Критические концентрации в виртуальном сегнетоэлектрике SrTiO₃ с примесью Ва

© М.Е. Гужва, В. Клееманн*, В.В. Леманов, П.А. Марковин

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия *Лаборатория прикладной физики, Университет Дуйсбурга, Д–47048 Дуйсбург, Германия

(Поступила в Редакцию 25 ноября 1996 г.)

Исследованы температурные изменения рефракции света и диэлектрической проницаемости в монокристаллах $Sr_{1-x}Ba_xTiO_3$ (x = 0.02, 0.05, 0.07, 0.14), $Sr_{1-x}Ca_xTiO_3$ (x = 0.014) и в номинально чистом титанате стронция в интервале температур 17–300 К. Выделен спонтанный полярный вклад в показатель преломления. На его основе рассчитаны температурные и концентрационные зависимости автокорреляционной функции поляризации $\langle P_s^2 \rangle$ в системе $Sr_{1-x}Ba_xTiO_3$. Поляризация $P_s = \langle P_s^2 \rangle^{1/2}$ при $x \leq 0.07$ меняется пропорционально ($x-x_g$)^{1/2}, где $x_g = 0.0027$ — новая критическая концентрация в системе $Sr_{1-x}Ba_xTiO_3$, ниже которой исчезает ближний полярный порядок.

В виртуальных сегнетоэлектриках (или квантовых параэлектриках) КТаО₃ (КТО) и SrTiO₃ (STO) фазовый переход подавлен квантовыми флуктуациями. Допирование небольшим количеством примесей индуцирует в них полярную фазу [1–4]. К настоящему времени неибольший экспериментальный материал накоплен по изучению твердых растворов виртуальных сегнетоэлектриков с изовалентными сегнетоэлектриками KTa_{1-x}Nb_xO₃ (КТN), K_{1-x}Li_xTaO₃ (КTL) [1–4] и твердых растворов виртуальный параэлектрик Sr_{1-x}Ca_xTiO₃ (SCT) [4–9]. Имеется ряд работ по исследованию системы K_{1-x}Na_xTaO₃ (КNT), а также отдельные работы по другим системам [1–3].

В течение последних лет были проведены систематические исследования керамики и монокристаллов системы $Sr_{1-x}Ba_xTiO_3$ (SBT) [10–14], на основе которых получена фазовая диаграмма во всем диапазоне концентраций твердого раствора [10,11]. При концентрациях ионов Ba^{2+} x > 0.2 SBT испытывает серию фазовых переходов из кубической параэлектрической фазы (O_h) в сегнетоэлектрические фазы: тетрагональную (C_{4v}) , орторомбическую ($C_{2\nu}$) и ромбоэдрическую ($C_{3\nu}$), характерные для номинально чистого BaTiO₃ (BTO). при x ≈ 0.2 сегнетоэлектрический переход первого рода $(O_h) \rightarrow (C_{4v})$ трансформируется в переход второго рода, а при концентрации около x = 0.1 три фазовых перехода сливаются в один [11,13]. При x < 0.2температура перехода Т_с в зависимости от концентрации меняется пропорционально $(x - x_c)^{1/2}$, где значение критической концентрации $x_c = 0.035$. Зависимость $T_c \sim (x - x_c)^{1/2}$ характерна для всех вышеупомянутых допированных виртуальных сегнетоэлектриков [1-4,11] и предсказывается феноменологической теорией возникновения сегнетоэлектричества в квантовых параэлектриках под действием возмущений [15-17].

При $x > x_c$ в SBT наблюдаются четкие петли сегнетоэлектрического гистерезиса и практически отсутствует дисперсия диэлектрической проницаемости ε . Это позволило для данной области концентраций сделать вывод о наличии сегнетофазы классического типа с дальним порядком [10,11]. При $x < x_c$ петли сегнетоэлектрического гистерезиса отсутствуют и появляется очень сильная частотная дисперсия ε [10,11]. Тем не менее наличие размытых максимумов ε [10,11], спонтанного полярного вклада в показатель преломления и двупреломления света [12–14] свидетельствуют о существовании при $x < x_c$ полярной фазы (возможно, стекольного типа), природа и закономерности поведения которой до настоящего времени не ясны.

С целью получения дополнительных экспериментальных данных для выяснения характера полярной фазы в SBT с концентрациями ионов Ba²⁺ вблизи критической в настоящей работе были исследованы в интервале 17-300 К температурные изменения рефракции света в монокристаллах $Sr_{1-x}Ba_xTiO_3$ с концентрациями *х*: 0.02, 0.05, 0.07 и 0.14; в номинально чистом титанате стронция и для сравнения в монокристаллах Sr_{1-x}Ca_xTiO₃ с x = 0.014 (критическая концентрация ионов Ca²⁺ $x_c = 0.0018$ [5]). Путем сопоставления температурных зависимостей показателя преломления в SBT и SCT с зависимостями для номинально чистого титаната стронция выделен спонтанный полярный вклад в рефракцию света, на основе которого впервые для виртуального сегнетоэлектрика, допированного примесью, получены концентрационные и температурные зависимости автокорреляционной функции поляризации $\langle P_s^2 \rangle$.

