Магнитооптические и магнитные свойства ионно-имплантированных пленок (YBiSmTm)₃(FeGa)₅O₁₂

© Г.Г. Васильев, В.Н. Заблуда, В.Е Осуховский*, И.С. Эдельман

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия *Дальневосточный государственный университет, 690000 Владивосток, Россия

(Поступила в Редакцию 12 июля 1996 г. В окончательной редакции 3 марта 1997 г.)

На пленках (YBiSmTm)₃(FeGa)₅O₁₂, имплантированных ионами He⁺, обнаружены сильные зависимости меридионального эффекта Керра от режима имплантации, различные в разных участках спектра. Наряду с эффектом Керра исследованы зависимости намагниченности, магнитной анизотропии, температуры Нееля от условий имплантации. Отмечены корреляции в поведении магнитных, магнитооптических и электрических свойств имплантированных слоев.

Ранее в [1,2] нами было исследовано влияние имплантации ионами Ne⁺ на физические свойства (магнитные, электрические, магнитооптические) пленок Y₃F₅O₁₂ и (YLuSmCa)₃(FeGe)₅O₁₂ и было выявлено существенное изменение спектров меридионального эффекта Керра, зависящее от энергии и дозы имплантации, которое объяснялось предположительно перераспределением вкладов от различных электронных переходов в наблюдаемый эффект. Однако наблюдаемая в [1,2] картина осложнялась небольшой глубиной имплантированного слоя, характерной для ионов неона [3], по сравнению с суммарной глубиной пленки. Глубина проникновения ионов He⁺ приблизительно втрое больше при одинаковых значениях энергии, а полуширина кривой распределения дефектов по глубине образца существенно больше по сравнению с неоном [3]. Поэтому в настоящей работе проведено исследование меридионального эффекта Керра α и магнитного кругового дихроизма (МКД), а также намагниченности *M*, температуры Нееля *T_N*, магнитной анизотропии и керровских петель гистерезиса пленок (YBiSmTm)₃(FeGa)₅O₁₂ с цилиндрическими магнитными доменами (ЦМД) толщиной 1.1 µm на подложке галий-гадолиниевого граната с ориентацией (111), имплантированных He⁺ дозами (D) от $2 \cdot 10^{14}$ до 10^{16} cm⁻² при энергиях $E_1 = 100 \,\text{keV}$ и $E_2 = 300 \,\text{keV}$. Толщина ионно-имплантированного (ИИ) поверхностного слоя составляла 0.5 и 1.1 µm соответственно. Таким образом, в одной серии образцов для $E = E_1$ только часть образца по глубине была затронута имплантацией аналогично исследованным ранее пленкам гранатов [1,2], в то время как во второй серии $E = E_2$ пленки были проимплантированы на всю глубину. При измерении α поле в плоскости образца составляло 2 kOe, угол падения р-поляризованной световой волны на плоскость образца был равен 63°, погрешность измерения α – 0.1. МКД измерялся в магнитном поле, равном 5.0 kOe, нормальном плоскости образца и параллельном направлению распространения света. Погрешность измерения составляла 10^{-5} cm⁻¹. Намагниченность M, T_N и поле

анизотропии, как перпендикулярной H_u , так и плоскостной H_i , измерялись магнитостатическими методами при последовательном стравливании ИИ-слоя.

