Валентная нестабильность урана в $U(AI_{1-x}Ge_x)_3$

© А.В. Тюнис, В.А. Шабуров, Ю.П. Смирнов, А.Е. Совестнов

Петербургский институт ядерной физики им. Б.П. Константинова Российской академии наук, 188350 Гатчина, Ленинградская обл., Россия

(Поступила в Редакцию 13 февраля 1997 г.)

Методом смещений рентгеновских линий исследована электронная структура U и Ge в твердых растворах $U(Al_{1-x}Ge_x)_3$. Показано, что во всей области составов ($0 \le x \le 1$) уран имеет смешанную валентность $U^{3+}[Rn](5f^3)-U^{4+}[Rn](5f^2)$, причем при переходе от UAl₃ (x = 0) к UGe₃ (x = 1) заселенность 5f-оболочки урана увеличивается на ~ 0.28 5f-электрона/атом U. Электронная структура Ge во всей области составов $0 < x \le 1$ близка к электронной структуре в металлическом Ge. В пределах экспериментальных ошибок (~ 0.1 4p-электрона/атом Ge) не обнаружено изменения заселенности 4p-оболочки Ge при изменении состава от x = 0.2 до 1. Установлено, что делокализация 5f-электрона U происходит за счет перехода его в *s*- либо *d*-зону самого урана.

Известно, что размерный фактор, т.е. расстояние между ближайшими атомами урана ru-u, во многом определяет как макроскопические, так и микроскопические свойства интерметаллических соединений на его осно-В соединениях, у которых $r_{\text{U-U}}$ < 3.4 Å, ве [1,2]. 5f-электрон урана делокализован, т.е. имеет коллективизированную (зонную) природу. Считается, что механизмами такой делокализации являются либо непосредственное перекрытие 5*f*-волновых функций ближайших соседей (образование *f*-зоны), либо *f*-*d*-гибридизация. Такие соединения, как правило, не обнаруживают магнитного упорядочения, являясь парамагнетиками с независящей от температуры магнитной восприимчивостью, и обладают достаточно высоким (в несколько раз большим, чем у обычных переходных металлов) коэффициентом электронной теплоемкости, что объясняется высокой плотностью состояний на уровне Ферми.

Более сложная и богатая с точки зрения разнообразия физических свойств картина (различные магнитные структуры [3], тяжелофермионные системы [4], системы с промежуточной валентностью [5,6] и др.) наблюдается для соединений, у которых $r_{U-U} > 3.4$ Å. В таких соединениях расстояние U-U превышает так называемый предел Хилла (3.4 Å), перекрытие 5*f*-волновых функций соседних атомов становится пренебрежимо малым, и в принципе 5*f*-электрон должен приобретать локализованный характер. Вместе с тем имеется ряд экспериментальных результатов, указывающих на делокализованный характер 5f-электрона урана во многих соединениях, в которых $r_{\rm U-U}$ > 3.4 Å. Известен один из механизмов такой делокализации — образование состояния промежуточной валентности (ПВ) (как в случае 4f-электрона редких земель).¹ Состояние ПВ урана обнаружено, например, в UCu₅ [5,9] и USn₃ [6,10].

Имеются и другие точки зрения на проблему делокализации 5*f*-электронов в соединениях актинидов. Так, например, считают, что одним из возможных механизмов делокализации 5f-электрона может являться гибридизация 5f-электрона с валентными электронами лигандов. В [11] обсуждается механизм такой гибридизации на примере интерметаллических соединений UX₃, которые в большинстве своем имеют кристаллическую структуру типа AuCu₃. В частности, в [11] предполагается наличие эффекта гибридизации 5f-электронов U с p-электронами Ge в UGe₃.

Для выяснения роли 4*p*-электронов Ge в механизме делокализации 5*f*-электронов U в настоящей работе методом смещений рентгеновских линий исследована электронная структура урана и германия в твердых растворах U(Al_{1-x}Ge_x)₃ (0 $\leq x \leq$ 1) (перекрывание волновых функций 3*p*-электронов Al и 4*p*-электронов Ge с волновой функцией 5*f*-электрона U существенно различны).

