 0.325, 0.935), (0.833, 0.325, 0.565).

этого атома (среди прочих атомов типа FeI) происходит максимальный перенос $q_d^{\uparrow} \rightarrow q_d^{\downarrow}$. Важно подчеркнуть, что атом Fe₄ не входит в число ближайших к атому Cr. Возможно, данный эффект указывает на "подготовку" системы Fe₃C–Cr к превращениям (по схеме (Fe, Cr)₃C \rightarrow (Fe, Cr)₃C + (Cr, Fe)₇C₃), которая наблюдается при росте содержания хрома до ~ 17%. Этот вопрос требует дальнейшего рассмотрения.

На ядрах атомов типа FeII для части атомов (Fe₅ и Fe₉) величина ГЭП уменьшается по сравнению с Fe₃C, для остальных — возрастает (см. таблицу).

При замещении Cr \rightarrow FeII для атомов Fe₁ ГЭП практически не изменяется, а параметр асимметрии несколько возрастает. Для атомов Fe₂–Fe₄ ГЭП уменьшается более значительно по сравнению с Fe₃C, а параметр асимметрии увеличивается. Для атомов в позициях FeII изменения незначительные для Fe₈, Fe₁₀–Fe₁₂. Для остальных атомов ГЭП уменьшается более существенно, параметр асимметрии увеличивается для атома Fe₉ и уменьшается для атомов Fe₆, Fe₇. В целом можно отметить, что наряду с энергетической выгодностью замещения Cr позиций FeII в данной системе заселенности q орбиталей q_d^{\uparrow} и q_d^{\downarrow} распределены по атомным позициям более однородно. Меньшие различия обнаруживают также величины ГЭП и η .

В целом проведенные расчеты цементита Fe₃C, легированного хромом по двум различным позициям (FeI и FeII), показали, что наиболее энергетически выгодны замещения по типу Cr \rightarrow FeII. Легирование приводит к увеличению энергии когезии системы, что свидетельствует об усилении межатомных взаимодействий в решетке Fe₃C в присутствии хрома и согласуется с увеличением стабильности системы FeC₃–Cr при изотермических отжигах. Кроме того, легирование значительно меняет локальные распределения электронной плотности, в частности, величины ГЭП, и параметр асимметрии в системе.

Список литературы

- [1] М.Б. Белоус, В.Т. Черепнин, М.А. Васильев. Превращения при отпуске стали. Металлургия, М. (1973).
- [2] Э. Гудремон. Специальные стали. Металлургия, М. (1968).
 Т. 1.
- [3] A. Inoue, T. Ogura, T. Masumoto. Bull. Japan Unst. Metals. 13, 473 (1974).
- [4] M. Umemoto, Z.G. Liu, K. Masuyama, K. Tsuchiya. Scripta Materialia 45, 4, 391 (2001).
- [5] J. Haglund, G. Grimvall, T. Jarlborg. Phys. Rev. B 44, 7, 2914 (1991).
- [6] А.Г. Вахней, В.Н. Антонов, А.Н. Яресько, В.В. Немошкаленко, В.Г. Гаврилюк. Металлофизика и новейшие технологии 18, 12, 21 (1996).
- [7] L. Vocadlo, J. Brodholt, D.P. Dobson, K.S. Knight, W.G. Marshall, G.D. Price, I.G. Wood. Earth Planet. Sci. Lett. 203, 1, 567 (2002).
- [8] Н.И. Медведева, Л.Е. Карькина, А.Л. Ивановский. ФММ 96, 5, 16 (2003).

- [9] C.W. Chiou Jr., E.A. Carter. Surface Sci. 530, 1-2, 87 (2003).
- [10] M. Mizuno, I. Tanako, H. Adachi. Phil Mag. B 75, 2, 237 (1997).
- [11] E.J. Fasiska, G.A. Jeffrey. Acta Cryst. 19, 463 (1965).
- [12] В.Г. Гаврилюк. Распределение углерода в стали. Наук. думка, Киев (1987).
- [13] M. Methfessel, M. Scheffler. Physica B 172, 175 (1991).
- [14] J.P. Perdew, S. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 18, 3865 (1996).
- [15] И.Н. Шабанова, В.А. Трапезников. Письма в ЖЭТФ 18, 576 (1973).