Обнаружение суперсверхтонкой структуры в спектрах ЭПР двух тетрагональных центров Fe в KTaO₃ и новая модель центра

© В.Э. Бурсиан, В.С. Вихнин, Л.С. Сочава, С. Каппхан*, Х. Хессе*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия *Университет Оснабрюка, D-49069, Германия

(Поступила в Редакцию 26 декабря 1996 г.)

Обнаружена суперсверхтонкая структура линий спектров ЭПР двух тетрагональных центров железа в кристалле $KTaO_3$ -"Fe 4/2" и Fe_{Ta}^{3+} -V₀. Анализ суперсверхтонкой структуры первого из этих центров показал, что ион железа замещает Ta^{5+} и находится в зарядовом состоянии 5+. Обосновывается предположение о том, что тетрагональная симметрия центра обусловлена смещением иона Fe^{5+} из узла Ta^{5+} вдоль направления $\langle 100 \rangle$ в нецентральную позицию.

Многообразие структур примесных центров 3*d*-ионов в KTaO₃ обусловлено не только разнообразными дефектами в ближайшем окружении переходного иона, но и тем фактом, что эти ионы могут замещать как Ta^{5+} , так и K⁺. К настоящему времени известны ЭПР спектры шести типов центров Fe [1–7]: двух кубических, трех тетрагональных и одного ромбического (см. таблицу). Структура некоторых из них до сих пор не установлена окончательно.

На линиях двух из этих спектров — кубического Fe_{Ta}^{3+} и тетрагонального $Fe_{K}^{3+}-O_{i}$ — ранее была зарегистрирована суперсверхтонкая структура (ССТС) [4,6]. В настоящей работе уточняются данные работы [4] о ССТС в спектре ЭПР кубического центра Fe_{Ta}^{3+} в КТаО₃, что заставляет изменить представление о природе ССТС этого спектра, а также сообщается об обнаружении ССТС в спектрах двух тетрагональных центров: "Fe 4/2" и $Fe_{Ta}^{3+}-V_{O}$.

На основе этих данных предлагается модель, в которой центром "Fe 4/2" является ион Fe⁵⁺, замещающий Ta⁵⁺. Аксиальность центра обусловлена нецентральным положением иона Fe⁵⁺.

Исследовались монокристаллические образцы КТаО₃ (выращенные на физическом факультете Университета г. Оснабрюка, Германия), как номинально чистые, так и допированные железом, с содержанием Fe в шихте от 2000 до 40 000 ppm. Приведенные в работе спектры получены на образцах, выращенных из шихты с содержанием Fe 2000 ppm.

Суперсверхтонкая структура в спектре кубического центра Fe³⁺ в узле Та

ССТС на центральной линии спектра кубического центра Fe_{Ta}^{3+} впервые наблюдалась Хэнноном [4], который зарегистрировал около 20 компонент и отнес их возникновение к взаимодействию с восемью ядрами ³⁹К (93.4%) и ⁴¹К (6.6%). С учетом I = 3/2 это вза-

имодействие должно давать 25 компонент. Нами также наблюдался этот спектр (рис. 1, спектры *1* и *2*, линия γ), в котором, однако, удалось надежно зарегистрировать 35 компонент ССТС с расщеплением 5.5 ± 0.1 Ое. Как отмечалось в [4], степень разрешения ССТС резко ухудшается при отклонении **H** от направления $\langle 100 \rangle$ (рис. 1, *b*), а при **H** || $\langle 100 \rangle$ в наших кристаллах на центральную линию (γ) кубического спектра наложены

Рис. 1. ССТС спектров ЭПР центров Fe в КТаО₃ при различных направлениях магнитного поля **H**, T = 78 K. f = 9.3 GHz. **H** \perp [001], угол между **H** и [100] составляет 0° (1), 8° (2), 15° (3), 41° (4). $\alpha, \beta, \gamma, \delta, \varepsilon$ — линии кубического центра Fe³⁺_{Ta}, X, Y, Z — тетрагонального центра Fe³⁺_{Ta}-V₀, x, y, z — тетрагонального центра Fe³⁺_K-O_i.

