Поляризационный механизм сегнетоэлектрической неустойчивости решетки в кристаллах

© О.Е. Квятковский

Институт химии силикатов им И.В.Гребенщикова Российской академии наук, 199155 Санкт-Петербург, Россия

(Поступила в Редакцию 11 ноября 1996 г.)

Показано, что межьячеечное диполь-дипольное (поляризационное) взаимодействие понижает частоты полярных поперечных оптических (ТО) мод колебаний решетки (тем сильнее, чем больше соответствующие дипольные силы осцилляторов) и может являться причиной сегнетоэлектрической неустойчивости в кристаллах. Предложен модельно-независимый способ определения частот, собственных векторов и дипольных сил осцилляторов всех полярных ТО-мод для кристалла с выключенным поляризационным взаимодействием по известным значениям этих величин для реального кристалла. Приведены результаты соответствующих расчетов для ряда соединений со структурой перовскита (SrTiO₃, BaTiO₃, KTaO₃, KNbO₃ и KCoF₃) и рутила (TiO₂, SnO₂, SiO₂, CoF₂ и NiF₂) и обсуждается природа сегнетоэлектрической мягкой моды в оксидах с кристаллическими структурами этих двух типов.

Для сегнетоэлектриков типа смещения вопрос о природе сегнетоэлектричества тесно связан с задачей о возможных механизмах неустойчивости полярных (инфракрасно-активных) поперечных оптических (ТО) мод колебаний решетки в кристаллических диэлектриках [1–4].

Начиная с работы Слэтера [5], наиболее популярным является дипольный механизм неустойчивости сегнетоэлектрической мягкой моды [1–4]. Однако подход Слэтера основан на результатах расчетов внутренних электростатических полей в рамках моделей, применимость которых ограничена ионными кристаллами с сильно локализованными (связанными) валентными электронами [4,6], в которых электронная поляризуемость мала, а вместе с ней мало и влияние дипольных сил на полярные оптические моды колебаний решетки (даже при наличии аномальных структурных констант внутреннего поля) [4].

В последние годы были выполнены квантово-механические расчеты из первых принципов адиабатического потенциала для оптических смещений атомов (однородного сдвига подрешеток) для ряда сегнетоэлектриков типа смещения; для халькогенидов со структурой каменной соли (соединения IV-VI) [7,8] и для оксидов со структурой перовскита [9-11] и рутила [12]. Результаты этих работ подтверждают теоретические представления, сформулированные ранее в рамках концепции мягкой сегнетоэлектрической ТО-моды [1-4]. Однако они ничего не говорят о роли различных типов взаимодействий в формировании спектра частот полярных ТО-мод колебаний решетки, т.е. о происхождении сегнетоэлектрической мягкой моды в этих соединениях. Единственная попытка такого рода в рамках данного подхода была предпринята в работах [13], в которых сегнетоэлектрические фазовые переходы в ВаТіО3 изучались методом Монте-Карло с использованием эффективного решеточного гамильтониана для мягкой ТО-моды. Однако эффективный гамильтониан в [13] содержит неправильное выражение

для вклада межъячеечного диполь-дипольного (DD) взаимодействия в энергию.

В данной работе предлагается подход к проблеме сегнетоэлектрической неустойчивости, основанный на рассмотрении из первых принципов вкладов различных типов взаимодействий в матрицу силовых постоянных [14,15] и на квантовой теории волн электрической поляризации в кристаллических диэлектриках [16,17]. В этом подходе явно учитывается, что волна макроскопической электрической поляризации, сопровождающая сегнетоэлектрическую мягкую ТО-моду, приводит к понижению полной энергии, равному энергии взаимодействия между индуцированными дипольными моментами из разных примитивных (единичных) ячеек кристалла. Это позволяет указать возможную причину сегнетоэлектрической неустойчивости — сильное межъячеечное DD-взаимодействие — и воспользоваться результатами решения задачи о влиянии этого взаимодействия на диэлектрические свойства и динамику решетки в кристаллических диэлектриках [14,15] в рамках микроскопической квантово-механической теории динамики решетки [18,19].

В работе показано, что, используя результаты работ [14,15], можно найти частоты $\omega_{\rm sr}$, собственные векторы ${\bf e}^{\rm sr}$ и дипольные силы осцилляторов $f^{\rm sr}$ всех полярных ТО-мод для кристалла с выключенным межьячеечным *DD*-взаимодействием (поляризационным взаимодействием), если известны соответствующие величины ($\omega_{\rm TO}$, $\tilde{\bf e}$ и f) и тензор $\hat{\varepsilon}^{\infty}$ для реального кристалла.

Чтобы продемонстрировать роль поляризационного взаимодействия в формировании мягких мод в сегнетоэлектриках типа смещения, в работе выполнены модельно-независимые расчеты частот $\omega_{\rm sr}$ и сил осцилляторов $f^{\rm sr}$ полярных ТО-мод, а также решеточного вклада в диэлектрическую проницаемость ($\Delta \varepsilon$)^{sr} для нескольких оксидов со структурой перовскита и рутила, в которых имеется сегнетоэлектрическая мягкая мода. Для сравнения аналогичные расчеты выполнены также

для ряда фторидов и оксидов с той же кристаллической структурой, не обладающих аномальными диэлектрическими свойствами.¹

Влияние межъячеечного *DD*-взаимодействия на спектр и форму полярных ТО-колебаний решетки

Полярные оптические колебания решетки отличаются от других оптических мод тем, что они сопровождаются волной электрической поляризации [22,23]. С микроскопической точки зрения полярные оптические смещения атомов приводят к изменению дипольного момента примитивной ячейки кристалла, которое не зависит от выбора ячейки² и однозначно определяется изменением электрической поляризации [16,17]. Таким образом, энергия кристалла, в котором имеется волна электрической поляризации, индуцированная волной полярных оптических смещений, содержит вклад взаимодействия между индуцированными дипольными моментами из разных ячеек, который вносит дополнительный вклад в матрицу силовых постоянных кристалла [14,15], существенный лишь для полярных представлений.