1. Методика эксперимента

Температурные изменения показателя преломления n света измерялись с точностью $\delta n \approx 10^{-5}$ на гомодинном интерферометре [18] на длине волны света гелийнеонового лазера 0.6328 μ m. Отличительной особенностью используемого нами метода гомодинной интерферометрии является проведение измерений без снижения чувствительности как при сильном (на 1–2 порядка) изменении интенсивности, так и при деполяризации

света, прошедшего через образец. Это преимущество методики дало возможность получить достоверные данные по средним величинам изменений главных значений показателя преломления в образцах со структурными и сегнетоэлектрическими доменами.

Метод позволяет измерять относительные изменения оптического пути света в кристалле $\delta\psi(T)$, которые связаны с изменениями показателя преломления $\delta n(T)$ и тепловым расширением образца $\delta L(T)/L$,

$$\delta\psi(T) = \delta n(T) + (n-1)\delta L(T)/L.$$
 (1)

Отсутствие данных по тепловому расширению в исследуемых образцах SBT и SCT не позволило разделить вклады в $\delta\psi(T)$ теплового расширения и собственно температурных изменений показателя преломления $\delta n(T)$. Тем не менее, поскольку для номинально чистого титаната стронция было показано, что $\delta\psi(T) \approx \delta n(T)$ с точностью около 20% [19] в интервале температур 5–300 К, для Sr_{1-x}Ba_xTiO₃ и Sr_{1-x}Ca_xTiO₃ в дальнейшем при обсуждении результатов по $\delta\psi(T)$ будем использовать термин "изменение показателя преломления (рефракции)" света, предполагая, что небольшая концентрация примеси в SrTiO₃ не приводит к существенному возрастанию вклада теплового расширения в измеряемую величину $\delta\psi(T)$.

Монокристаллы твердых растворов $Sr_{1-x}Ba_xTiO_3$ (x = 0.02, 0.05, 0.07, 0.14) выращивались из раствора в расплаве. Образцы номинально чистого STO, SCT (0.014) и SBT (0.02) были вырезаны в виде прямоугольных пластин с ребрами, параллельными кубическим направлениям [110]_a, [110]_b и [001]_c, и наибольшим линейным размером (≈ 2.5 mm) вдоль оси [001]_c. Эти направления и обозначения *a*, *b*, *c* относятся к тетрагональным осям ниже температуры T_a структурного фазового перехода $O_h - D_{4h}$. Выбранная ориентация и размеры кристаллов в соответствии с [20] позволяли надеяться на формирование структурно-монодоменного образца ниже T_a . Поляризация света при измерениях в STO, SCT (x = 0.014) и SBT (x = 0.02) была направлена вдоль осей [110]_a и [001]_c.

Показатель преломления в Sr_{1-x}Ba_xTiO₃ с x = 0.05, 0.07, 0.14 измерялся на образцах размером $2 \times 1 \times 3$ mm, вырезанных вдоль кубических кристаллографических осей (100). Поляризация света была направлена параллельно (100) и (110).

Площадь засвечиваемого участка образца составляла $1 \times 1 \text{ mm}^2$. Концентрация ионов Ba^{2+} в монокристаллах SBT в данной работе определялась двумя способами: 1) из закона Вегарда по рентгеновским измерениям постоянной решетки, 2) путем сравнения температуры максимумов диэлектрической проницаемости исследуемых монокристаллов и керамических образцов известного состава. Последний способ позволяет определить концентрацию *x* в монокристаллах твердых растворов с большей точностью, поэтому в работе измерялись температурные зависимости диэлектрической проницаемости $\varepsilon(T)$ вышеуказанных образцов на частоте 10^3 Hz с

использованием автоматического цифрового емкостного моста Е7-8. Применение этого способа позволило уточнить концентрации Ba^{2+} (x = 0.14 и 0.07) в образцах SBT, для которых ранее [12,13] использовались значения x = 0.17 и 0.08 соответственно.

Температурные изменения показателя преломления и спонтанный полярный вклад в рефракцию света

На рис. 1,2 представлены температурные зависимости $\delta\psi(T)$ в образцах $\mathrm{Sr}_{1-x}\mathrm{Ba}_x\mathrm{TiO}_3$, $\mathrm{Sr}_{1-x}\mathrm{Ca}_x\mathrm{TiO}_3$ и SrTiO₃. Появление вклада параметра порядка в показатель преломления при переходах второго рода приводит к особенностям в виде изменения наклона [21,22] (в идеальном случае излома) на зависимостях $\delta\psi(T)$ или $\delta n(T)$. В соответствии с этим температуры структурных T_a и сегнетоэлектрических T_c переходов, отмеченные на рисунке стрелками, определялись как температуры максимумов производной $|d\{\delta\psi(T)\}/dT|$. На рис. 3 в качестве примера представлены температурные производные $d\{\delta\psi(T)\}/dT$ для STO и SBT (x = 0.05).