		-		
Обозначение	Симметрия	Параметры	Расщепление ССТС, Ое	Интерпретация
Fe ³⁺ _{Ta}	Кубич. [3]	$a = 345 \cdot 10^{-4} \mathrm{cm}^{-1} (4.2 \mathrm{K}) [3]$	$5.5(\mathbf{H} \parallel \langle 100 \rangle)$	Fe_{Ta}^{3+} [3]
Fe _K ³⁺	Кубич.	$a = 30 \cdot 10^{-4} \mathrm{cm}^{-1} (300 \mathrm{K}) [4]$	-	Fe_{K}^{3+} [4]
$\mathrm{Fe}_{\mathrm{Ta}}^{3+}\mathrm{-V}_{\mathrm{O}}$	Тетраг. [5]	$b_2^0 = 1.35 \mathrm{cm}^{-1}$ [6]	$5.3(\mathbf{H} \parallel \langle 110 \rangle)$	$\mathrm{Fe_{Ta}^{3+}-V_O}$ [4]
$\mathrm{Fe}_{\mathrm{K}}^{3+}-\mathrm{O}_{i}$	Тетраг.	$b_2^0 = 4.46 \mathrm{cm}^{-1}$ [6]	$3.3(\mathbf{H} \parallel \langle 100 \rangle)$	${\rm Fe}_{\rm K}^{3+}{\rm -O}_i$ [6]
			$4.0(\mathbf{H} \parallel \langle 110 \rangle)$	
"Fe 4/2"*	Тетраг.	$S = 3/2, g_{\parallel} = 2.02, g_{\perp} = 2.16 [1]$	$5.6(\mathbf{H} \parallel \langle 100 \rangle)$	$\mathrm{Fe}_{\mathrm{K}}^{+}$ [1]
				${ m Fe}_{ m K}^+$ или ${ m Fe}_2^{5+}$ [2]
				Fe ⁵⁺ _{Ta} (наст. работа)
<i>rh</i> Fe ³⁺	Орторомб.	$b_2^0 = 0.44 \mathrm{cm}^{-1}, b_2^2 = 0.196 \mathrm{cm}^{-1}$ [7]	—	$\mathrm{Fe}_{\mathrm{Ta}}^{3+}-?$

Парамагнитные центры на основе примеси железа в КТаО3

* Обозначение, предложенное в [2], отражает округленные значения эффективных $g_{\perp}^{\rm eff}=4.33$ и $g_{\parallel}^{\rm eff}=2.02$ [1].

линии двух других центров: линия g_{\parallel} центра $\operatorname{Fe}_{\mathrm{K}}^{3+}-\operatorname{O}_{i}$ и более широкая линия g_{\parallel} центра $\operatorname{Fe}_{\mathrm{Ta}}^{3+}-\operatorname{V}_{\mathrm{O}}$ (линии *x* и *X* на рис. 1, *b*). Однако угловая зависимость спектров убедительно показывает, что наблюдаемая ССТС принадлежит центральной линии именно кубического спектра (см., например, спектры *I* и *2* на рис. 1, *b*).

Присутствие по крайней мере 35 эквидистантных компонент ССТС в спектре Fe_{Ta}^{3+} однозначно указывает на то, что эта структура создается не восемью ядрами К из второй координационной сферы, а шестью ядрами 181 Та (100 %, I = 7/2) из третьей координационной сферы, дающими 43 компоненты. Это, вероятно, связано с тем, что магнитный момент ядра 181 Та в 5.4 раза больше магнитного момента ядра 39 К.

Рис. 2. ССТС на линии g_{\perp} спектра ЭПР тетрагонального центра Fe_{Ta}⁵⁺ в KTaO₃. T = 4.2 К. **H** || [100], f = 9.3 GHz.

Обнаружение суперсверхтонкой структуры в спектрах тетрагональных центров Fe³⁺_{Ta}-V₀ и "Fe 4/2"

В кристаллах КТаО₃, допированных железом (2000 ppm Fe в шихте), на линиях спектра центра $Fe_{Ta}^{3+}-V_{O}$ мы обнаружили ССТС с тем же расщеплением (5.3 ± 0.1 Oe), что и в кубическом центре Fe_{Ta}^{3+} . Однако степень разрешения в этом случае гораздо хуже (рис. 1, *c*). Лучшие условия регистрации ССТС соответствуют ориентации **H** вблизи направления (110) (рис. 1, *c*). При этом для надежной регистрации ССТС необходимо подавить линии спектра $Fe_{K}^{3+}-O_{i}$ (имеющие свою ССТС), что достигалось облучением образца ИК-светом [8].

