## Одноионный подход к интерпретации рентгеновских фотоэлектронных спектров валентных полос монооксидов 3*d*-элементов

© Л.Д. Финкельштейн, Е.И. Заболоцкий, В.Р. Галахов, Э.З. Курмаев, С. Уленброк, С. Бартковски, М. Нойманн

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

(Поступила в Редакцию 6 февраля 1996 г.)

Для анализа тонкой структуры рентгеновских фотоэлектронных спектров валентных полос монооксидов 3d-элементов применен одноионный подход, учитывающий лишь внутриатомное кулоновское взаимодействие в свободных  $d^n$ -ионах, а также в  $d^n$ -ионах в кристаллическом  $O_h$ -поле. Рентгеновские фотоэлектронные спектры рассмотрены как совокупность  $d^{n-1}$  и  $d^n L$ -мультиплетов, представляющих соответственно неэкранированную и экранированную части конечного состояния. Неэкранированная часть конечного состояния может быть описана распределением сил линий фотоэлектронного перехода  $d^n \to d^{n-1}$ , а экранированная — как частично релаксированное распределение статистических весов  $d^n$ -ионов.

Природа тонкой структуры рентгеновских фотоэлектронных спектров (XPS) валентных полос 3*d*-монооксидов от TiO до CuO продолжает оставаться предметом исследования в связи с отсутствием подхода, способного описать динамику изменения спектров вдоль всего ряда монооксидов. Как правило, анализ рентгеновских фотоэлектронных спектров валентной полосы и внутренних уровней оксидов переходных металлов проводят на основе кластерного расчета с учетом конфигурационного взаимодействия в начальном и конечном состояниях фотоэффекта [1-4]. В этом подходе для достижения соответствия с экспериментом варьируется ряд энергетических параметров. Расчет электронной структуры и спектров NiO из первых принципов методом LDA+U выполнен в [5]. Однако, несмотря на учет корреляционной поправки U (кулоновское отталкивание между *d*-электронами), согласие с экспериментом здесь несколько хуже, чем при использовании метода конфигурационного взаимодействия (см., например, [3]).

В настоящей работе для интерпретации структуры рентгеновских фотоэлектронных (ХР) спектров валентных полос 3*d*-монооксидов мы использовали одноузельный подход. В этом подходе вычислены мультиплетные структуры  $3d^{n}$ - и  $3d^{n-1}$ -атомных конфигураций с учетом расщепления их термов в октаэдрическом поле монооксидов, имеющих кристаллическую структуру типа NaCl. Межатомные взаимодействия 3d-O 2p и 3d-3d в расчете не учитываются, однако их влияние обсуждается при анализе экспериментальных данных.

## 1. Методика эксперимента и расчета

Рентгеновские фотоэлектронные спектры валентных полос монокристаллов TiO, MnO, FeO, CoO, NiO и CuO получены на рентгеновском фотоэлектронном спектрометре PHI 5600 CI Multitechnique System с использованием монохроматизированного Al  $K_{\alpha}$ -излучения. Монокристаллы монооксидов исследовались после скола в высоком вакууме. Спектры калиброваны с использованием фольги Au (энергия связи Au  $4f_{7/2}$ -линии  $E_b = 84.0 \text{ eV}$ ). Разрешение по энергии, определенное вблизи уровня Ферми для фольги Au, оказалось равным 0.4 eV. Спектр VO взят из работы [6]. Нормированные по интенсивности O 2*s*-зоны XP-спектры монооксидов приведены на рис. 1.



**Рис. 1.** Рентгеновские фотоэлектронные спектры монооксидов 3*d*-элементов. Спектр VO воспроизведен из [6].



**Рис. 2.** Мультиплетная структура  $d^n$  (n = 2-4) для свободных атомов (сплошная линия), атомов в  $O_h$ -поле (штриховая линия) и силы линий фотоионизации  $n^n \to d^{n-1}$  (пунктир). Спектры размыты в меру функции Лоренца с полушириной  $\Gamma = 0.5 \text{ eV}$ . Вертикальными линиями показано положение термов в мультиплете свободного атома. За нуль энергии принят центр тяжести состояний старшего спина.