Рис. 1. Температурные изменения $\delta\psi(T)$ в монокристаллах $Sr_{1-x}Ba_xTiO_3$ с различной концентрацией *х*: 1 - 0.14, 2 - 0.07, 3 - 0.05, 4 - 0.02. 5 -экстраполяция регулярной части $\delta\psi^0(T)$ для $Sr_{1-x}Ba_xTiO_3$ (0.07). Температуры фазовых переходов указаны стрелками.

Рис. 2. Температурные изменения $\delta\psi(T)$ (1, 3) и $\delta\psi_c(T)$ (2, 4) в монокристаллах $\mathrm{Sr}_{1-x}\mathrm{Ca}_x\mathrm{TiO}_3$ с x = 0.014 (1, 2) и в номинально чистом $\mathrm{Sr}\mathrm{TiO}_3$ (3, 4). Температуры фазовых переходов указаны стрелками.

Изменения наклонов $\delta\psi(T)$ (рис. 1, 2) и соответственно максимумы производных $d\{\delta\psi(T)\}/dT$ при сегнетоэлектрических переходах в SBT (x = 0.05, 0.07, 0.14) и SCT (x = 0.014) с концентрацией примесей выше критической в пределах 1–4 К совпадают с максимумами температурной зависимости диэлектрической проницаемости (рис. 3), а также с температурой появления спонтанного двупреломления и сегнетоэлектрических доменов [9,12–14].

Значение $T_c = 28$ К в образцах SBT $(x = 0.02 < x_c)$ (рис. 1) соответствует максимуму $d\{\delta\psi(T)\}/dT$ и не может быть однозначно сопоставлено с максимумом $\varepsilon(T)$ из-за сильной частотной дисперсии диэлектрической проницаемости. Как видно на рис. 3, максимум $\varepsilon(T)$ (на частоте 1 kHz) соответствует $T_m = 15$ К. Согласно [11], этот максимум смещается по температуре до 25 К на частоте 1 MHz. Аномалия $\delta\psi(T)$ и соответственно максимум $|d\{\delta\psi(T)\}/dT|$ в том же образце при структурном фазовом переходе $T_a = 70$ К из кубической в тетрагональную фазу $O_h - D_{4h}$ сопровождаются по-явлением двупреломления Δn_{ac} [12–14], а температура перехода $T_a = 70$ К удовлетворительно согласуется с результатами исследования упругих свойств монокристаллов SBT с близкими значениями x [23]. Хорошее

согласие с литературными данными [9] наблюдается для температур структурных фазовых переходов в STO $(T_a = 105 \text{ K}, \text{ рис. } 2, 3) \text{ и SCT } (T_a = 148 \text{ K}, \text{ рис. } 2), \text{ опре$ деленных в нашей работе как температуры максимумов $|d\{\delta\psi(T)\}/dT|$. B SBT (x = 0.05) кроме максимума $d\{\delta\psi(T)\}/dT$ при $T_c = 41$ K, соответствующего максимуму $\varepsilon(T)$, обнаружена аномалия $|d\{\delta\psi(T)\}/dT|$ при 49 К, которая может быть связана со структурным фазовым переходом $O_h - D_{4h}$ при $T_a = 49$ K, обнаруженным по исследованию упругих свойств в керамике того же состава при близкой температуре [11]. Ниже $T_c = 41$ K в этом кристалле наблюдалась картина сегнетоэлектрических доменов, аналогичная обнаруженной нами ранее в монокристаллах SBT с x = 0.07 [13] и соответствующая орторомбической $(C_{2\nu})$ или ромбоэдрической $(C_{3\nu})$ сегнетофазе.

Как видно из рис. 1,2, для всех составов SBT и для состава SCT (x = 0.014) полярное упорядочение приводит к тому, что рост $\delta\psi(T)$ при понижении температуры сменяется падением в отличие от монотонного возрастания $\delta\psi(T)$ в SrTiO₃ вплоть до самых низких температур. Температурные измерения рефракции света в Sr_{1-x}Ba_xTiO₃ (x = 0.02) проводились на том же образце, который использовался нами ранее [13,14] при

Рис. 3. Температурные производные $d\{\delta\psi(T)\}/dT$ для SrTiO₃ (1) ($\delta\psi_c$) и для Sr_{1-x}Ba_xTiO₃ с x = 0.05 (2) и температурная зависимость диэлектрической проницаемости $\varepsilon(T)$ для Sr_{1-x}Ba_xTiO₃ с x = 0.02 (3), 0.05 (4) и 0.14 (5). Величина диэлектрической проницаемости для SBT (x = 0.14) умножена на фактор 0.5.

Рис. 4. Спонтанный полярный вклад в рефракцию света для $Sr_{1-x}Ba_xTiO_3$ (*x*: 1 - 0.14, 2 - 0.07, 3 - 0.05, 4 - 0.02) и для $Sr_{1-x}Ca_xTiO_3$ с x = 0.014 (5 — рассчитано из $\delta \psi_a^s$, 6 — рассчитано из $\delta \psi_c^s$).