1. Эксперимент

Образцы твердых растворов $U(Al_{1-x}Ge_x)_3$ приготовлялись в дуговой печи в атмосфере аргона. Качество образцов проверялось рентгеноструктурным анализом на дифрактометре ДРОН-2М. Проведенный рентгеноструктурный анализ показал, что образцы всех составов имели кристаллическую структуру типа AuCu₃, а содержание посторонних фаз в них не превышало 5%. Параметры решетки *а* для UAl₃ и UGe₃ соответвовали приведенным в литературе [12]. Зависимость параметра решетки U(Al_{1-x}Ge_x)₃ от состава *x* приведена на рис. 1 (кривая I).

Измерения смещений рентгеновских L_{α_1} - и L_{β_2} -линий урана и K_{α_1} -линии германия проводились на фокусирующем спектрометре по Кошуа, параметры которого описаны в работе [13]. Методика измерений подробно описана в [14].

Измерены смещения рентгеновских L_{α_1} - и L_{β_2} -линий урана (репер UAl₃) в зависимости от состава (x). Экспериментальные величины смещений приведены в таблице. Там же приведены отношения $\varkappa = \Delta E_{L_{\beta_2}} / \Delta E_{L_{\alpha_1}}$.

¹ Проблема ПВ для 4f-элементов изучена достаточно подробно как в экспериментальном, так и в теоретическом плане (см., например, обзоры [7,8]).

Рис. 1. Зависимость параметра кристаллической решетки от состава в U(Al_{1-x}Ge_x)₃. I — экспериментальные данные (кривая I), 2 — теоретическая зависимость, получаемая последовательной равномерной по образцу заменой атомов Al атомами Ge в предположении неизменности металлических радиусов Al, Ge и U (прямая II), 3 — то же с учетом изменения размеров атомов U в результате $5f \leftrightarrow (6d, 7s)$ -переходов; для UAl₃ и UGe₃ показаны диапазоны изменения параметров решетки, обусловленные суммарными (систематическими и статистическими) ошибками в определении абсолютной заселенности 5f-оболочки U, 4 — расчетная зависимость (3), вписанная в экспериментальную методом наименьших квадратов.

Измерения смещений K_{α_1} -линии Ge проведены для двух пар: Ge(мет)–UGe₃ и UGe₃–UAl_{2.4}Ge_{0.6}. Экспериментальные значения смещений составили $\Delta E_{K_{\alpha_1}}$ (Ge(мет)–UGe₃) = -34 ± 5 meV, $\Delta E_{K_{\alpha_1}}$ (UGe₃– UAl_{2.4}Ge_{0.6}) = -17 ± 7 meV.

Для определения абсолютной заселенности 5*f*-оболочки U были измерены также смещения рентгеновской L_{α_1} -линии урана в UAl₃ и UGe₃ относительно UF₃. Экспериментальные значения смещений составили $\Delta E_{L_{\alpha_1}}$ (UF₃-UAl₃) = 195±10 meV, $\Delta E_{L_{\alpha_1}}$ (UF₃-UGe₃) = 78±6 meV.

Экспериментальные смещения рентгеновских L_{α_1} - и L_{β_2} -линий урана в (UAl_{1-x}Ge_x)₃ относительно UAl₃ и отношение $\varkappa = \Delta E_{L_{\beta_2}} / \Delta E_{L_{\alpha_1}}$ в зависимости от состава (x)

×
35
26
18

2. Экспериментальные результаты и их обсуждение

Абсолютные значения заселенности 5f-оболочки урана в UAl₃ и UGe₃ определялись, как и в [15], из соотношения

$$n_{5f} = 2 + \frac{\Delta E_{L_{\alpha_1}} \left(\text{UBe}_{13} - \text{UAl}_3(\text{UGe}_3) \right)}{\Delta E_{L_{\alpha_1}}^{\text{calc}} \left(\text{U}^{4+}(5f^2) - \text{U}^{3+}(5f^3) \right)}, \qquad (1)$$

