Изменение локальной структуры примесных центров при фазовых переходах в CsSrCl₃: Gd³⁺

© В.А. Важенин, М.Ю. Артемов

Научно-исследовательский институт физики и прикладной математики при Уральском государственном университете, 620083 Екатеринбург, Россия

(Поступила в Редакцию 12 апреля 1996 г.)

Во второй низкосимметричной фазе CsSrCl₃ проведено исследование спектра ЭПР четырех триклинных центров. Анализ полученных спиновых гамильтонианов позволил определить величины поворотов главных осей тензоров тонкой структуры при фазовых переходах, которые в ряде случаев можно связать с поворотами хлорных октаэдров, а также оценить характер деформации октаэдров. Проведены экспериментальные оценки углов поворота хлорных октаэдров в прафазе.

1. В кристалле CsSrCl₃ авторами [1] в результате микроскопических и рентгеновских исследований обнаружена последовательность трех сегнетоэластических фазовых переходов, обусловленных поворотами анионных октаэдров вокруг осей четвертого порядка кубической решетки, т.е. конденсацией вращательных мягких мод M_3 и P_{25} . Позднее на кристаллах CsSrCl₃ проведены рентгеновские, ультразвуковые [2], дилатометрические [3] и магниторезонансные исследования [4–6], при этом температуры структурных превращений, наблюдаемых различными авторами, несколько отличались. По мнению многих исследователей [1,6,7], в этом кристалле реализуется такая же последовательность фаз, как и в ранее изученном CsPbCl₃ [8,9]:

$$O_{h}^{1} \xrightarrow{[00\psi]} D_{4h}^{5} \xrightarrow{[0\varphi\psi]} D_{2h}^{17} \xrightarrow{[\varphi_{2}\varphi_{1}\psi]} C_{2h}^{2}, \qquad (1)$$

где ψ и φ — компоненты ротационных мод M_3 и R_{25} соответственно. В работах [10,11] в обозначении второй низкотемпературной фазы нами допущена опечатка.

В [6] с помощью метода симметрийной классификации спектров ЭПР при структурных фазовых переходах на основании температурных и угловых зависимостей положений сигналов кубического центра Gd³⁺, локализованного в позиции Sr²⁺, было показано, что в CsSrCl₃ действительно реализуется последовательность фаз (1). Эта последовательность качественно объясняет картину температурных и угловых расщеплений резонансных линий кубического центра во всех фазах.

Кроме кубического центра в кристаллах CsSrCl₃, легированных ионами Gd³⁺, наблюдаются два тетрагональных (в прафазе) спектра. В [10] определены параметры спиновых гамильтонианов и построены модели этих центров в прафазе. Количественному исследованию кубического и тетрагонального с малым начальным расщеплением центров в первой низкосимметричной фазе посвящена работа [11]. Построены спиновые гамильтонианы \hat{H} центров, определены углы поворота главных осей тензоров тонкой структуры, которые можно соотнести с величиной локального параметра порядка, сделаны оценки деформации лигандного октаэдра.

Целью настоящей работы является количественное описание спектров ЭПР кубических и тетрагональных (по происхождению) центров во второй низкосимметричной фазе и анализ полученных параметров \hat{H} для определения величин локальных параметров порядка и характера деформации ближайшего хлорного октаэдра.

2. Измерения проводились на спектрометре ЭПР трехсантиметрового диапазона ($\nu \approx 9400 \, \mathrm{MHz}$), оборудованном устройством для проведения высокотемпературных измерений. Температура измерялась термопарой хромель-копель, стабилизация температуры осуществлялась системой ВРТ-1 с точностью не хуже 0.2 К. Для измерений использовались монокристаллы, выращенные методом Бриджмена в запаянных кварцевых ампулах. Кристаллы CsSrCl₃ сильно ги-гроскопичны и на воздухе, поглощая воду, быстро разрушаются. Для защиты от влаги образцы покрывались слоем нитролака.

3. В CsSrCl₃, легированном Gd³⁺ (ион Gd³⁺ замещает ион Sr²⁺), в кубической фазе наблюдаются три типа центров [10]: тип 1 — кубический с нелокальной компенсацией избыточного заряда; тип 2 — тетрагональный с компенсацией заряда за счет вакансии в ближайшем узле Sr²⁺: тип 3 — тетрагональный, компенсированный замещением иона Cl⁻ в ближайшем окружении ионом O²⁻. Кислород присутствует в кристалле в виде неконтролируемой примеси. Этот центр имеет сигналы большой ширины и в данной работе не рассматривается.

При первом фазовом переходе центр типа 1 становится тетрагональным, а центр типа 2 порождает два центра: 2 || — тетрагональный (ось компенсации параллельна оси поворота ψ) и 2 \perp — ромбический (ось компенсации и ось ψ перпендикулярны).

При втором фазовом переходе (конденсируется одна компонента моды R_{25}) появляются четыре неэквивалентных центра: 1 — происходит из кубического центра; 2 || — из 2; 2 \perp 1 — из 2 \perp (поворот φ перпендикулярен оси компенсации); 2 \perp 2 — из 2 \perp (поворот φ параллелен оси компенсации).