исследовании двупреломления. Образец, как было отмечено, имел сильные внутренние напряжения и ниже $T_a = 70 \text{ K}$ разбивался на структурные домены с направлениями локальных тетрагональных осей под углом 45° к плоскости $(1\overline{1}0)_b$ образца [14]. Из-за усреднения по доменам вклада в рефракцию света структурного параметра порядка и полярного упорядочения температурный ход зависимостей $\delta \psi_a(T)$ и $\delta \psi_c(T)$ для двух главных значений показателя преломления в тетрагональной фазе SBT (x = 0.02) оказался одинаковым (кривая 4 на рис. 1). Тем не менее усредненный полярный вклад отчетливо проявляется на экспериментальной зависимости $\delta \psi_a(T) \approx \psi_c(T)$ в противоположность предыдущим измерениям в сильно напряженных монокристаллах SBT близкой концентрации, вырезанных в виде параллелепипедов вдоль осей (100) [12-14].

Образцы Sr_{1-x}Ca_xTiO₃ и SrTiO₃ были практически монодоменными ниже T_a , что дало возможность выявить различный вклад структурного параметра и полярного упорядочения (для SCT) в главные значения $\delta \psi_a(T)$ и $\delta \psi_c(T)$ (кривые *1*, *2* и *3*, *4* на рис. 2).

При извлечении количественной информации из экспериментальных зависимостей $\delta \psi(T)$ важно корректное разделение спонтанного вклада $\delta \psi^{s}(T)$, связанного с полярным упорядочением, и так называемого регулярного вклада $\delta\psi^0(T)$, не зависящего от поляризации [18,24,25]. Из рис. 1,2 видно, что температурный ход $\delta\psi(T)$ в высокотемпературной параобласти для монокристаллов SBT и SCT очень близок к поведению $\delta\psi(T)$ в STO. Учитывая это, для определения $\delta\psi^0(T)$ в Sr_{1-x}Ba_xTiO₃ и Sr_{1-x}Ca_xTiO₃ мы использовали экстраполяцию температурного хода $\delta\psi(T)$ из высокотемпературной параобласти в область низких температур по реперной зависимости $\delta\psi_r^0(T)$, рассчитанной на основе температурных изменений $\delta\psi_a(T)$ в титанате стронция (кривая 3 на рис. 2). Выбор $\delta\psi_a(T)$ для расчета реперной зависимости $\delta\psi_r^0(T)$ был обусловлен тем, что в STO ниже $T_a = 105$ K вклад параметра порядка структурного фазового перехода в $\delta\psi_a(T)$ меньше, чем в $\delta\psi_c(T)$.

Пример такой экстраполяции температурной зависимости регулярного вклада $\delta \psi^0(T)$ для SBT (x = 0.07) приведен на рис. 1 (кривая 5). Разность между экспериментальной зависимостью $\delta \psi(T)$ (кривая 2 на рис. 1) и расчетной $\delta \psi^0(T)$ (кривая 5) представляет собой спонтанный полярный вклад в рефракцию света $\delta \psi^{s}(T)$. Температурные зависимости $\delta \psi^{s}(T)$, полученные таким образом для исследованных образцов SBT и SCT, приведены на рис. 4. Во всех исследованных образцах полярный вклад $\delta \psi^s(T)$ возникает при температурах, существенно больших температуры Кюри. Появление спонтанного вклада выше температуры перехода наблюдалось ранее при рефрактометрических исследованиях номинально чистого титаната бария [26]. Анализ кривых на рис. 4 показывает, что отношение величины $\delta \psi^s(T)$ при $T = T_c$ к величине $\delta \psi^s(T)$ в насыщении растет при уменьшении концентрации Ba²⁺.

3. Обсуждение результатов

Полярный вклад $\delta \psi^s(T)$ в температурные изменения $\delta \psi(T)$ обусловлен спонтанным электрооптическим эффектом $\delta n^s(T)$ и спонтанной стрикцией $\delta L^s(T)/L$ (спонтанные вклады в первый и второй члены в (1) соответственно) и связан с автокорреляционной функцией поляризации $\langle P_s^2 \rangle$ через коэффициенты квадратичного электрооптического эффекта g_{ij} и электрострикционные коэффициенты Q_{ij} . В пренебрежении стрикцией спонтанный вклад в главные значения показателя преломления имеет вид

$$\delta\psi_i^s(T) \approx \delta n_i^s = -(n_i^3/2)g_{i3}^* \langle P_s^2 \rangle = A_{i3} \langle P_s^2 \rangle, \qquad (2)$$

где $\langle P_s^2 \rangle$ относится к поляризации вдоль оси 3, а g_{i3}^* — электрооптические коэффициенты в полярной фазе, которые могут быть выражены через коэффициенты g_{ij} парафазы [22,27].