Для малых волновых векторов **q** полную матрицу силовых постоянных $\hat{\Phi}(\mathbf{q})$ можно представить в виде [14,15]

$$\hat{\Phi}(\mathbf{q}) = \hat{\Phi}^{\mathrm{sr}} + \hat{\Phi}^{DD}(\mathbf{q}), \qquad (1)$$

где $\hat{\Phi}^{DD}$ — вклад дальнодействующего межьячеечного DD-взаимодействия, а $\hat{\Phi}^{sr}$ — вклад остальных взаимодействий (близкодействующих сил), убывающих за пределами примитивной ячейки не медленее чем $1/R^5$.

Межъячеечное *DD*-взаимодействие описывается компонентой Фурье дипольного тензора для решетки Браве кристалла [15,22]

$$Q_{ij}(\mathbf{q}) = \sum_{\mathbf{R}\neq 0} e^{-i\mathbf{q}\mathbf{R}} \nabla_i \nabla_j \frac{1}{R} = -\frac{4\pi q_i q_j}{v_0 q^2} + A_{ij}(\mathbf{q}), \quad (2)$$

где **R** — вектор решетки Браве, $\hat{A}(\mathbf{q})$ регулярно при $\mathbf{q} = 0$.

Как показано в [14,15], для малых **q** матрица $\hat{\Phi}^{DD}$ может быть представлена в виде суммы двух вкладов

$$\hat{\Phi}^{DD}(\mathbf{q}\to 0) = \hat{\Phi}^{M}(\mathbf{n}) + \hat{X}^{DD}, \quad \mathbf{n} = \mathbf{q}/q.$$
(3)

Первый вклад, $\hat{\Phi}^M$, известен из феноменологической теории динамики решетки и имеет вид [14,15,18,19,23]

$$\Phi_{ij}^{M}(\mathbf{n};st) = \frac{4\pi e^2}{v_0} \sum_{kl} Z_{ki}(s) \frac{n_k n_l}{\varepsilon_{\infty}^{LL}(\mathbf{n})} Z_{lj}(t).$$
(4)

Здесь $\hat{Z}(s)$ — тензор Борна эффективного заряда *s*-й подрешетки, v_0 — объем примитивной (единичной) ячейки и $\varepsilon_{\infty}^{LL}(\mathbf{n}) = \varepsilon_{ij}^{\infty} n_i n_j$. Этот вклад в $\hat{\Phi}^{DD}$ соответствует учету первого члена в правой части (2). Он зависит от направления волнового вектора и описывает дополнительную упругость продольных оптических (LO) колебаний решетки, связанную с сопровождающей их волной макроскопического электрического поля [22,23].

Второй член в правой части (3), \hat{X}^{DD} , соответствует учету второго члена в правой части (2) и является вкладом микроскопического поля, порождаемого волной макроскопической электрической поляризации. Выражение для \hat{X}^{DD} имеет вид [14,15]

 $X_{ij}^{DD}(st) = -\frac{4\pi e^2}{v_0} \sum Z_{ki}(s) B_{kl} Z_{lj}(t),$ (5)

где

 $B_{kl} = \left\{ \hat{\mathcal{A}}[\hat{I} + (\hat{\varepsilon}^{\infty} - \hat{I})\hat{\mathcal{A}}]^{-1} \right\}_{kl}, \quad \hat{\mathcal{A}} = (v_0/4\pi)\hat{A}(0), \quad (6)$

 \hat{I} — единичная матрица, $\hat{\mathcal{A}}$ — тензор дипольных структурных констант для решетки Браве. Выражения (5), (6) для \hat{X}^{DD} были получены в [14,15] на основе точных микроскопических выражений для $\hat{\Phi}(\mathbf{q})$, $\hat{Z}(s)$ и $\hat{\varepsilon}^{\infty}$ из [18,19] без использования каких-либо приближений.

Выделив вклад макроскопического поля $\hat{\Phi}^{M}$, можно представить матрицу силовых постоянных для малых **q** в следующем виде (см. (1), (3)):

$$\hat{\Phi}(\mathbf{q} \to 0) = \hat{\Phi} + \hat{\Phi}^{M}(\mathbf{n}),$$
$$\tilde{\Phi}_{ij}(st) = \Phi_{ij}^{\mathrm{sr}}(st) + X_{ij}^{DD}(st),$$
(7)

где $\tilde{\Phi}$ полностью описывает спектр частот и форму всех неполярных оптических мод и всех полярных ТО-мод.

Отметим несколько важных свойств матрицы \hat{X}^{DD} . Она 1) описывает вклад поляризационного взаимодействия в регулярную при $\mathbf{q} = 0$ часть матрицы силовых постоянных и влияет на частоты и форму только полярных мод; 2) выражается через те же диэлектрические параметры $\hat{\varepsilon}^{\infty}$ и $\hat{Z}(s)$, что и вклад макроскопического поля $\hat{\Phi}^{M}$, и может быть найдена без использования какихлибо модельных соображений; 3) является отрицательно определенной матрицей (при положительно определенной матрице \hat{B}); 4) понижает частоты поляризационном взаимодействии может приводить к неустойчивости одной из полярных ТО-мод (поляризационный механизм сегнетоэлектрической неустойчивости).

Представим себе кристалл с выключенной регулярной частью межъячеечного *DD*-взаимодействия, т. е. с $\hat{A} = 0$. В таком кристалле остаются все эффекты, связанные с макроскопическим полем, однако они описываются теперь диэлектрическими параметрами [14,15]

$$\hat{\varepsilon}_{\infty}^{\rm sr} = \hat{I} + \frac{4\pi}{\nu_0} \hat{\alpha}^e, \quad \hat{Z}^{\rm sr}(s) = \zeta(s), \quad \hat{\Phi}^{\rm sr}(st), \qquad (8)$$

¹ Некоторые результаты этой работы были опубликованы ранее в [20,21].