На рис. 1, а, в показаны дозовые серии а в коротковолновой области спектра для Е1 и Е2. Следует отметить, что два интенсивных максимума ($\lambda_1 = 483 \text{ nm}$ и $\lambda_2 = 445$ nm) в спектре α неимплантированной пленки расположены практически там же, где и соответствующие максимумы в спектре α пленки железо-иттриевого граната (ЖИГ) [1], но в более коротковолновой области наблюдается сильное различие спектров α . Для ЖИГ α меняет знак и проходит через отрицательный максимум вблизи 400 nm, а для исследованной в настоящей работе пленки ЦМД в области $\lambda < \sim 400 \,\mathrm{nm}$ имеется широкая бесструктурная область с приблизительно постоянным значением α . Поведение $\alpha(D)$ в Ві-гранате, как и в пленках ЖИГ, характеризуется сильной зависимостью от дозы и энергии имплантации во всем спектральном диапазоне. Особенно сложное поведение имеет место в области $\lambda > 470 \, \text{nm}$; оно, по-видимому, обусловлено интерференцией, вызванной отражением света от границы пленка-полдожка, и в настоящей работе нами не обсуждается.

Как известно, одним из основных результатов имплантации ЦМД-пленок является формирование в имплантированном слое анизотропии типа "легкая плоскость", в то время как в неповрежденных имплантацией частях пленки сохраняется перпендикулярная анизотропия. Ранее [1,4] было отмечено, что сильная дисперсия оптического поглощения в ферритах-гранатах позволяет, выбирая область спектра, извлекать из полевых зависимостей α информацию о магнитных свойствах поверхностного слоя образца определенной толщины. В частности, при меридиональном эффекте Керра будет наблюдаться прямоугольная петля гистерезиса, если плотность дефектов обеспечивает анизотропию типа "легкая плоскость" на некоторой глубине образца и свет используемой длины волны проникает только на эту глубину. Если свет проникает также на глубину образца, не затронутую

Рис. 1. Дисперсия α в пленках (YBiSmTm)₃(FeGa)₅O₁₂, имплантированных ионами He⁺. *a*) $E_1 = 100$ keV. Дозы D (He⁺/cm²): $I = 0, 2 = 5 \cdot 10^{14}, 3 = 10^{15}, 4 = 2 \cdot 10^{15}, 5 = 5 \cdot 10^{15}$. *b*) $E_2 = 300$ keV. Дозы D (He⁺/cm²): $I = 0, 2 = 2 \cdot 10^{14}, 3 = 5 \cdot 10^{14}, 4 = 5 \cdot 10^{15}, 5 = 10^{16}$. На вставке дисперсия МКД $\Delta k = k_+ - k_-$, где k_+ и k_- — коэффициенты поглощения право- и левополяризованных волн для некоторых образцов, представленных на рис. 1, *b*.

имплантацией, то форма петли гистерезиса отклоняется от прямоугольной. Таким образом, критерием выявления спектрального диапазона, в котором свет проникает на глубину имплантированного слоя, может быть выбран коэффициент прямоугольности петель гистерезиса α $Q = \alpha_r / \alpha_s$, где α_r — величина α в нулевом магнитном поле, а α_s — в поле насыщения. В предельных случаях идеально перпендикулярной и идеально плоскостной анизотропии Q равно нулю и единице соответственно. Для энергии имплантации Е2 во всей исследованной спектральной области, начиная с $D = 5 \cdot 10^{14} \, \text{He}^+/\text{cm}^2$, петля гистерезиса α приобретает прямоугольную форму, тем самым показывая, что вектор намагниченности в имплантированном слое пленки лежит в плоскости образца, а поведение спектров α характеризует только изменение свойств имплантированного слоя. Другая картина имеет место для серии с меньшей энергией имплантации Е1: при такой же дозе облучения Q = 1 наблюдается только при $\lambda < 380$ nm, хотя из кривой зависимости $\Delta H(D)$, снятой на образцах из этой серии (кривая 5 на рис. 2), следует, что величина возникающей при имплантации плоскостной магнитной анизотропии начинает превышать величину одноосной перпендикулярной анизотропии при $D \approx (3-5) \cdot 10^{14} \, \text{He}^+/\text{cm}^2$; таким образом, при $\lambda > 380$ nm глубина проникновения света превышает толщину имплантированного слоя.