Для вычисления автокорреляционной функции поляризации $\langle P_s^2 \rangle$ в качестве коэффициентов g_{ij} были использованы значения коэффициентов титаната стронция [28] ($g_{11} = 0.15 \text{ m}^4/\text{C}^2$, $g_{12} = 0.04 \text{ m}^4/\text{C}^2$, $g_{44} = 0.08 \text{ m}^4/\text{C}^2$) и значения показателя преломления

Выражения для коэффициентов А _{і3} в форм	уле (2) и их численные зн	начения, использованные для	расчета $\langle P_s^2 \rangle$ из	спонтанного
вклада в рефракцию света				

Симметрия сегнетофаз	$A_{13}, \mathrm{m}^4/\mathrm{C}^2$	$A_{23}, m^4/C^2$	$A_{33}, \mathrm{m}^4/\mathrm{C}^2$
C_{4v}	$-(n^3/2)g_{12} = -0.27$	$-(n^3/2)g_{12} = -0.27$	$-(n^3/2)g_{11} = -1.02$
C_{2v}	$-(n^3/2)g_{12} = -0.27$	$-(n^3/4)(g_{11}+g_{12}-g_{44})=-0.31$	$-(n^3/4)(g_{11}+g_{12}+g_{44})=-0.92$
C_{3v}	$-(n^3/6)(g_{11}+2g_{12}-g_{44})=-0.34$	$-(n^3/6)(g_{11}+2g_{12}-g_{44})=-0.34$	$-(n^3/6)(g_{11}+2g_{12}+2g_{44})=-0.89$

STO ($n_i \approx n_0 \approx 2.41$). Как было показано в [29], квадратичные электрооптические коэффициенты STO не зависят от температуры в интервале 4–300 К. Величины g_{ij} в SrTiO₃ очень близки к значениям электрооптических коэффициентов в других кислородно-октаэдрических перовскитах [22], поэтому резонно предположить, что небольшое количество ионов примеси не изменяет существенно величины электрооптических коэффициентов STO. Для всех сегнетофаз, реализуемых в исследуемых образцах SBT и SCT, выражения для A_{i3} и их численные значения приведены в таблице.

Поскольку образцы $Sr_{1-x}Ba_xTiO_3$ с x = 0.14, 0.07,0.05 при Т < Т_с разбиты на сегнетоэлектрические домены, измеряемая величина полярного вклада δn^s является усредненной по всем возможным ориентациям доменов в сегнетофазе симметрии С2v или С3v [13]. В связи с этим при расчете $\langle P_s^2 \rangle$ использовалось значение $A_{av} \approx -0.6 \,\mathrm{m}^4/\mathrm{C}^2$, полученное усреднением по возможным ориентациям поляризации в доменах с орторомбической и с ромбоэдрической симметрией сегнетофазы. В SBT (x = 0.02) полярная фаза возникает в образце, разбитом на структурные домены ниже $T_a = 70$ K, поэтому с учетом усреднения принималось $A_{av} \approx -0.5 \,\mathrm{m}^4/\mathrm{C}^2$. Для монодоменного образца $Sr_{1-x}Ca_xTiO_3$ (x = 0.014), в котором реализуется полярное состояние с симметрией C_{2v} [4,7,8] (полярная ось направлена вдоль [110]_a), при вычислениях $\langle P_s^2
angle$ из $\delta \psi_a^s(T)$ и $\delta \psi_c^s$ использовались значения Азз и Азз из таблицы.

Температурные зависимости $\langle P_s^2 \rangle^{1/2}$, рассчитанные по формуле (2) из $\delta \psi^{s}(T)$ (рис. 4), представлены на рис. 5. Из рис. 5 видно, что значения поляризации $P_s = \langle P_s^2 \rangle^{1/2}$, найденные для SCT из $\delta \psi_a^s(T)$ и $\delta \psi_c^s(T)$, совпадают. Величины P_s в SBT (x = 0.02) и SCT (x = 0.014) оказываются очень близкими. В исследуемом температурном интервале только для x = 0.14 в SBT P_s приближается к насыщению. В связи с этим для того, чтобы сравнить величины Р_s при различных концентрациях ионов примеси, мы проэкстраполировали температурные зависимости $P_s(T)$ к T = 0 K на основе зависимости $P_{s}(T)$ для SBT с x = 0.14. Полученные значения P_{s} при T = 0 К составляют $5 \cdot 10^{-2}$ C/m² (x = 0.02), $8 \cdot 10^{-2}$ C/m² (x = 0.05), $9 \cdot 10^{-2}$ C/m² (x = 0.07), $11 \cdot 10^{-2}$ C/m² (x = 0.14) в Sr_{1-x}Ba_xTiO₃ и 4.5 \cdot 10^{-2} C/m² в $Sr_{1-x}Ca_xTiO_3$ (x = 0.014). Отметим, что значение $P_s = 5 \cdot 10^{-2}$ С/m² в SBT с x = 0.02, определенное в настоящей работе из рефрактометрических измерений,

совпадает с оценкой, полученной нами ранее [13] из измерений двупреломления света.