где $\Delta E_{L_{\alpha_1}}^{\text{calc}} (\mathrm{U}^{4+}(5f^2) - \mathrm{U}^{3+}(5f^3))$ — смещение L_{α_1} -линии урана при полном удалении 5*f*-электрона, вычисленное методом Дирака-Фока и равное -335 meV [16]. Здесь предполагается, что в UBe₁₃ электронная структура урана $\mathrm{U}^{4+}(5f^2) + (sd)^4$ [17,18], а небольшой вклад в смещение от валентных *s*- и *d*-электронов ($\sim 10\%$ от эффекта, связанного с изменением заселенности 5*f*-оболочки) не учитывается. Разности $\Delta E_{L_{\alpha_1}}$ (UBe₁₃-UAl₃(UGe₃)) получены из измеренного нами ранее [2] смещения этой линии в UBe₁₃ относительно того же репера UF₃: $\Delta E_{L_{\alpha_1}}$ (UBe₁₃-UF₃) = -251 ± 7 meV.

Полученная из формулы (1) заселенность 5*f*-оболочки урана составила $2.17 \pm 0.04 \pm 0.1$ 5*f*-электрона/атом U в UAl₃ и $2.52 \pm 0.03 \pm 0.1$ 5*f*-электрона/атом U в UGe₃. Здесь первые ошибки — статистические, а вторые — ситематические, связанные с невозможностью точного учета вклада в смещение от валентных *s*- и *d*-электронов.

Разность в заселенности 5*f*-оболочки U в $U(Al_{1-x}Ge_x)_3$ и UAl₃ определялась непосредственно из полученных смещений L_{α_1} -линии урана в $U(Al_{1-x}Ge_x)_3$ относительно UAl₃ (см. таблицу) с использованием простого соотношения

$$\Delta n_{5f} = \frac{\Delta E_{L_{\alpha_1}} \left(\text{UAl}_3 - (\text{UAl}_{1-x} \text{UGe}_x)_3 \right)}{\Delta E_{L_{\alpha_1}}^{\text{calc}} \left(\text{U}^{4+} (5f^2) - \text{U}^{3+} (5f^3) \right)}.$$
 (2)

Полученная из соотношения (2) зависимость заселенности 5*f*-оболочки урана от состава приведена на рис. 2. Она "привязана" к абсолютной шкале заселенности 5*f*-оболочки урана по определенной нами заселенности в UAl₃ (т.е. $n_{5f}(x) = 2.17 + \Delta n_{5f}$).

Из рис. 2 видно, что во всей области составов уран имеет нецелочисленное заполнение 5*f*-оболочки, другими словами, находится в смешанном валентном состоянии U³⁺[Rn](5*f*³)–U⁴⁺[Rn](5*f*²). Определить конечное состояние 5*f*-электрона можно из отношения $\varkappa = \Delta E_{L_{\beta_2}}/\Delta E_{L_{\alpha_1}}$. Экспериментальные значения \varkappa в нашем случае находятся в диапазоне 1.2–1.5. Такие значения \varkappa характерны при 5*f* \longleftrightarrow (6*d*, 7*s*)-переходах [10]. Переход 5*f*-электрона на 4*p*-уровень германия эквивалентен переходу 5*f* $\rightarrow \infty$. Для таких переходов $\varkappa = 0.70 \pm 0.05$ [19]. Таким образом, из наших данных следует, что с ростом концентрации Al (уменьшением *x*) происходит переход 5*f*-электрона в (6*d*, 7*s*)-зону урана.

Этот вывод подтверждается и анализом зависимости параметра решетки от состава. В модели несжимаемых соприкасающихся шаров последовательные замещения атомов A1 на атомы Ge, которые имеют

Рис. 2. Зависимость заселенности 5*f*-оболочки урана (n_{5f}) от состава в U(Al_{1-x}Ge_x)₃ по данным смещений L_{α_1} -линии U. Показаны экспериментальные ошибки изменения заселенности 5*f*-оболочки U. Для абсолютных значений заселенности необходимо учитывать систематические ошибки.

меньший металлический радиус ($r_{Al} = 0.1432 \text{ nm}$ и $R_{Ge} = 0.1369 \text{ nm}$ [20]), без изменения валентности U, а следовательно, и его размеров ($r_U = 0.156 \text{ nm}$ [20])² приводит к линейному уменьшению постоянной решетки U(Al_{1-x}Ge_x)₃ с ростом x (прямая II, отмеченная треугольниками на рис. 1).