² Имеется в виду независимость от формы примитивной ячейки, ее пространственного положения и ориентации.

которые формируются близкодействием вместо соответствующих параметров реального кристалла $\hat{\varepsilon}^{\infty}$, $\hat{Z}(s)$ и $\tilde{\Phi}(st)$. Для такого воображаемого кристалла нельзя измерить частоты и тензоры дипольных сил осцилляторов полярных мод. Однако эти величины можно найти, если известны соответствующие величины для реального кристалла и тензор $\hat{\varepsilon}^{\infty}$.

Введем обозначения $\tilde{\omega}(\alpha)$ и $\tilde{\mathbf{e}}(\alpha)$ для спектра и собственных векторов, являющихся решениями динамического уравнения

$$(\omega^2 \hat{I} - \tilde{\mathcal{D}})\tilde{\mathbf{e}} = 0, \quad \tilde{\mathcal{D}}_{ij}(st) = \tilde{\Phi}_{ij}(st)[M_s M_t]^{-1/2}.$$
(9)

Спектр уравнения (9) (частоты $\tilde{\omega}(\alpha)$) является экспериментально измеримым и состоит из частот неполярных оптических и полярных ТО-мод, соответствующих точке Γ зоны Бриллюэна.

Обозначим через $\omega_{\rm sr}(\alpha)$ и ${\bf e}^{\rm sr}(\alpha)$ спектр и собственные векторы динамического уравнения, соответствующего матрице $\hat{\Phi}^{\rm sr}$,

$$(\omega^2 \hat{I} - \hat{\mathcal{D}}^{\rm sr}) \mathbf{e}^{\rm sr} = 0. \tag{10}$$

Используя (7), запишем $\hat{\mathcal{D}}^{sr}$ в виде

$$\hat{\mathcal{D}}^{\text{sr}} = \hat{\tilde{\mathcal{D}}} - \hat{\mathcal{D}}^{DD}, \quad \mathcal{D}_{ij}^{DD}(st) = X_{ij}^{DD}(st)[M_sM_t]^{-1/2} \quad (11)$$

 $(\tilde{\mathcal{D}}$ определено в (9)) и вектор \mathbf{e}^{sr} в базисе $\{\tilde{\mathbf{e}}(\beta)\}$

$$\mathbf{e}^{\mathrm{sr}} = \sum_{\beta} C(\beta) \tilde{\mathbf{e}}(\beta). \tag{12}$$

Подставив (11), (12) в (10) и умножив скалярно левую часть (10) на $\tilde{\mathbf{e}}(\alpha)$, получим уравнение для коэффициентов $C(\beta)$

$$\sum_{\beta} \left[(\omega^2 - \tilde{\omega}^2(\alpha)) \delta_{\alpha\beta} - g(\alpha, \beta) \right] C(\beta) = 0.$$
 (13)

Матрица $g(\alpha, \beta)$ определяется выражением (см. (11), (5))

$$g(\alpha, \beta) = -\sum_{st} \tilde{e}_i(\alpha, s) \tilde{D}_{ij}^{DD}(st) \tilde{e}_j(\beta, t)$$
$$= \sum_{ij} B_{ij} F_{ij}(\alpha, \beta), \qquad (14)$$

где

$$F_{ij}(\alpha,\beta) = \frac{4\pi e^{-}}{v_0} \xi_i(\alpha) \xi_j(\beta),$$

$$\xi_i(\alpha) = \sum_{sk} Z_{ki}(s) \frac{\tilde{e}_k(\alpha,s)}{M_s^{1/2}}.$$
(15)

Векторы $\xi(\alpha)$ отличны от нуля лишь для полярных оптических мод [22]. Таким образом, для неполярных оптических мод $\tilde{\omega}(\alpha) = \omega_{\rm sr}(\alpha)$.

1 - .2

Из нормированных собственных векторов уравнения (13) $C^{\alpha}(\beta)$ можно построить матрицу преобразования

формы $C(\alpha, \beta)$, которая описывает влияние межъячеечного *DD*-взаимодействия на форму ТО-мод,

$$e^{\mathrm{sr}}(\alpha) = \sum_{\beta} C(\alpha, \beta) \tilde{\mathbf{e}}(\beta).$$
 (16)

Диагональная часть тензора \hat{f} совпадает с тензором дипольных сил осцилляторов $\hat{f}(\alpha)$ для полярной моды α

$$F_{ij}(\alpha,\alpha) = f_{ij}(\alpha) = \frac{4\pi e^2}{\nu_0} \xi_i(\alpha) \xi_j(\alpha), \qquad (17)$$

который определяет вклад этой моды в тензор низкочастотной диэлектрической проницаемости кристалла [22,23]

$$\varepsilon_{ij}(0) - \varepsilon_{ij}^{\infty} = \sum_{\alpha} \Delta \varepsilon_{ij}^{\alpha} = \sum_{\alpha} \frac{f_{ij}(\alpha)}{\tilde{\omega}^2(\alpha)},$$
(18)

где $\tilde{\omega}(\alpha)\equiv\omega_{\mathrm{TO}}(\alpha)$ — частота α -й полярной ТО-моды.