Энергетические спектры  $d^n$ -конфигураций (n = 2-8)вычислены в приближении свободного атома (иона) с учетом кулоновского взаимодействия между d-электронами. Параметры взаимодействия — одноэлектронные интегралы  $F_2$  и  $F_4$  — взяты из [7] и, как в [7], уменьшены на 20% с целью частичного исправления дефектов одноконфигурационного приближения. Результаты расчетов представлены на рис. 2, 3. Вертикальные линии соответствуют термам свободных атомов, их высоты пропорциональны статистическим весам *SL*-термов (2S + 1)(2L + 1) (левая ось ординат). Повторяющиеся *SL*-термы пронумерованы нижним индексом. Огибающие получены сложением лоренцевых распределений с полушириной  $\Gamma = 0.5$  eV. Сплошная линия характеризует расчет в приближении свободного атома, штриховая — расчет с учетом кристаллического  $O_h$ -поля.

Кроме того, вычислены вероятности фотоэлектронных переходов  $d^n \to d^{n-1}$ , в приближении свободного атома пропорциональные силам линий перехода, в которых оставлены только угловые части  $n(d^{n-1}SL)d^nS_0L_0)^2$ . Величина в круглых скобках — генеалогический коэффициент,  $S_0L_0$  — маркировка основного терма  $d^n$ . Огибающие сил линий представлены на рис. 2, 3 пунктиром (правая ось). В соответствии с дипольными правилами



**Рис. 3.** То же, что и на рис. 2, для  $d^n$  (n = 5-8).

отбора для n > 5 в конечном состоянии фотоэффекта разрешены только термы двух старших значений спина (мультиплетности 2S + 1 = n, n - 2). В случае n = 8энергетические распределения сил линий и статвесов совпадают (рис. 3).

Рассмотрим особенности распределения по энергиям статвесов и вероятностей фотоэлектронных переходов для зарядово-сопряженных конфигураций (т.е. таких, у которых числа электронов при n < 5 и дырок при n > 5 совпадают). В таких конфигурациях реализуются тождественные наборы термов, причем выражения для энергий одинаковых термов через F<sub>2</sub> и F<sub>4</sub> совпадают. Различия в энергетических интервалах между термами связаны с зависимостью F<sub>2</sub> и F<sub>4</sub> от n. Их возрастание с ростом *п* происходит с почти одинаковой скоростью и практически линейно, что и обусловливает неизменность формы мультиплетов (т. е. распределения статвесов) для сопряженных конфигураций. Иная ситуация для распределения вероятностей переходов. Для  $n \leq 5$  в конечном состоянии фотоэффекта разерешены только термы с максимальным значением спина (2S + 1 = n). Поэтому спектры фотоэффекта при  $n \leq 5$  являются менее протяженными, чем спектры сопряженных конфигураций при n > 5.

На рис. 2, 3 представлены также огибающие статвесов уровней в кристаллическом поле  $O_h$ -симметрии. Параметр расщепления 10Dq взят равным 0.5 eV. Видно, что энергетические интервалы между огибающими для групп термов изменились незначительно. Некоторые изменения претерпевают их относительные интенсивности.

## 2. Результаты и их обсуждение

В соответствии с сечениями ионизации рентгеновские фотоэлектронные спектры валентных полос TiO и VO образованы O2*p*- и 3*d*-состояниями, а спектры MnO–CuO отображают главным образом 3*d*-состояния металла. Протяженный XP-спектр второй группы оксидов можно условно разделить на две перекрывающиеся части: интенсивную, расположенную со стороны низких энергий связи, и малоинтенсивную — при энергиях связи 10 eV, называемую иногда сателлитом. Интенсивную часть спектра принято связывать главным образом с экранированным конечным состоянием  $d^n \underline{L}$ , а так называемый сателлит — с неэкранированным конечным состоянием  $d^{n-1}$ . Здесь  $\underline{L}$  означает отсутствие одного электрона в валентной полосе кислорода.

Согласно таким представлениям мы сопоставляем неэкранированную часть спектра с мультиплетом конечного состояния  $d^{n-1}$ , возникающим в результате фотоионизационного процесса  $d^n \rightarrow d^{n-1}$ , описывая вероятность переходов силами линий. Слабая интенсивность этой части спектра связывается в данном подходе с тем, что в процессе экранирования ее спектральный вес переходит в спектральный вес экранированной части конечного состояния —  $d^n \underline{L}$ . Экранированную часть спектра мы сопоставляем с  $d^n$ -мультиплетом (в  $O_h$ -поле), в котором состояния распределены по статвесам (рис. 4–6).