Учтем, что радиус атомов урана зависит от заселенности его 5f-оболочки. Изменение радиуса атома урана при $5f \longrightarrow 6d$ -переходах можно оценить по соотношению

$$r_{\mathrm{U}}(x) = r_{\mathrm{U}} \Big[1 + 2 \big(\overline{r_{7s}}(\mathrm{U}^{3+}) - \overline{r_{7s}}(\mathrm{U}^{4+}) \big) / \big(\overline{r_{7s}}(\mathrm{U}^{3+}) + \overline{r_{7s}}(\mathrm{U}^{4+}) \big) \Delta q(x) \Big], \tag{3}$$

где $\overline{r_{7s}}(U^{3+})$ и $\overline{r_{7s}}(U^{4+})$ — средние радиусы 7*s*-оболочки урана для конфигураций U[Rn](5 f^3 , $6d^1$, $7s^2$) и U[Rn](5 f^2 , $6d^2$, $7s^2$) соответственно, $\Delta q(x) = n_{5f} - 2$ — отличие заселенности 5*f*-оболочки от двух.

Результаты расчетов параметров решетки в модели соприкасающихся шаров с учетом изменения размеров атома урана по соотношению (3) и с использованием определенной нами заселенности 5f-оболочки урана (рис. 2) показаны на рис. 1 кружками. Из рис. 1 видно, что рассчитанная таким образом зависимость a(x) в основном повторяет экспериментальную, но кривая смещена в сторону меньших a. На рис. 1 точками 4 изображена та же расчетная зависимость, вписанная в экспериментальную методом наименьших квадратов. При этом кривая сместилась вверх, однако величина этого смещения не превышает диапазона изменения расчетных параметров решетки, обусловленного систематическими ошибками в определении абсолютной заселенности 5f-оболочки U. Этот диапазон показан на рис. 1 для UGe₃ и UAl₃. Если обратить задачу, т. е., используя соотношение (3), определить заселенности 5*f*-оболочки урана по экспериментальным значениям параметров кристаллической решетки U(Al_{1-x}Ge_x)₃, то они составят для UAl₃ и UGe₃ соответственно 2.26 и 2.54 5*f*-электрона/атом U, т. е. полученные величины в пределах статистической и систематической ошибок совпадают с величинами, определенными нами из смещений рентгеновских линий $(2.17 \pm 0.04 \pm 0.1 \text{ и } 2.52 \pm 0.03 \pm 0.1).$

Поскольку в кристаллических структурах UAl₃ и UGe₃ все атомы урана расположены в эквивалентных позициях, можно утверждать, что за счет $5f \rightarrow (6d, 7s)$ -перехода в U(Al_{1-x}Ge_x)₃ реализуется состояние ПВ. Косвенным подтверждением такого вывода является и то, что как UAl₃, так и UGe₃ имеют достаточно высокие коэффициенты электронной удельной теплоемкости (~ 50 mJ/mol · K²) [11], что характерно для веществ в состоянии ПВ.

Из наших данных следует, что электронная структура Ge в $U(Al_{1-x}Ge_x)_3$ близка к электронной структуре металлического германия $(\Delta E_{K_{\alpha_1}}(\text{Ge}(\text{мет})-\text{UGe}_3) = -34 \pm 5 \text{ meV}),^3$ а изменение заселенности 4*p*-оболочки Ge во всей области составов не превышает ~ 0.1 4*p*-электрона/атом Ge $(\Delta E_{K_{\alpha_1}}(\text{UGe}_3-\text{UAl}_{2.4}\text{Ge}_{0.6}) = -17 \pm 7 \text{ meV}).$

Отметим еще одну обнаруженную нами особенность электронной структуры урана в U(Al_{1-x}Ge_x)₃. В районе $x \approx 0.3$ (рис. 2) наблюдается заметный скачок в заселенности 5*f*-оболочки урана. Как правило, такие скачки могут приводить к аномалиям таких макроскопических свойств системы, как сопротивление, магнитная восприимчивость, теплоемкость и др. Насколько известно авторам, макроскопические свойства твердых растворов U(Al_{1-x}Ge_x)₃ до сих пор не изучались.