Таким образом, имея частоты $\omega_{\text{TO}}(\alpha)$ и силы осцилляторов $\hat{f}(\alpha)$ и зная тензоры $\hat{\varepsilon}^{\infty}$ и $\hat{\mathcal{A}}$, можно найти из уравнения (13) частоты $\omega_{\text{sr}}(\alpha)$ и матрицу преобразования формы $C(\alpha, \beta)$ для всех полярных ТО-мод.³

2. Влияние межъячеечного DD-взаимодействия на силы осцилляторов и статическую диэлектрическую проницаемость

Знание матрицы $C(\alpha, \beta)$ позволяет найти дипольные силы осцилляторов $\hat{f}^{\rm sr}(\alpha)$ всех полярных оптических мод для воображаемого кристалла с выключенной регулярной при $\mathbf{q} = 0$ частью межъячеечного *DD*-взаимодействия (для $\hat{\mathcal{A}} = 0$). По своему смыслу тензор $\hat{f}^{\rm sr}(\alpha)$ определяется выражениями (17) и (15) с заменой в (15) $\tilde{\mathbf{e}}(\alpha, s)$ на $\mathbf{e}^{\rm sr}(\alpha, s)$ и $\hat{Z}(s)$ на $\hat{Z}^{\rm sr}(s) = \hat{\zeta}(s)$. Учитывая это, находим, что

$$f_{ij}^{\rm sr}(\alpha) = \sum_{kl} L_{ik}^{-1} L_{jl}^{-1} \varphi_{kl}(\alpha), \qquad (19)$$

где матрица \hat{L} определяется выражением

$$\hat{L} = \hat{I} + (\hat{\varepsilon}^{\infty} - \hat{I})\hat{\mathcal{A}}, \qquad (20)$$

$$\varphi_{kl}(\alpha) = \frac{4\pi e^2}{v_0} b_k(\alpha) b_l(\alpha),$$

$$b_k(\alpha) = \sum_{sl} Z_{kl}(s) \frac{e_l^{\rm sr}(\alpha, s)}{M_s^{1/2}}.$$
 (21)

При выводе (19) было учтено соотношение [14,15]

$$\hat{Z}(s) = \hat{L}\hat{\zeta}(s), \qquad (22)$$

где \hat{L} и $\hat{\zeta}$ определяются равенствами (20) и (8).

³ Неопределенность знака вектора $\xi(\alpha)$ отражает произвол в выборе знака собственного вектора $\tilde{\mathbf{e}}(\alpha)$ и не влияет на физические величины.

Соелинение	п	Эксперимент		$\Delta \epsilon$	Без <i>DD</i> -взаимодействия $[A_{ij}(0) = 0]$		
Coddimentite		$\omega_{ m TO},{ m cm}^{-1}$	$f, 10^5 \mathrm{cm}^{-2}$	_0	$\omega_{ m sr},{ m cm}^{-1}$	$f^{\rm sr}~(\varphi^{\rm sr}),10^5{\rm cm}^{-2}$	$(\Delta \varepsilon)^{ m sr}$
BaTiO ₃ , $\varepsilon_{\infty} = 5.3$	1	31	22.0		179	0.00 (0.01)	
	2	182	0.73	2293	449	0.64 (3.76)	1.23
	3	500	2.00		624	3.55 (21.0)	
SrTiO ₃ , $\varepsilon_{\infty} = 5.2$	1	86	22.9		173	0.00 (0.01)	
	2	176	1.1	304	452	0.76 (4.39)	1.22
	3	544	4.62		705	4.21 (24.2)	
KNbO ₃ , $\varepsilon_{\infty} = 4.69$	1	30	21.2		187	0.01 (0.03)	
	2	192	2.16	2369	406	0.54 (2.69)	1.34
	3	521	8.41		766	5.84 (29.0)	
KTaO ₃ , $\varepsilon_{\infty} = 4.35$	1	81	15.1		187	0.01 (0.03)	
	2	199	1.98	237	400	0.76 (3.39)	1.36
	3	549	7.23		732	4.66 (20.9)	
KCoF ₃ , $\varepsilon_{\infty} = 2.07$	1	139	0.38		153	0.04 (0.07)	
	2	255	1.10	5.0	271	0.38 (0.70)	1.22
	3	417	1.44		468	1.17 (2.15)	
TiO ₂ , $\varepsilon_{\parallel}^{\infty} = 7.2$	1	173	48.7	163	836	1.08	0.16
$\mathrm{SnO}_2, \varepsilon_{\parallel}^{\infty} = 4.56$	1	477	12.3	5.4	698	0.78	0.16
SiO ₂ , $\varepsilon_{\parallel}^{\infty} = 3.33$	1	675	15.5	3.4	955	1.54	0.17
$\mathrm{CoF}_2, \varepsilon_{\parallel}^{\infty} = 2.8$	1	340	3.76	3.2	490	0.61	0.25
NiF ₂ , $\varepsilon_{\parallel}^{\infty} = 2.4$	1	370	3.83	2.8	536	0.79	0.28

Таблица 1. Частоты и силы осцилляторов полярных ТО-мод и решеточный вклад в статическую диэлектрическую проницаемость $\Delta \varepsilon = \varepsilon_0 - \varepsilon_\infty$ для соединений со структурой перовскита (представление F_{1u}) и рутила (представление A_{2u}) для реальных кристаллов и для этих же кристаллов с выключенным межьячеечным *DD*-взаимодействием. Данные для BaTiO₃ и KNbO₃ приведены для температур 473 и 710 К соответственно, а для остальных соединений — для комнатной температуры

Подставляя (16) в (21) и учитывая (15), находим, что

$$\varphi_{kl}(\alpha) = \sum_{\beta\gamma} C(\alpha, \beta) C(\alpha, \gamma) F_{kl}(\beta, \gamma).$$
(23)

Тензор $\varphi_{kl}(\alpha)$ можно рассматривать как тензор сил осциллятора моды α в кристалле с близкодействующими силами, но с полным тензором Борна $\hat{Z}(s)$. Переход от $\hat{f}(\alpha)$ к $\hat{\varphi}(\alpha)$ учитывает изменение формы полярных ТО-колебаний при выключении межъячеечного *DD*-взаимодействия.

Знание частот $\omega_{\rm sr}(\alpha)$ и сил осцилляторов $\hat{f}^{\rm sr}(\alpha)$ позволяет также найти решеточный вклад в диэлектрическую проницаемость для кристалла с выключенным межьячеечным *DD*-взаимодействием:

$$\Delta \hat{\varepsilon}^{\rm sr} = (\hat{\varepsilon} - \hat{\varepsilon}^{\infty})^{\rm sr} = \sum_{\alpha} \hat{f}^{\rm sr}(\alpha) / \omega_{\rm sr}^2(\alpha).$$
(24)

3. Приложение к соединениям со структурой перовскита и рутила

В предыдущих разделах был описан метод модельнонезависимого нахождения частот, формы (собственных векторов) и дипольных сил осцилляторов всех полярных ТО-мод, а также диэлектрической проницаемости для кристалла с выключенным поляризационным взаимодействием.