Из рис. 4–6 видно, что ХР-спектры TiO–NiO можно представить суперпозицией  $d^n$ - и  $d^{n-1}$ -мультиплетов, раздвинутых на энергетической шкале таким образом, что  $d^n$ -мультиплет описывает энергетическое распределение элементов структуры в экранированной части спектра, а  $d^{n-1}$  — в неэкранированной. Интервал между нижними уровнями обоих мультиплетов позволяет оценить энергию ионизации  $d^n$  уровней в монооксидах ( $\sim 6-8 \text{ eV}$ ), что сильно отличается от значений третьего потенциала ионизации для свободных атомов 3*d*-элементов ( $\sim 30 \text{ eV}$ ).

Для оксидов TiO и VO неэкранированная часть спектра не наблюдается, возможно, из-за высокой относительной интенсивности О2р-полосы (см. рис. 4). На рис. 5 в XP-спектре MnO не проявляется нижний терм  ${}^{6}S$ , попадающий при сопоставлении расчета и эксперимента в область спектра, приписываемую незанятым состояниям. Можно попытаться понять это отклонение для MnO, анализируя процесс экранирования дырки в *d*-оболочке катиона, возникшей в результате фотоэффекта. В изоляторах MnO-CuO экранирующий электрон приходит в *d*-оболочку, вероятнее всего, от ионов кислорода в ближайшем окружении катиона. Между катионами и кислородом имеет место ковалентное взаимодействие (совместно с ионным), как это обсуждается и используется в модели косвенного обмена Крамерса-Андерсена [8]. Согласно [8], при  $n \ge 5$  в области ковалентного перекрытия орбиталей катиона и кислорода спин электрона кислорода ориентируется антипараллельно спину катиона, поскольку только такие состояния катиона являются свободными.

Можно предположить, что электроны кислорода, экранирующие *d*-дырку в конечном состоянии фотоэффекта, сохраняют ориентацию спина антипараллельной по отношению к спину катиона, как это имело место перед фотоэффектом. Тогда в экранированном конечном состоянии термы с максимальным спином сохраняются при n > 5, но исчезают при n = 5. Это могло бы объяснить то обстоятельство, что для  $Mn^{2+}$  в экранированном конечном состоянии мультиплет начинается с группы квартетов, соответствующих спину S = 3/2, а не с терма <sup>6</sup>S.

В спектре CuO (рис. 7) мультиплетную структуру имеет только неэкранированная часть спектра, соответствующая конфигурации  $d^8$ . Экранированная часть конечного состояния описывается конфигурацией  $d^9 \underline{L}$ . Единственный терм <sup>2</sup>D конфигурации  $d^9$  даже после расщепления в кристаллическом поле не может объяснить структуру и большую ширину основной линии спектра. Здесь предлагаемый подход неприменим.

Мультиплетная структура в  $d^n$ -оболочках атомов 3*d*-элементов возникает при числе *d*-электронов или дырок, отличном от единицы, т. е. при n = 2-8. Сопоставление расчетных  $d^{n}$ - и  $d^{n-1}$ -мультиплетов соответственно с экранированными и неэкранированными частями



**Рис. 4.** Сопоставление рентгеновских фотоэлектронных спектров ТіО и VO с расчетами  $d^2$  и  $d^3$ -мультиплетов атомов в  $O_h$ -поле  $(10D_q = 0.5 \text{ ev}, \Gamma = 0.5 \text{ eV})$ . Вертикальными линиями показано положение термов в мультиплете свободного атома. Приведена также полная плотность состояний (DOS) для ТіO<sub>0.75</sub>, воспроизведенная из [10]. *I* и 2 — обозначения подполос, относительные интенсивности которых представлены на рис. 8 и в таблице.



Рис. 5. То же, что и на рис. 4, для MnO  $(d^5)$  и FeO  $(d^6)$ . Добавлены расчетные спектры фотоэффекта (силы линий):  $d^5 \rightarrow d^4$  в MnO и  $d^6 \rightarrow d^5$  в FeO (штриховая линия).



**Рис. 6.** То же, что и на рис. 4, для CoO  $(d^7)$  и NiO  $(d^8)$ . Штриховыми линиями показаны расчетные спектры фотоэффекта (силы линий).

XP-спектров обнаруживает удовлетворительное согласие в энергетических интервалах между максимумами огибающих для групп термов. Однако относительные интенсивности в расчете отличаются от наблюдаемых в эксперименте. Рассмотрим неэкранированную и экранированную части спектра по отдельности.

Неэкранированная часть спектров крайне слабо выражена в MnO, постепенно усиливается от MnO к NiO и наиболее отчетливо проявляется в CuO (рис. 7). Сопоставление тонкой структуры неэкранированной части XP-спектра CuO с распределением статистических



**Рис. 7.** Рентгеновский фотоэлектронный спектр CuO и силы линий фотоэффекта для  $d^9 \rightarrow d^8$  перехода (штриховая линия). В главной части спектра мультиплет отсутствует.