Рассмотрим более ясный случай, отраженный на рис. 1, b, когда практически весь объем пленки проимплантирован. На рис. 2 показаны зависимости α для $\lambda_1 = 350 \,\mathrm{nm}$ (кривая 1) и $\lambda_2 = 445 \,\mathrm{nm}$ (кривая 2), а также намагниченности М температуры Т_N от дозы имплантации в этих образцах. На вставке к рис. 1 приведены спектры МКД этих же образцов. Поведение пика, наблюдаемого в спектре МКД, повторяет поведение $\alpha(D)$ в этих образцах вблизи λ_2 с изломом в области $D = 5 \cdot 10^{14} \,\mathrm{He^+/cm^2}$. Если сравнить зависимость $\alpha(D)$ при λ_2 с зависимостями $\alpha(D)$ при других значениях λ , где α линейно по lg D, то наблюдаемую в области λ_2 картину можно представить как наложение некоторого пика и бесструктурной полосы. При $D \approx 5 \cdot 10^{14} \, \mathrm{He^+/cm^2}$ пик полностью исчезает, а бесструктурная полоса ведет себя при изменении D так же, как и в остальной части спектра. Таким образом, излом в зависимости $\alpha(D)$ для $\lambda = 445\,\mathrm{nm}$ связан с изсчезновением пика вследствие нарастания дефектности пленки. Экстраполяция обеих кривых $\alpha(D)$ (кривые 1 и 2 на рис. 2) к соответствующим значениям α в неимплантированном образце показывает, что начиная с $D \approx 8 \cdot 10^{13} \,\mathrm{He^+/cm^2}$ идет последовательное подавление магнитных и магнитооптических свойств в ИИ-слое. Однако зависимости α и МКД от D не

Рис. 2. Дозовые зависимости эффекта Керра для 350 (1) и 445 nm (2), намагниченности (3), температуры Нееля (4), разности полей плоскостной и перпендикулярной магнитной анизотропии $\Delta H = H_i - H_u$ (5) для пленок (YBiSmTm)₃(FeGa)₅O₁₂, имплантированных He⁺ при энергиях 300 (1–4) и 100 keV (5).

могут быть объяснены только поведением M(D). Одной из причин более быстрого уменьшения α и МКД при имплантации по сравнению с уменьшением М может быть изменение вероятностей обусловливающих их электронных переходов, причем характер этих изменений различен для разных типов переходов. В [5,6] нами было показано, что в области $\lambda = 445\,\mathrm{nm}$ в спектре α ЖИГ нахолится переход с переносом заряда между тетраэдрическими (Fe⁺³) и октаэдрическими [Fe⁺³] ионами железа, более чувствительный к разрушению магнитного порядка при повышении температуры по сравнению с внутриконфигурационными *d*-*d*-переходами, которые также имеют место в этой сректральной области. При имплантировании ионами Ne⁺ пленок ЖИГ этот пик в спектре α уменьшался гораздо быстрее по сравнению с остальными и исчезал при $D = 2 \cdot 10^{14} \,\mathrm{Ne^+/cm^2}$ [1] аналогично пику при $\lambda = 445\,\mathrm{nm}$ в исследованных в настоящей работе ЦМД-пленках, который исчезает при $D = 5 \cdot 10^{14} \,\mathrm{He^+/cm^2}$. Различие доз объясняется большей дефектообразующей способностью неона, облусловленной его большим ионным радиусом. Все это позволяет нам интерпретировать этот пик как переход с переносом заряда (Fe⁺³) \rightarrow [Fe⁺³].