Зависимость поляризации $P_s = \langle P_s^2 \rangle^{1/2}$ при T = 0 К от концентрации ВаТіО₃ в монокристаллах $\mathrm{Sr}_{1-x}\mathrm{Ba}_x\mathrm{TiO}_3$ представлена на рис. 6 (темные кружки). Чтобы дополнить график $P_s(x)$ при малых значениях x, мы рассчитали тем же методом величины $\langle P_s^2 \rangle^{1/2}$ из данных работы [30] по температурным зависимостям двупреломления света $\Delta n_{ac}(T)$. В соответствии с (2) для расчетов использовалось выражение $\Delta n_{ac}^s = \delta n_c^s - \delta n_a^s = (A_{13} - A_{33}) \langle P_s^2 \rangle = 0.65 [\mathrm{m}^4/\mathrm{C}^2] \langle P_s^2 \rangle$. Полученные значения поляризации для образцов SBT, исследованных в [30], составляют 4.4 · 10⁻² C/m² (x = 0.016), $3 \cdot 10^{-2}$ C/m² (x = 0.01) и $1 \cdot 10^{-2}$ C/m²

Рис. 5. Температурная зависимость $\langle P_s^2 \rangle^{1/2}$ в Sr_{1-x}Ba_xTiO₃ (*x*: *1* — 0.14, *2* — 0.07, *3* — 0.05, *4* — 0.02) и в Sr_{1-x}Ca_xTiO₃ с x = 0.014 (5 — рассчитано из $\delta \psi_a^s$, 6 — рассчитано из $\delta \psi_c^s$).

Рис. 6. Концентрационная зависимость $P_s = \langle P_s^2 \rangle^{1/2}$ в Sr_{1-x}Ba_xTiO₃. Темные кружки — данные настоящей работы, темные квадраты — расчет на основе данных по двупреломлению из [30], светлые кружки и треугольники — фазовая диаграмма Sr_{1-x}Ba_xTiO₃: $T_c(x)$ из диэлектрических измерений [11]. Сплошные кривые l, 2 — аппроксимация экспериментальных данных законом $(x - x_{g,c})^{1/2}$.

(x = 0.004) (темные квадраты на рис. 6). Из рис. 6 видно, что $\langle P_s^2 \rangle^{1/2}$ не испытывает существенных аномалий в области критической концентрации $x_c = 0.035$, установленной из зависимости $T_c(x)$ по диэлектрическим измерениям.

В области x = 0.004 - 0.07 зависимость поляризации от концентрации ВаТіО₃ удовлетворяет соотношению (кривая 1 на рис. 6)

$$\langle P_s^2 \rangle = B(x - x_g)^{1/2},$$
 (3)

где $B = 36 \cdot 10^{-2} \,\text{C/m}^2$, а критическая концентрация *x_g* равна 0.0027. Величина *x_g* более чем на порядок отличается от значения $x_c = 0.035$, полученного в [10,11] из зависимости $T_c(x)$ (светлые кружки, кривая 2 на рис. 6). Ниже x_g автокорреляционная функция поляризации $\langle P_s^2 \rangle = 0$, что означает исчезновение ближнего полярного упорядочения. Зависимость типа (3) для спонтанной поляризации $\langle P_s \rangle(x)$ при T = 0 K следует из феноменологической квантовомеханической теории [15-17], при этом критические концентрации для $\langle P_s \rangle(x)$ и $T_c(x)$ совпадают. Это теоретическое положение было проверено количественно только для $\langle P_s \rangle(x)$ в КТN на основе измерения петель сегнетоэлектрического гистерезиса [15]. Качественно теория не противоречит результатам измерения $\langle P_s \rangle$ по петлям сегнетоэлектрического гистерезиса также и в SBT (петли исчезают ниже $x_c = 0.035$). Однако $\langle P_s^2 \rangle$ ниже x_c может быть и отличной от нуля за счет локального упорядочения в полярных кластерах или реализации стеклоподобной фазы. Из анализа зависимостей, приведенных на рис. 5, следует также, что по мере приближения к x_c со стороны больших концентраций возрастает роль предпереходных процессов, за количественную характеристику которых можно принять отношение $P_s(T_c)/P_s(T = 0)$. $P_s(T_c)/P_s(T = 0)$ возрастает от 0.5 для x = 0.14 до 0.75 для x = 0.05.