весов термов конфигурации d<sup>8</sup> (совпадающих в этом случае с распределением сил линий перехода  $d^9 - d^8$ , что использовано для приведения к одному масштабу правой и левой шкал на рис. 2–3) показывает, что  $d^8$ -мультиплет удовлетворительно описывает не только энергетические интервалы между элементами тонкой структуры экспериментального спектра, но также и их относительные интенсивности. Что касается относительной интенсивности неэкранированной части спектра в целом по отношению к экранированной, то можно заключить, что наблюдаемое ее усиление от MnO к CuO на рис. 5-7 (и, по-видимому, даже от TiO к CuO) вызвано изменением числа состояний в принимающей спектральный вес (d<sup>n</sup>)и передающей спектральный вес  $(d^{n-1})$ -конфигурациях. Действительно, отношение числа термов в  $d^n$  и  $d^{n-1}$ ,  $N(d^n)/N(d^{n-1})$ , уменьшается от 5 до 0.2 при переходе от ТіО к СиО или от 1 до 0.2 при переходе от MnO к CuO, т. е. условия для экранирования *d*-дырки становятся менее благоприятными в конце периода.

1061

Обратимся теперь к обсуждению закономерностей в экранированной части спектра. Как видно из рис. 4–6, распределение групп термов хорошо описывает относительное расположение элементов структуры по энергии и в этой части ХР-спектров. Однако соотношение интенсивностей элементов структуры ХР-спектров отличается от отношений статвесов в  $d^n$ -мультиплетах. Причем во всех ХР-спектрах отношение пиковых интенсивностей  $I_1/I_2$  ближайших к  $E_F$  элементов структуры превышает примерно в 2 раза отношение для тех же пиков на огибающих распределений статвесов (см. рис. 8 и таблицу). Зависимость  $I_1/I_2$  с минимумом коррелирует, как показано на рис. 8, с подобным поведением статвесов

| $d^n$ | Оксид | Основной терм (1) | Возбужденные термы (2) | $I_1/I_2$                     |             |
|-------|-------|-------------------|------------------------|-------------------------------|-------------|
|       |       |                   |                        | расчет в О <sub>h</sub> -поле | эксперимент |
| $d^2$ | TiO   | $^{3}F$           | ${}^{1}D^{3}P$         | 0.91                          | 1.75        |
| $d^3$ | VO    | ${}^4F$           | ${}^{4}P^{2}(GHP)$     | 0.54                          | 1.14        |
| $d^4$ | _     | $^{5}D$           | $^{3}(HPFG)$           | 0.33                          | -           |
| $d^5$ | MnO   | <sup>6</sup> S    | $^{4}(GPD)$            | 0.14                          | -           |
| $d^6$ | FeO   | $^{5}D$           | $^{3}(HPFG)$           | 0.33                          | 0.66        |
| $d^7$ | CoO   | ${}^4F$           | $^{4}P^{2}(GHP)$       | 0.62                          | 1.37        |
| $d^8$ | NiO   | ${}^{3}F$         | ${}^{1}D^{3}P$         | 1.04                          | 2.18        |

Вычисленные и наблюдаемые относительные интенсивности основных максимумов в ХР-спектрах монооксидов 3d-металлов

 $(2S_0 + 1)(2L_0 + 1)$  основных термов, что связано с зависимостью  $L_0$  от *n*. Последняя является отражением электрон-дырочной симметрии сопряженных конфигураций (подробнее см., например, в [9]).

Чем же вызвано расхождение  $I_1/I_2$  в расчете и эксперименте для экранированной части спектров? Мы рассматриваем *d*-экранирование как процесс релаксации возбужденной  $d^{n-1}$ -системы, восстанавливающей на узле начальную конфигурацию  $d^n$ . При таком подходе наблюдаемое в XP-спектрах оттягивание спектрального веса внутри d<sup>n</sup>-мультиплета к нижнему терму также является отображением релаксации d<sup>n</sup>-системы к основному состоянию d<sup>n</sup>-иона. Между степенью возбуждения d<sup>n</sup>-системы и заверешнностью процесса релаксации в ней можно установить следующее качественное соответствие: d<sup>n</sup>-распределение по статвесам — сильно возбужденное, нерелаксированное, *d<sup>n</sup>*-распределение в ХР-спектре — менее возбужденное, частично релаксированное, основное состояние *d<sup>n</sup>*-иона — невозбужденное, полностью релаксированное.