Авторы благодарят О.И. Сумбаева за обсуждения и полезные замечания, Б.В. Григорьева и Е.Г. Андреева за помощь в проведении эксперимента, П.Л. Соколову за оформление работы.

Работа выполнена в рамках проекта № 96-02-17811, поддержанного Российским фондом фундаментальных исследований.

Список литературы

- [1] H.H. Hill. Nucl. Met. 17, 1, 2 (1970).
- [2] А.В. Тюнис, В.А. Шабуров, Ю.П. Смирнов, А.Е. Совестнов. ФТТ 37, 8, 2512 (1995).
- [3] К.Г. Гуртовой, Р.З. Левитин. УФН 153, 2, 193 (1987).
- [4] G.R. Stewart. Rev. Mod. Phys. 56, 6, 755 (1984).
- [5] H.J. van Daal, K.H.J. Buschow, P.B. van Aken, M.H. van Maaren. Phys. Rev. Lett. 34, 23, 1457 (1975).

 $^{^2}$ Такая величина металлического радиуса урана получена для электронной структуры U $^{4+}[{\rm Rn}](5f^2,7s^2,6d^2).$

³ Смещение K_{α_1} -линии Ge при удалении одного 4*p*-электрона составляет ~ 150–200 meV по разным моделям расчета и согласуется с нашими данными (с учетом ионности Ge в GeO₂ $i \sim 0.4$) по смещению K_{α_1} -линии Ge для пары GeO₂-Ge_M ($\Delta E_{K_{\alpha_1}}$ (GeO₂-Ge_M) = 257 ± 5 meV).

- [6] L.W. Zhou, C.L. Lin, J.E. Crow, S. Bloom, R.P. Guertin, S. Foner. Phys. Rev. B34, 1, 483 (1986).
- [7] Д.И. Хомский. УФН. 124, 23, 281 (1979).
- [8] J.M. Robinson. Phys. Rep. 51, 1 (1979).
- [9] А.В. Тюнис, Г.И. Терехов, В.А. Шабуров. ФТТ 23, 7, 2175 (1981).
- [10] А.В. Тюнис, В.А. Шабуров, Ю.П. Смирнов, А.Е. Совестнов. ФТТ 37, 8, 2512 (1995).
- [11] D.D. Koelling, B.D. Dunlap, G.W. Crabtree. Phys. Rev. B31, 8, 4966 (1985).
- [12] Crystallographic Data on Metal and Alloy Structures. Dover Publ. Inc, N.Y. (1963). 263 p.
- [13] А.В. Тюнис, В.М. Самсонов, О.И. Сумбаев. Препринт ЛИЯФ-151, Л. (1975). 16 с.
- [14] О.И. Сумбаев. УФН. 124, 2, 281 (1978).
- [15] А.В. Тюнис, В.А. Шабуров, Ю.П. Смирнов, А.Е. Совестнов,
 В. Суски, Л. Фольчик. ФТТ 38, 6, 1653 (1996).
- [16] И.М. Банд, В.И. Фомичев. Препринт ЛИЯФ-498. Л. (1979).
 27 с.
 - selectlanguageenglish
- [17] W.G. Clark, W.H. Wong, W.A. Hines, M.D. Lan, D.E. MacLaughlin, Z. Fisk, J.L. Smith, H.R. Ott. J. Appl. Phys. 63, 8, 3890 (1988).
- [18] А.В. Тюнис, В.А. Шабуров, Ю.П. Смирнов, А.Е. Совестнов. ФТТ 38, 5, 1598 (1996).
- [19] А.В. Тюнис, Ю.П. Смирнов, А.Е. Совестнов, В.А. Шабуров, И.М. Банд, М.Б. Тржасковская. ФТТ **36**, *9*, 2729 (1994).
- [20] У. Пирсон. Кристаллохимия и физика металлов и сплавов. Мир., М. (1977). Ч. 1. 419 с.