Результаты соответствующих расчетов для пяти соединений с кубической структурой перовскита и для пяти соединений со структурой рутила приведены в табл. 1. При расчетах были использованы указанные в левой части табл. 1 экспериментальные значения $\omega_{TO}(n), f(n)$ для мод из представления F_{1u} и ε_{∞} , взятые для BaTiO₃ из [24,25], для SrTiO₃ из [24], для KNbO₃ из [26-28], для КТаО₃ из [29,30] и для КСоF₃ из [31], а также значения ω_{TO} и f_{\parallel} для моды из одномерного представления A_{2u} и $\varepsilon_{\parallel}^{\infty}$, взятые для TiO₂ из [32–34], для SnO₂ из [35], для SiO₂ из [36,37], для CoF₂ из [38,39] и для NiF₂ из [38]. Кроме того, при расчетах для соединений со структурой рутила использовались следующие значения структурной дипольной константы \mathcal{A}_{\parallel} (см.(П.2), (6), (2)): 0.920 для TiO₂, 0.845 для SnO₂, 0.935 для SiO₂, 0.825 для CoF₂ и 0.870 для NiF₂. Приведенные в левой части табл. 1 значения $\Delta \varepsilon = \varepsilon_0 - \varepsilon_\infty$ найдены с помощью равенства (18).

В правой части табл. 1 приведены вычисленные с использованием уравнений и формул из разделов 2 и 3 и Приложения частоты $\omega_{\rm sr}$, силы осцилляторов $f^{\rm sr}$ и φ , а также решеточный вклад в диэлектрическую проницаемость ($\Delta \varepsilon$)^{sr} для кристалла с выключенным межьячеечным *DD*-взаимодействием (смысл $\varphi(n)$ указан в комментарии к равенству (23)).

Таблица 2. Транспонированная матрица С' (n, m) коэффици-
ентов разложения собственного вектора $\tilde{\mathbf{e}}(n)$ на компоненты в
базисе из собственных векторов $e^{sr}(m)$ для полярных ТО-мод
симметрии F _{1u} в кубических перовскитах (см. (16))

п	m						
	1	2	3				
	BaTiO ₃						
1	-0.202	0.621	0.758				
2	0.979	0.135	0.150				
3	0.009	-0.772	0.635				
	SrTiO ₃						
1	-0.234	0.707	0.668				
2	0.972	0.176	0.154				
3	0.009	-0.685	0.728				
	KNbO3						
1	-0.357	0.686	0.634				
2	0.934	0.286	0.216				
3	0.032	-0.669	0.742				
	KTaO ₃						
1	-0.398	0.745	0.534				
2	0.917	0.342	0.206				
3	0.030	-0.572	0.820				
	KCoF ₃						
1	-0.966	0.234	0.111				
2	0.253	0.941	0.225				
3	0.052	-0.246	0.968				

Как видно из табл. 1, в оксидах переходных металлов со структурой перовскита включение межъячеечного DD-взаимодействия приводит к сильной перестройке спектра частот и к переносу интенсивностей инфракрасного поглощения света из высокочастотной части спектра в низкочастотную. Анализ матриц C'(n, m), представленных в табл. 2, показывает, что имеет место следующее соответствие между модами: $\omega_{\rm sr}(1) \leftrightarrow \omega_{\rm TO}(2)$, $\omega_{\rm sr}(2), \ \omega_{\rm sr}(3) \ \leftrightarrow \ \omega_{\rm TO}(3), \ \omega_{\rm TO}(1)$. Мода 1 сохраняет частоту и форму, а моды 2 и 3 "взаимодействуют" друг с другом: происходит смешивание их форм и расталкивание частот с переносом интенсивности от наиболее высокочастотной моды 3 в кристалле с выключенными дипольными силами к сегнетоэлектрической мягкой ТО-моде (см. f(n) и $\varphi(n)$ в табл. 1). Описанная картина существенно отличается от результатов для КСоF₃. В то же время наблюдается удивительное подобие диэлектрических свойств всех пяти соединений при выключенном DD-взаимодействии, как это видно из сравнения $(\Delta \varepsilon)^{\rm sr}$.

Аналогичная картина наблюдается для соединений со структурой рутила. В отсутствие поляризационного взаимодействия все оксиды и фториды обнаруживают замечательную близость решеточных диэлектрических свойств ($(\Delta \varepsilon)^{sr}$ в табл. 1). Включение дипольных сил приводит к наблюдаемому различию диэлектрических свойств в этих материалах, в том числе к сильному

смягчению A_{2u} -моды и к аномальным диэлектрическим свойствам рутила TiO₂, который является фактически виртуальным (incipient) сегнетоэлектриком [32,40].