Целесообразно далее обсудить достоверность вычисления величин $\langle P_s^2 \rangle$ по формуле (2) в рамках сделанного предположения о пренебрежении вкладом спонтанной стрикции в $\delta \psi_i^s(T)$. В соответствии с (1) полный спонтанный вклад в измеряемую величину $\delta \psi_i(T)$ равен $\delta \psi_i^s(T) = \delta n_i^s(T) + (n_i - 1) \delta L_j^s(T)/L_j$, где индекс *i* относится к поляризации света, а индекс *j* — к направлению его распространения в кристалле, $\delta L_j^s(T)/L_j$ — изменение толщины кристалла за счет спонтанной стрикции. Тогда зависимость $\delta \psi_i^s(T)$ от $\langle P_s^2 \rangle$ будет определяться выражением

$$\delta\psi_{i}^{s}(T) = -(n_{i}^{3}/2)g_{i3}^{*}\langle P_{s}^{2}\rangle + (n_{i}-1)Q_{j3}\langle P_{s}^{2}\rangle = A_{i3}^{*}\langle P_{s}^{2}\rangle,$$
(4)

где Q_{j3} — коэффициенты спонтанной стрикции. Из (4) видно, что учет стрикции может привести к изменению абсолютных значений величин $\langle P_s^2 \rangle^{1/2}$, однако в случае слабого влияния примесей на величины коэффициентов Q_{j3} вид концентрационной зависимости $\langle P_s^2 \rangle^{1/2} \sim (x - x_g)^{1/2}$ сохранится. Значения $P_s = \langle P_s^2 \rangle^{1/2}$ в насыщении, вычисленные в нашей работе для SBT с x = 0.07 и 0.14, в пределах 25% совпадают с результатами измерения $P_s = \langle P_s \rangle$ по петлям сегнетоэлектрического гистерезиса для аналогичных концентраций Ba²⁺ в керамических образцах [11]. Это указывает на то, что и для абсолютных значений величин $\langle P_s^2 \rangle^{1/2}$ возможная систематическая ошибка при вычислениях по крайней мере не превышает 25%.

Таким образом, исследование температурных изменений рефракции света на монокристаллах системы

Sr_{1-*x*}Ba_{*x*}TiO₃ методом гомодинной интерферометрии, проведенное в настоящей работе, позволило впервые получить концентрационную зависимость автокорреляционной функции поляризации $\langle P_s^2 \rangle$ в виртуальных сегнетоэлектриках с примесями. Показано, что в SBT $\langle P_s^2 \rangle$ отлична от нуля и при концентрациях меньше критической концентрации x_c , которая определяется из диэлектрических измерений и характеризует исчезновение признаков классического сегнетоэлектрического упорядочения. Концентрационная зависимость $\langle P_s^2 \rangle^{1/2}$ не испытывает существенных аномалий вблизи $x_c = 0.035$, и ниже $x = 0.07 \langle P_s^2 \rangle^{1/2}$ меняется пропорционально $(x - x_g)^{1/2}$, где вторая критическая концентрация $x_g = 0.0027$ на порядок меньше x_c и соответствует исчезновению ближнего полярного порядка в системе.

Значение $x_g = 0.0027$ в Sr_{1-x}Ba_xTiO₃ близко по величине к $x_c = 0.0018$ в Sr_{1-x}Ca_xTiO₃ (единственная критическая концентрация в SCT). Обращает на себя внимание большое сходство и других свойств этих систем при концентрации примесей x < 0.035: отсутствие остаточной поляризации [8,9,13,14], отсутствие сегнетоэлектрических петель гистерезиса, близость величин поляризации $P_s = \langle P_s^2 \rangle^{1/2}$ для близких концентраций Ca²⁺ и Ba²⁺. Следует отметить, что температуры максимумов $\varepsilon(T)$, измеренные на частоте 10 kHz [11] для $x < x_c$ (светлые треугольники на рис. 6), также удовлетворительно описываются законом $(x - x_g)^{1/2}$. Единственное существенное отличие — сильная дисперсия диэлектрической проницаемости в SBT по сравнению с SCT.

При концентрациях примесей, соответствующих концентрации Ba^{2+} в SBT выше $x_c = 0.035$, свойства этих двух систем начинают кардинально отличаться. В $Sr_{1-x}Ca_xTiO_3$ [5] при возрастании x максимумы $\varepsilon(T)$ размываются и уменьшаются по величине. Температура T_c , достигнув \approx 32 K, перестает зависеть от x, величина $P_s(x) = \langle P_s^2 \rangle^{1/2}$ (оцененная из данных по двупреломлению [9]) выходит на насыщение при значении $P_s \approx 5 \cdot 10^{-2}$ С/m². Sr_{1-x}Ba_xTiO₃ при увеличении xвыше 0.035 начинает проявлять классические сегнетоэлектрические свойства, присущие BaTiO₃ [11]: появляются четкие петли сегнетоэлектрического гистерезиса и сегнетоэлектрические домены, непрерывно возрастает P_s , максимумы $\varepsilon(T)$ носят четкий характер и система испытывает серию сегнетоэлектрических фазовых переходов того же типа, что и номинально чистый ВТО.

Проведенное сравнение указывает на сходство механизмов формирования полярного состояния в системах $Sr_{1-x}Ca_xTiO_3$ и $Sr_{1-x}Ba_xTiO_3$, когда концентрация ионов Ba^{2+} в SBT меныше 0.035, и на включение дополнительного механизма образования сегнетофазы в $Sr_{1-x}Ba_xTiO_3$ при $x > x_c = 0.035$. Этот механизм естественно связать с основным отличием $Sr_{1-x}Ba_xTiO_3$ и $Sr_{1-x}Ca_xTiO_3$: сегнетоэлектрическими свойствами второй компоненты твердых растворов в первом случае и отсутствием таковых во втором.