В наших образцах КТаО₃ (как номинально чистых, так и допированных железом) наблюдался тетрагональный спектр Fe с $S_{\rm eff} = 1/2$ и параметрами, очень близкими к найденным в [1]. В случае допированного железом кристалла (концентрация Fe в шихте от 2000 ppm и выше) как на лини
и $g_{\parallel},$ так и на линии g_{\perp} пр
и $T=4.2\,{\rm K}$ мы обнаружили хорошо разрешенную ССТС (рис. 2). На линии g_{\perp} при оптимальных условиях регистрируются 35 эквидистантных компонент с расщеплением $\Delta H = 5.6 \pm 0.1$ Ое. Полная ширина линий g_{\parallel} и $g_{\perp} \delta H_{pp}$ составляет около 40 Ое.¹ Разрешение ССТС на линии g_{\perp} лучше, чем на g_{\parallel} , и ухудшается при отклонении **H** от $\langle 100 \rangle$ (хотя и не так резко, как в случае линии γ в кубическом спектре). При $T = 78 \, \text{K}$ разрешение ССТС значительно хуже; кроме того, она становится менее регулярной.

Совпадение параметров ССТС в спектрах кубического центра Fe_{Ta}^{3+} и центра "Fe 4/2" приводит нас к выводу

¹ Нехарактерная для модуляционной методики форма спектра (рис. 2) иногда наблюдается в образцах с большой диэлектрической проницаемостью при низких температурах и связана, вероятно, с вкладом дисперсии в условиях сильного искажения СВЧ-моды резонатора.

о том, что ион тетрагонального центра находится в узле Ta^{5+} , а ССТС создается взаимодействием с шестью ядрами Ta.

Проведенный в [1] анализ угловых зависимостей положения резонансных линий центра "Fe 4/2" привел авторов к выводу о спине S = 3/2 иона железа. Поэтому в работах [1,2] обсуждались два возможных состояния иона железа со спином S = 3/2: Fe⁺ (d^7) и Fe⁵⁺ (d^3). Хотя авторы [1] из найденных ими численных значений g_{\parallel} и g_{\perp} сделали вывод в пользу иона Fe⁺, находящегося в узле K⁺, в недавней работе [2] показано, что полученные к настоящему времени из эксперимента значения g_{\parallel} и g_{\perp} не позволяют сделать обоснованный выбор между Fe⁺ и Fe⁵⁺.

В то же время обнаруженная в настоящей работе идентичность ССТС в спектрах "Fe 4/2" и кубического $\operatorname{Fe}_{\operatorname{Ta}}^{3+}$ свидетельствует о положении иона Fe в узле Ta^{5+} и, следовательно, о его зарядовом состоянии Fe⁵⁺ ($3d^3$ -оболочка со спином S = 3/2), а не Fe⁺.

Возможная нецентральность иона Fe⁵⁺_{та}

Итак, в качестве модели центра "Fe 4/2", позволяющей описать эксперимент, будем рассматривать примесный ион Fe⁵⁺, замещающий ион Ta⁵⁺ основной матрицы. Магнитное диполь-дипольное взаимодействие спиновых состояний $3d^3$ -оболочки иона Fe⁵⁺ со спиновыми состояниями ядер ионов Ta формирует ССТС, наблюдаемую в эксперименте. При этом находит объяснение совпадение параметров ССТС для Fe⁵⁺ и кубического центра Fe³⁺ в узле иона Ta⁵⁺, поскольку эта структура создается одним и тем же взаимодействием (оба иона железа занимают узел тантала и имеют близкие значения *g*-факторов).

Природа аксиальности центра Fe_{Ta} в KTaO₃ может быть обусловлена нецентральностью иона Fe⁵⁺. Действительно, ионный радиус примеси Fe⁵⁺ существенно меньше ионного радиуса замещаемого иона Ta⁵⁺ (последний даже больше, чем ионный радиус иона Fe³⁺). Хотя поляризуемость иона Fe⁵⁺ мала, весьма малые борн-майеровские силы для Fe⁵⁺ в узле иона Ta⁵⁺ приводят к доминированию в окрестности этого узла кулоновских сил, действующих на ион Fe⁵⁺. Последнее вследствие специфики кулоновских взаимодействий (приводящих, в частности, к справедливости теоремы Ирншоу в пределе только кулоновских взаимодействий) оказывается ответственным за неустойчивость иона Fe⁵⁺ в узле иона Ta⁵⁺. В результате возникает многоямный потенциал с равновесными полярными искажениями. Геометрия такого потенциала диктуется ангармоническими взаимодействиями (прежде всего четвертого порядка), приводящими к существованию устойчивых конфигураций. При этом одна из разрешенных симметрией конфигураций многоямного потенциала — шестиямный потенциал с равновесными смещениями из узла вдоль кристаллографических направлений типа [100]. Если соответствующие туннельные матричные элементы уступают относительным сдвигам уровней одноямных состояний во внутренних дефектных полях в кристалле, центр Fe^{5+} оказывается локализованным в отдельных одноямных состояниях с симметрией $C_{4\nu}$, что согласуется с наблюдаемой в ЭПР аксиальной симметрией центра.