Основное состояние твердого тела, по всей вероятности, отличается от основного состояния d-иона, но изучено оно пока недостаточно в связи с несовершенством зонных расчетов. Среди рассматриваемых оксидов наиболее адекватным объектом для одноэлектронного описания является ТіО. На рис. 4 представлен результат зонного расчета ТіО по [10], а на рис. 8 приведена оценка  $I_1/I_2$  по данным [10]. Если бы последняя совпала с определенной из эксперимента, завершенность релаксации составляла бы 100 %, наблюдаемое соотношение дает степень релаксации ~ 40 %.

Таким образом, исходя из одноузельной модели, удается удовлетворительно интерпретировать 3*d*-спектры фотоионизации монооксидов в ряду от TiO до NiO как суперпозицию состояний двух возбужденных конфигураций:  $d^{n-1}$  и  $d^n \underline{L}$ . Низкоэнергетическая компонента  $d^n \underline{L}$  описывает экранированную часть, а высокоэнергетическая  $d^{n-1}$  соответствует неэкранированной части спектров фотоэмиссии. При описании структуры конфигурации  $d^n \underline{L}$  используется номенклатура уровней конфигурации  $d^n$ . Это соответствует предположению, что кулоновское взаимодействие d-электронов на узле является самым сильным. Сопоставление расчета с экспериментом позволяет предположить, что двухконфигурационное конечное состояние существенно релаксировано к низкоэнергетической части конфигурации  $d^n \underline{L}$ . При этом энергетические интервалы между элементами струкутры сохраняются такими же, как и в сильно возбужденном  $d^n$ -распределении по статвесам, т. е. релаксационный процесс проявляется лишь в оттягивании d-веса к уровню с наименьшей энергией связи.

Поскольку в реальном твердом теле межузельное 3*d*-O2*p*-взаимодействие участвует в формировании электронной структуры начального и конечного состояний, трудно сказать, в какой мере частично релаксированное конечное состояние XP-спектров приближается к начальному состоянию твердого тела. Однако вывод о существенности одноузельного кулоновского взаимодействия для формирования конечного состояния



**Рис. 8.** Отношение интенсивностей нижней и первой возбужденной группы термов  $I_1/I_2$  в  $d^n(O_h)$ -мультиплетах (1) и рентгеновских фотоэлектронных спектрах (2).  $3, 4 - L_0$ и статистический вес  $(2S_0 + 1)(2L_0 + 1)$  нижнего терма  $d^n$ -мультиплета соответственно, 5 — оценка  $I_1/I_2$  для ТЮ согласно [10], 6 —  $I_2/I_3$  вместо  $I_1$ , так как для MnO в XP-спектре терм, соответствующий  $I_1$ , не проявляется.

XP-спектров является, по-видимому, определяющим при интерпретации спектров монооксидов 3*d*-элементов.

Работа выполнена благодаря фининсовой поддержке Российского фонда фундаментальных исследований (проект № 96-03-32092).

## Список литературы

- A. Fujimori, N. Kimizuka, T. Akahane, T. Chiba, S. Kimura, F. Minami, K. Siratori, M. Taniguchi, S. Ogawa, S. Suga. Phys. Rev. B42, 12, 7580 (1990).
- [2] J. van Elp, J.L. Wieland, H. Eskes, P. Kuiper, G.A. Sawatzky, F.M.F. de Groot, T.S. Turner. Phys. Rev. B44, 12, 6090 (1991).
- [3] A. Fujimori, F. Minami. Phys. Rev. B30, 3, 957 (1984).
- [4] H. Eskes, L.H. Tjeng, G.A. Sawatzky. Phys. Rev. B41, 1, 288 (1990).
- [5] V.I. Anisimov, P. Kuiper, J. Nordgren. Phys. Rev. B50, 12, 8257 (1994).
- [6] F. Werfel, G. Dräger, U. Berg. Crystal Res. Tech. 16, 1, 119 (1981).
- [7] F.M.F. de Groot, J.C. Fuggle, B.T. Thole, G.A. Sawatzky. Phys. Rev. B42, 9, 5459 (1990).
- [8] С. Тикадзуми. Физика ферромагнетизма. Магнитные свойства вещества. Мир, М. (1983). 302 с.
- [9] Е.И. Заболоцкий. ФММ 63, 5, 847 (1987).
- [10] G. Hobiger, P. Herzig, R. Eibler, F. Schlapansky, A. Neckel. J. Phys. C: Cond. Matter. 2, 20, 4595 (1990).