Представленные результаты показывают, что в оксидах со структурой перовскита и рутила реализуется поляризационный механизм формирования сегнетоэлектрической мягкой моды (сегнетоэлектрической неустойчивости решетки), как и в двухатомных сегнетоэлектриках [41]. Заметим, что, хотя аномальная малость ω_{TO}^2 и аномально большое LO-TO-расщепление для сегнетоэлектрической полярной оптической моды имеют различное происхождение (микроскопическое и макроскопическое электрические поля), они имеют в то же время одинаковую природу (межъячеечное DD-взаимодействие), и, согласно (4)–(6), а также (17), (15), причиной обоих явлений являются аномально большие дипольные силы осцилляторов для мягких полярных ТО-мод.⁴ Последние велики вследствие аномально больших значений компонент тензора Борна эффективного заряда $\hat{Z}(s)$ в сегнетоэлектрических оксидах со структурой перовскита [42-44]: $Z(\text{Ti}) \cong 7, \ Z_{\parallel}(\text{O}) \cong -5.5$ (в ATiO₃) и $Z(Nb) \cong 9$, $Z_{\parallel}(O) \cong -7$ (в KNbO₃), $Z(Ta) \cong 8.1, Z_{\parallel}(O) \cong -6.3$ (B KTaO₃) [42],⁵ а также в рутиле TiO₂ [12]: Z_{\parallel} (Ti) \cong 7.5, $Z_{\parallel}(0) \cong$ -3.8. Для сравнения отметим, что в КСоF₃ Z(Co) = 1.8 и $Z_{\parallel}(F) = -2.5$ [42], а в стишовите SiO₂ $Z_{\parallel}(Si) \cong 4$ и Z_{||}(O) ≅ −2 [45]. Аналогичная ситуация имеет место для двухатомных сегнетоэлектриков, в которых $Z(A) = -Z(B) \cong 6-10$ [8,41].

В реальных сегнетоэлектриках (*T_c* > 0 K) сегнетоэлектрическая мягкая мода в параэлектрической фазе при T = 0 К является неустойчивой, т.е. $\omega_{
m TO}^2(T\,=\,0\,\,{
m K})\,=\,-\omega_c^2\,<\,0.\,\,$ Получить грубую оценку ω_c можно, используя экстраполяцию температурной зависимости $\omega_{TO}^2(T)$ для мягкой моды в параэлектрической фазе из области температур выше Т_с в область низких температур. Используя экспериментальные данные [25] для ВаТі O_3 и [26,27] для KNb O_3 , находим $\omega_c = 127~{
m cm}^{-1}$ для $BaTiO_3$ и $\omega_c = 165 \text{ cm}^{-1}$ для $KNbO_3$. Отношение $\omega_c^2/\omega_{\rm sr}^2(3)$ равняется 0.041 для BaTiO₃ и 0.046 для KNbO3. Это означает, что имеет место сильная компенсация вкладов близкодействующих и дипольных сил в эффективную силовую постоянную сегнетоэлектрической ТО-моды в параэлектрической фазе при всех температурах, включая область неустойчивости этой фазы. Следовательно, уже незначительное (≥ 5%) увеличение вклада близкодействующих сил или уменьшение вклада дипольных сил должно стабилизировать параэлектрическую фазу при $T \ge 0$ K, т. е. должно превращать эти соединения из реальных сегнетоэлектриков в виртуальные,

⁴ Сравнение ω_{sr} и ω_{LO} для сегнетоэлектрический моды показывает их удивительную близость для всех обсуждаемых групп сегнетоэлектриков, что является следствием большой величины $\hat{\varepsilon}^{\infty}$ в этих соединениях.

⁵ В кубической структуре перовскита атом кислорода находится в позиции с точечной симметрией C_{4h} с мостиком Ti–O–Ti вдоль оси четвертого порядка.

как это и происходит при переходе от BaTiO₃ и KNbO₃ к SrTiO₃ и KTaO₃.⁶

Согласно (22), тензор Борна включает в себя эффекты электронной поляризации, вызванные межьячеечным *DD*-взаимодействием. Учитывая это, получаем, что выражение (5), (6) для $\hat{X}^{DD}(st)$ можно представить в следующем виде:

$$X_{ij}^{DD}(st) = -\frac{4\pi e^2}{\nu_0} \sum_{kl} \zeta_{ki}(s) N_{kl} \zeta_{lj}(t),$$
$$\hat{N} = \hat{A} + \hat{A}(\hat{\varepsilon}^{\infty} - \hat{I})\hat{A}.$$
(25)

Это выражение устанавливает явную связь между вкладом микроскопического поля, вызванного поляризационным взаимодействием, в матрицу силовых постоянных и макроскопической электронной диэлектрической проницаемостью кристалла⁷: достаточно высокая электронная поляризуемость (большое $\hat{\epsilon}^{\infty}$) является дестабилизирующим фактором для параэлектрических кристаллов. Расчеты для соединений со структурой перовскита и рутила и результаты для двухатомных кристаллов [41] показывают, что высокая электронная поляризуемость играет решающую роль в формировании сегнетоэлектрических мягких мод в кристаллах.

Наряду с $\hat{\varepsilon}^{\infty}$ на величину \hat{X}^{DD} существенно влияет также редуцированный (определяемый близкодействием) тензор Борна эффективного заряда $\hat{\zeta}(s)$. В двухатомных кубических кристаллах этот тензор равен $z^{ion}(s)\hat{I}$, где $z^{ion}(s)$ — эффективный ионный заряд Сигети для подрешетки s [14,22], величина которого определяется степенью ионности соединения [4,41]. В соединениях IV-VI, имеющих низкую ионность, заряд Сигети мал (< 0.5 [41]) и эта малость компенсируется аномально большой величиной $\varepsilon_{\infty}~(\geqslant 30)$. В соединениях со сложной решеткой тензор $\hat{\zeta}$ является, вообще говоря, недиагональным и несимметричным в главных осях кристалла, его компоненты не имеют простой интерпретации, и на их величину может существенно влиять зависящая от взаимного положения подрешеток часть тензора дипольных структурных констант $\hat{\gamma}(st)$ [4,15]. Такая ситуация реализуется, в частности, в соединениях со структурой перовскита [5] и рутила [40]. Этим, повидимому, объясняются большие значения $\zeta(B)$ и $\zeta_{\parallel}(X)$ в соединениях ABX₃ со структурой перовскита: 2.9 и -2.3 в АТіО₃, 4.0 и -3.1 в КNbO₃, 3.8 и -3.0 в КТаО₃, 1.3 и -1.8 в КСоF₃. Однако в соединениях BX2 со структурой рутила эти эффекты слабо влияют на величины $\zeta_{\parallel}(B)$ и $\zeta_{\parallel}(X)$, которые равны соответственно

1.1 и -0.57 в рутиле TiO₂ и 1.3 и -0.63 в стишовите SiO₂. Более существенным для формирования мягкой A_{2u} -моды в рутиле является (наряду с большим значением $\varepsilon_{\parallel}^{\infty}$) большое по сравнению с изотропным случаем $(\mathcal{A} = 1/3)$ значение константы $\mathcal{A}_{\parallel} = 0.92$, что является следствием сильной одноосной анизотропии структуры рутила c/a = 0.64).