Авторы выражают благодарность П.П. Сырникову за выращивание монокристаллов $Sr_{1-x}Ba_xTiO_3$ и Г. Беднорцу за предоставление монокристаллов $Sr_{1-x}Ca_xTiO_3$ (x = 0.014).

Данная работа поддержана Российским фондом фундаментальных исследований (грант 96-02-17822).

Список литературы

- [1] U.T. Höchli, K. Knorr, A. Loidl. Adv. Phys. 39, 5, 405 (1990).
- [2] B.E. Vugmeister, M.D. Glinchuk. Rev. Mod. Phys. **62**, *4*, 993 (1990).
- [3] M.D. Glinchuk, I.P. Bykov. Phase Trans. 40, 1 (1992).
- [4] W. Kleemann. Int. J. Mod. Phys. B7, 13, 2469 (1993).
- [5] J.G. Bednorz, K.A. Müller. Phys. Rev. Lett. **52**, *25*, 2289 (1984).
- [6] J. Dec, W. Kleemann, U. Bianchi, J.G. Bednorz. Europhys. Lett. 29, 31 (1995).
- [7] U. Bianchi, J. Dec, W. Kleemann, J.G. Bednorz. Phys. Rev. B51, 14, 8737 (1995).
- [8] W. Kleemann, U. Bianchi, A. Bürgel, M. Prasse, J. Dec. Phase Trans. 55, 57 (1995).
- [9] U. Bianchi. PhD Thesis. Gerhard-Mercator-Universität-Gesamthochschule-Duisburg. Duisburg (1996). 159 p.
- [10] В.В. Леманов, Е.П. Смирнова, Е.А. Тараканов. ФТТ 37, 8, 2476 (1995).
- [11] V.V. Lemanov, E.P. Smirnova, P.P. Syrnikov, E.A. Tarakanov. Phys. Rev. B54, 5, 3151 (1996).
- [12] P.A. Markovin, V.V. Lemanov, O.Yu. Korshunov, P.P. Syrnikov, U. Bianchi, R. Lindner, W. Kleemann. Ferroelectrics. 184, 269 (1996).
- [13] P.A. Markovin, W. Kleemann, R. Lindner, V.V. Lemanov, O.Yu. Korshunov, P.P. Syrnikov. J. Phys.: Cond. Matter 8, 2377 (1996).
- [14] П.А. Марковин, В.В. Леманов, В. Клееманн, У. Бьанки, Р. Линднер. Изв. РАН. Сер. физ. 60, 10, 11 (1996).
- [15] U.T. Höchli, H.E. Weibel, L.A. Boatner. Phys. Rev. Lett. 39, 18, 1158 (1977).
- [16] T. Schneider, H. Beck, E. Stoll. Phys. Rev. B13, 3, 1123 (1976).
- [17] R. Morf, T. Schneider, E. Stoll. Phys. Rev. B16, 1, 462 (1977).
- [18] П.А. Марковин, Р.В. Писарев. ЖЭТФ 77, 6, 2462 (1979).
- [19] W. Kleemann, F.J. Schäfer. Jap. J. Appl. Phys. 24, Suppl. 24-2, 260 (1985).
- [20] K.A. Müller, W. Berlinger, M. Capizzi, H. Gränicher. Solid State. Commun. 8, 7, 549 (1970).
- [21] J. Fousek, J. Petzelt. J. Phys. Stat. Sol. (a) 55, 11, 11 (1979).
- [22] А.С. Сонин, А.С. Василевская. Электрооптические кристаллы. М. (1971). 326 с.
- [23] S. Miura, M. Marutake, H. Unoki, H. Uwe, T. Sakudo. J. Phys. Soc. Jap. 38, 4, 1056 (1975).
- [24] Б.Б. Кричевцов, П.А. Марковин, Р.В. Писарев. ЖЭТФ **86**, *6*, 2262 (1984).
- [25] O.Yu. Korshunov, P.A. Markovin, R.V. Pisarev. Ferroelectrics Lett. 13, 137 (1992).
- [26] G. Burns, F.H. Dacol. Solid State Commun. 42, 1, 9 (1982).
- [27] Ю.И. Сиротин, М.П. Шаскольская. Основы кристаллофизики. М. (1975). 680 с.
- [28] Y. Fujii, T. Sakudo. J. Appl. Phys. 41, 10, 4118 (1970).
- [29] J.E. Geusic, S.K. Kurtz, L.G. van Uitert, S.H. Wemple. Appl. Phys. Lett. 4, 8, 141 (1964).
- [30] J.G. Bednorz. PhD Thesis. Swiss Federal Institute of Technology, Zürich (1982). 175 p.