На рис. 2 приведена вышеупомянутая зависимость $\Delta H = H_i - H_u$ от дозы имплантации для энергии $E_1 = 100 \,\mathrm{keV}$ (кривая 5). При $D = 3 \cdot 10^{14} \,\mathrm{He^{+/cm^2}}$ магнитная одноосная перпендикулярная анизотропия K_{μ} становится меньше анизотропии типа "легкая плоскость" Кі, возникающей при имплантации. В этом случае анизотропия "легкая плоскость" возникает при несколько меньшей дозе, чем в случае энергии имплантации Е2, что может быть вызвано более высокой плотностью дефектов в имплантированном слое меньшей глубины. Более высокой плотностью дефектов при Е₁, по-видимому, объясняется и различное поведение α в дозовых сериях на рис. 1, а и b, где более существенные изменения спектров α (вплоть до изменения знака эффекта) отмечаются именно в серии E_1 , а осцилляции α на кривой 5, возможно, связаны с интерференцией отраженного света от появившейся резкой границы имплантированныйнеимплантированный слои в исследуемой пленке.

В [1] нами было отмечено, что на зависимости электропроводности от дозы имплантации $\sigma(D)$ для пленок ЖИГ наблюдаются два излома: первый при $D = 2 \cdot 10^{14} \, \text{Ne}^{+}/\text{cm}^{2}$, после которого проводимость возрастает быстрее с увеличением D, и второй при $D = 5 \cdot 10^{14} \,\mathrm{Ne^+/cm^2}$, после которого рост проводимости замедляется. Обоим этим изломам $\sigma(D)$ соответствуют изломы в дозовых зависимостях α ЖИГ. При первой дозе исчезает максимум, связанный с переходом (Fe³⁺) \rightarrow [Fe³⁺], а при второй изменяется знак. Для случая имплантации He⁺ данные о зависимости $\sigma(D)$ имеются также только для пленок ЖИГ [2]. Первый излом $\sigma(D)$ наблюдался в этом случае при $D = 5 \cdot 10^{14} \,\mathrm{He^{+}/cm^{2}}$. Именно при этой дозе имплантации He⁺ наблдается излом на зависимости $\alpha(D)$ для максимума при $\lambda = 445\,\mathrm{nm}$ в исследованных в настоящей работе образцах, который мы связываем с переходом $(Fe^{3+}) \rightarrow [Fe^{3+}].$

Возрастание проводимости при имплантации связывается в [1] с появлением дополнительных примесных центров в запрещенной зоне. Основу этих центров формируют ионные вакансии, для сохранения электронейтральности ближайшие к вакансии ионы Fe^{3+} понижают свою валентность до Fe^{2+} . Первый излом на дозовой зависимости проводимости соответствует переходу к переносу заряда по примесной зоне, а это в свою очередь связано с существенным возрастанием концентрации Fe^{2+} . По-видимому, возрастание концентрации ионов Fe^{2+} . Которые преимущественно занимают октаэдрические [7] позиции, приводит к более резкому уменьшению интенсивности переходов (Fe^{3+}) \rightarrow [Fe^{3+}] и излому на дозовой зависимости α для $\lambda = 445$ nm.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант 95-02-03669).

Список литературы

- I.S. Edelman, G.G. Vasiljev, V.N. Berzhansky, V.E. Petrov. J. Magn. Magn. Mater. 111, 171 (1992).
- [2] В.Н. Бержанский, В.Е. Петров, И.С. Эдельман, Г.Г. Васильев. Препринт ИФ СО АН СССР № 686Ф. Красноярск (1991).
- [3] Д. Мейер, Д. Эриксон, Д. Девис. Ионное легирование полупроводников. Мир, М. (1973). 331 с.
- [4] J. Martens, W. Godlieb. J. Appl. Phys. 58, 3180 (1985).
- [5] Г.Г. Васильев, И.С. Эдельман, В.Е. Петров, В.Н. Заблуда, В.Н. Бержанский. Препринт ИФ СО АН СССР № 513Ф. Красноярск (1988).
- [6] Г.Г. Васильев, И.С. Эдельман, В.Е. Петров, В.Н. Бержанский. ФТТ **32**, *1*, 269 (1990).
- [7] Ю.Д. Третьяков. Термодинамика ферритов. Химия, Л. (1967). 27 с.