Автор признателен за обсуждение работы и полезные замечания Ю.А. Фирсову и всем участникам теоретического семинара по физике диэлектрика и полупроводников ФТИ им. А.Ф. Иоффе, выражает благодарность А.К. Таганцеву за обсуждение некоторых вопросов, затронутых в работе, а также М.Б. Смирнову за предоставление результатов расчета дипольных структурных коэффициентов для соединений со структурой рутила.

Данная работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 96-02-18482).

Приложение

Для кубических кристаллов тензоры \hat{A} и $\hat{\varepsilon}^{\infty}$ и матрица \hat{B} имеют вид (см. (2), (6))

$$\mathcal{A}_{ij} = 1/3\delta_{ij}, \ \ \varepsilon_{ij}^{\infty} = \varepsilon_{\infty}\delta_{ij}, \ \ B_{ij} = \frac{\delta_{ij}}{\varepsilon_{\infty} + 2}.$$
 (II1)

Для одноосных кристаллов имеем

$$\mathcal{A}_{ij} = \mathcal{A}_{\parallel} t_i t_j + \mathcal{A}_{\perp} (\delta_{ij} - t_i t_j), \quad \mathcal{A}_{\parallel} + 2\mathcal{A}_{\perp} = 1, \quad (\Pi 2)$$

$$\varepsilon_{ij}^{\infty} = \varepsilon_{\parallel}^{\infty} t_i t_j + \varepsilon_{\perp}^{\infty} (\delta_{ij} - t_i t_j), \qquad (\Pi 3)$$

$$B_{ij} = B_{\parallel} t_i t_j + B_{\perp} (\delta_{ij} - t_i t_j),$$

$$B_{\parallel} = \mathcal{A}_{\parallel} / L_{\parallel}, \quad B_{\perp} = \mathcal{A}_{\perp} / L_{\perp}, \qquad (\Pi 4)$$

где

$$L_{\parallel} = 1 + (\varepsilon_{\parallel}^{\infty} - 1)\mathcal{A}_{\parallel}, \ \ L_{\perp} = 1 + (\varepsilon_{\perp}^{\infty} - 1)\mathcal{A}_{\perp}, \ \ (\Pi 5)$$

а t — единичный вектор в направлении главной оптической оси.

Далее рассмотрим структуру тензоров $\hat{f}(\alpha)$, $\hat{f}^{\rm sr}(\alpha)$, $\hat{\varphi}(\alpha)$ и $g(\alpha, \beta)$ для кристаллов, относящихся к классам кубической симметрии. В отсутствие макроскопического поля полярные оптические моды в точке Г являются трижды вырожденными и характеризуются номером моды n и поляризацией i = x, y, z, т.е. индексом $\alpha = (ni)$. При этом коэффициенты $\xi_i(\alpha)$ в (15) имеют структуру вида [46]

$$\xi_i(nk) = \delta_{ik}\xi(n). \tag{\Pi6}$$

Из-за вырождения спектра по индексу *i* в (18) входит величина

$$\sum_{k} f_{ij}(nk) = \delta_{ij}f(n), \quad f(n) = \frac{4\pi e^2}{v_0}\xi^2(n). \tag{II7}$$

⁶ В работе [13] сделан вывод о слабой зависимости T_c в титанате бария от величины дипольных сил осциллятора для мягкой ТОмоды. Заметим, однако, что этот результат получен с использованием неправильного выражениям для межьячеечного *DD*-взаимодействия, которое приводит к заниженному в $3\varepsilon_{\infty}/(\varepsilon_{\infty} + 2)$ раз (почти в 2 раза для BaTiO₃) значению вклада дипольных сил в ω_{TO}^2 , а также с использованием подгоночной процедуры для определения параметров близкодействия.

⁷ Для двухатомных кубических кристаллов такая связь была найдена ранее в [14].

Для матрицы $g(\alpha, \beta)$, учитывая (14), (П1), (П6) и (П8), имеем

$$g(ni,mj) = \delta_{ij}g(n,m), \ g(n,m) = \frac{[f(n)f(m)]^{1/12}}{\varepsilon_{\infty} + 2}.$$
 (II8)

Используя (П8), находим из уравнения (13), что

$$C(\alpha,\beta) = C(ni,mj) = \delta_{ij}C(n,m). \tag{\Pi9}$$

Учитывая (15), (П6) и (П9), находим из (22), что

$$\sum_{k} \varphi_{ij}(nk) = \sum_{mp} C(n, m) C(n, p)$$
$$\times \sum_{k} F_{ij}(mk, pk) = \delta_{ij} \varphi(n), \qquad (\Pi 10)$$

где

$$\varphi(n) = \sum_{mp} C(n,m)C(n,p)[f(m)f(p)]^{1/2}.$$
 (II11)

В результате для $f^{sr}(n)$, учитывая (19), получаем

$$f^{\rm sr}(n) = \left(\frac{3}{\varepsilon_{\infty}+2}\right)^2 \varphi(n).$$
 (II12)

Не выписывая соответствующих выражений для одноосных кристаллов, заметим, что это нетрудно сделать, учитывая симметрийную классификацию ТО-мод колебаний решетки [46] и приведенные выше результаты. В частности, для случая когда в представлении A_{2u} имеется единственная ТО-мода, можно получить для нее следующие выражения для ω_{TO}^2 и f_{\parallel} :

$$\omega_{\rm TO}^2 = \omega_{\rm sr}^2 - B_{\parallel} f_{\parallel} = \omega_{\rm sr}^2 - \mathcal{A}_{\parallel} L_{\parallel} f_{\parallel}^{\rm sr}, \quad f_{\parallel} = f_{\parallel}^{\rm sr} L_{\parallel}^2. \quad (\Pi 13)$$