Проверкой предлагаемой модели центра "Fe 4/2" могло бы служить исследование характерной узкой линии люминесценции, обусловленной 3d³-оболочкой иона Fe⁵⁺ (аналога *R*-линии Cr³⁺ в рубине). К сожалению, тщательный поиск в исследуемых образцах KTaO₃:Fe не обнаружил близких по свойствам линий фотолюминесценции. Однако этот результат ни в коем случае не противоречит предлагаемой модели и может быть прямым следствием "сильной" нецентральности иона Fe⁵⁺. Действительно, в этом случае деформационное поле, связанное с равновесным сдвигом Fe⁵⁺ из узла, может эффективно смешивать близколежащие ^{2}E и ${}^{2}T_{1}$ -возбужденные состояния $3d^{3}$ -оболочки. В результате *R*-фотолюминесценция происходит из гибридных состояний. Предполагая, что ${}^{2}T_{1}$ -состояние Fe⁵⁺ в KTaO₃ находится в резонансе с разрешенной зоной и вследствие этого существенно уширено, приходим к существенному уширению не только R'-, но и R-линий фотолюминесценции (соответствующих переходам ${}^{2}T_{1} \rightarrow {}^{4}A_{2}$ и ${}^{2}E \rightarrow {}^{4}A_{2}$). Такое уширение и отсутствие *R*-линий фотолюминесценции могут иметь место и в актуальной ситуации прямого резонанса *E*-состояний иона Fe⁵⁺ с разрешенной зоной кристалла КТаО3.

В заключение отметим, что механизмом нецентральности примесного иона Fe^{5+} в $KTaO_3$, наряду с кулоновской неустойчивостью может служить и самосогласованный перенос заряда с иона кислорода первой координационной сферы на примесный ион Fe^{5+} , который сопровождается низкосимметричным искажением решетки [9]. Последнее возникает вследствие парного псевдоэффекта Яна–Теллера и соответствует локализованному вибронному экситону с переносом заряда [10].

Авторы благодарны S. Magnien (Университет Оснабрюка) и С.А. Басуну (ФТИ им. А.Ф. Иоффе) за помощь в исследовании фотолюминесценции, а также Dr. H.-J. Reyher (Университет Оснабрюка) за предоставленную возможность ознакомиться с работой [2] до ее опубликования.

Работа была выполнена при частичной поддержке Российского фонда фундаментальных исследований (РФФИ) (проект 96-02-17972) и Российско-немецкой программы ННИО–РФФИ (проект 96-02-00138).

Список литературы

- M.D. Glinchuk, V.V. Laguta, I.P. Bykov, J. Rosa, L. Jastrabik. J. Phys.: Cond. Matter 7, 2605 (1995).
- [2] H.-J. Reyher, B. Faust, M. Maiwald, H. Hesse. Appl. Phys. B63, 4, 331 (1996).

- [3] S.H. Wemple. Technical Report 425. Massachusetts Institute of Technology, Cambridge, Massachusetts (1964).
- [4] D.M. Hannon. Phys. Rev. 164, 2, 366 (1967).
- [5] G. Wessel, H. Goldick. J. Appl. Phys. 39, 4855 (1968).
- [6] И.П. Быков, М.Д. Глинчук, А.А. Кармазин, В.В. Лагута. ФТТ 25, 12, 3586 (1983); М.D. Glinchuk, I.P. Bykov. Phase Trans. 40, 1 (1992).
- [7] A.P. Pechenyi, M.D. Glinchuk, T.V. Antimirova, W. Kleemann. Phys. Stat. Sol. (b) **174**, 325 (1992).
- [8] L.S. Sochava, S.A. Basun, V.E. Bursian, S. Kapphan, V.S. Vikhnin. Abstracts of the 15th General Conf. of the Condensed Matter Division. Baveno-Stresa, Italy (April 22–25 1996). In: Europhys. Conf. Abstr. 20A, 51 (1996); S.A. Basun, V.E. Bursian, H. Hesse, S. Kapphan, L.S. Sochava, V.S. Vikhnin. Materials Science Forum 239–241, 345 (1997). Proc. of the XIII Int. Conf. on Defects in Insulating Materials. Winston-Salem, North Caroline, USA (July 15–19 1996).
- [9] V.S. Vikhnin. Int. Symp. on Jahn–Teller Effect. Berlin (August 1996). Abstract P. 1.5.
- [10] V.S. Vikhnin. Ferroelectrics. In press (1996).