Список литературы

- [1] W. Cochran. Adv. Phys. 9, 36, 387 (1960).
- [2] Г.А. Смоленский, В.А. Боков, В.А. Исупов, Н.Н. Крайник, Р.Е. Пасынков, А.И. Соколов. Физика сегнетоэлектрических явлений. Наука, Л. (1985). 396 с.
- [3] В.Г. Вакс. Введение в микроскопическую теорию сегнетоэлектриков. Наука, М. (1973). 328 с.
- [4] О.Е. Квятковский, Е.Г. Максимов. УФН 154, 1, 3 (1988).
- [5] J.C. Slater. Phys. Rev. 78, 6, 748 (1950).
- [6] R. Resta. Rev. Mod. Phys. 66, 3, 899 (1994).
- [7] K.M. Rabe, J.D. Joannopoulos. Phys. Rev. B 32, 4, 2302 (1985);
 Ibid. B 36, 6, 3319 (1987).
- [8] N.E. Zein, V.I. Zinenko, A.S. Fedorov. Phys. Lett. A164, 1, 115 (1992).
- [9] R.E. Cohen, H. Krakauer. Phys. Rev. B 42, 10, 6416 (1990); Ferroelectrics 136, 65 (1992); R.E. Cohen. Nature 358, 136 (1992).
- [10] D.J. Singh, L.L. Boyer. Ferroelectrics **136**, 95 (1992).
- [11] R.D. King-Smith, D. Vanderbilt. Ferroelectrics 136, 85 (1992);
 Phys. Rev. B 49, 9, 5828 (1994).
- [12] C. Lee, P. Ghosez, X. Gonze. Phys. Rev. B 50, 18, 13379 (1994).

- [13] W. Zhong, D. Vanderbilt, K.M. Rabe. Phys. Rev. Lett. 73, 13, 1861 (1994); Phys. Rev. B 52, 9, 6301 (1995).
- [14] О.Е. Квятковский. ФТТ 27, 9, 2673 (1985).
- [15] О.Е. Квятковский. ФТТ 35, 8, 2154 (1993).
- [16] О.Е. Квятковский. ФТТ 38, 3, 728 (1996).
- [17] О.Е. Квятковский. ФТТ 38, 1, 101 (1996).
- [18] L.J. Sham. Phys. Rev. 188, 2, 1431 (1969).
- [19] R.M. Pick, M.H. Cohen, R.M. Martin. Phys. Rev. B 1, 2, 2910 (1970).
- [20] O.E. Kvyatkovskii. Ferroelectrics **153**, 201 (1994).
- [21] О.Е. Квятковский. Изв. РАН. Сер. физ. 60, 10, 4 (1996).
- [22] М. Борн, Хуан Кунь. Динамическая теория кристаллических решеток. Пер. с англ. ИЛ, М. (1958). 488 с.
- [23] W. Cochran, R.A. Cowley. J. Phys. Chem. Sol. 23, 447 (1962).
- [24] A.S. Barker. Phys. Rev. 145, 2, 391 (1966).
- [25] H. Vogt, J.A. Sanjurjo, G. Rossbroich. Phys. Rev. B26, 10, 5904 (1982).
- [26] M.D. Fontana, G. Matrat, J.L. Servoin, F. Gervais. J. Phys. C 17, 3, 488 (1984).
- [27] H. Vogt, M.D. Fontana, G.E. Kugel, P. Günter. Phys. Rev. B 34, 1, 410 (1986).
- [28] Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology / Ed. K.-H. Hellwege, A.M. Hellwege. Springer-Verlag. Berlin (1981). Group III. Vol. 16a, 683 p.
- [29] R.C. Miller, W.G. Spitzer. Phys. Rev. 129, 1, 94 (1963).
- [30] H. Vogt, H. Uwe. Phys. Rev. **B 29**, *2*, 1030 (1984).
- [31] J.D. Axe, G.D. Pettit. Phys. Rev. 157, 2, 435 (1967).
- [32] R.A. Parker. Phys. Rev. 124, 6, 1719 (1961).
- [33] J.R.De Vore. J. Opt. Soc. Am. 41, 6, 416 (1951).
- [34] J.G. Traylor, H.G. Smith, R.M. Nicklow, M.K. Wilkinson. Phys. Rev. B3, 10, 3457 (1971).
- [35] R.S. Katiyar, P. Dawson, M.H. Hargreave, G.R. Wilkinson. J. Phys. C4, 11, 2421 (1971).
- [36] A.M. Hofmeister, J. Xu, S. Akimoto. Am. Mineral. 75, 951 (1990).
- [37] С.М. Стишов, С.В. Попова. Геохимия, 10, 837 (1961).
- [38] M. Balkanski, P. Moch, G. Parisot. J. Chem. Phys. 44, 3, 940 (1966).
- [39] A.M. Hofmeister, J. Horigan, J.M. Campbell. Am. Mineral. 75, 1238 (1990).
- [40] Г.И. Сканави. Физика диэлектриков. ГИТТЛ, М.; Л. (1949). 500 с.
- [41] О.Е. Квятковский. ФТТ 28, 4, 983 (1986).
- [42] J.D. Axe. Phys. Rev. 157, 2, 429 (1967).
- [43] R. Resta, M. Posternak, A. Baldereschi. Phys. Rev. Lett. 70, 7, 1010 (1993).
- [44] W. Zhong, R.D. King-Smith, D. Vanderbilt. Phys. Rev. Lett. 72, 22, 3618 (1994).
- [45] C. Lee, X. Gonze. Phys. Rev. Lett. 72, 11, 1686 (1994).
- [46] А. Пуле, Ж.-П. Матье. Колебательные спектры и симметрия кристаллов. Пер. с фр. Мир, М. (1973). 437 с.