Рис. 1. Температурная зависимость B_{res} центров типа 2 с $OK \parallel \mathbf{B}$ при $\mathbf{B} \parallel \mathbf{C}_4$ (переход 3–4, нумерация уровней снизу вверх). Изменение отношения интенсивностей в третьем фазовом переходе происходит и на других сигналах центров типа 1 и 2, что свидетельствует о перестройке доменной структуры.

В полидоменном образце во второй фазе существуют шесть эквивалентных доменов, различающихся ориентацией, в каждом домене за счет знаков параметра порядка имеются четыре типа позиции иона Sr^{2+} . Таким образом, кратность нелокально компенсированных центров Gd^{3+} в этой фазе равна 24, кратность локально компенсированных центров в 3 раза больше. В столь сложном спектре измерять угловые зависимости резонансных положений ЭПРпереходов (B_{res}) удавалось только в ограниченном диапазоне углов (обычно $\pm 15^{\circ}$). Зависимости B_{tes} измерялись около выделенных ориентаций $\mathbf{B} \parallel \mathbf{C}_4$ и $\mathbf{B} \parallel \mathbf{C}_2$ в плоскости $C_4 - C_2 - C_4$ (оси приведены для кубической фазы).

Температурные зависимости резонансных положений при **B** || **C**₄ центров типа 2 с осью компенсации (OK), параллельной **B**, и центров типа 1 демонстрируют качественно одинаковое поведение (см. рис. 1, рис. 1 [6], рис. 1 [10]). При **B** || **C**₂ весьма похожи зависимости $B_{\rm res}(T)$ центров типа 1 и типа 2 с $OK \perp \mathbf{B}$ (рис. 2). Угловая зависимость для перехода кубического центра во второй низкосимметричной фазе в окрестности **B** || **C**₂ приведена на рис. 3. Для центров типа 2 с $OK \perp \mathbf{B}$ при **B** || **C**₄ реализуется весьма сложный и информативный спектр (рис. 4,5), который не имеет аналога в случае центра типа 1.

Как уже отмечалось [4,5], первый фазовый переход CsSrCl₃ проявляет в ЭПР характерные черты перехода первого рода: разрывы температурных зависимостей и сосуществование фаз (рис. 1,2,4). Второй переход при **B** \parallel **C**₄ (рис. 1,4) сопровождается непрерывным изменением $B_{\rm res}$, тогда как при **B** \parallel **C**₂ (рис. 2) видны заметные разрывы $B_{\rm res}(T)$, хотя сосуществование фаз обнаружить трудно. В третьем переходе, как и в первом, наблюдаются разрывы $B_{\rm res}(T)$,

а кроме того, существенная перестройка доменной структуры, проявляющаяся в изменении отношения интенсивностей двух нижних компонент, происходящих из $2 \perp$ и показанных на рис. 1: такую же перестройку демонстрируют другие переходы этих центров, а также центра типа 1. Следует отметить, что последовательность, полученная в [7] для CsPbCl₃ при нормальном давлении, предсказывает для первого и третьего структурных переходов первый род, а для второго — второй род, переходящий в первый при повышенном давлении.

Полученные с помощью метода, описанного в [6], выражения параметров \hat{H} через компоненты параметров порядка позволяют на основании данных по первой низкотемпературной фазе предсказать изменение спектра при втором структурном переходе. Расчет, проведенный для спектра, показанного на рис. 4, с учетом параметров гамильтониана только второго ранга в предположении равенства коэффициентов при ψ^2 и φ^2 дает в фазе D_{2h}^{17} расщепление среднего сигнала, приблизительно равное сумме расщеплений крайних, что, как видно, противоречит эксперименту. Тщательные измерения аналогичных спектров других переходов полидоменных и почти монодоменных образцов, а также учет параметров \hat{H} четвертого ранга не смогли снять это противоречие. Дальнейшее обсуждение этого вопроса приведено в разделе 4.

Рис. 2. Температурная зависимость B_{res} при В \parallel С₂. *а* — центр типа 1, переход 5–6, *b* — центр типа 2, переход 6–7. Измерения проведены на практически монодоменном образце, поэтому верхние компоненты не наблюдаются.

При обработке экспериментальных данных возникал вопрос о стыковке фрагментов угловых зависимостей большого числа центров разных ориентаций. Задача сильно упростилась после измерений угловых и температурных зависимостей спектра почти монодоменного (в первой фазе) образца; на нем удалось получить угловые зависимости некоторых переходов в диапазоне, превышающем 90°, которые позволили понять поведение остальных сигналов и отнести их к определенным типам центров.

Задача привязки ориентации оси поворота φ , возникающего при втором переходе, к полученным спектрам решалась следующим образом. В неполидоменном образце в фазе D_{4h}^5 экспериментально определялись относительные объемы доменов. При этом можно предсказать интенсивности разных типов центров в различных ориентациях фазы D_{2h}^{17} и с учетом этого идентифицировать наблюдаемые центры. Анализ локальных углов поворота, полученных из параметров \hat{H} (см. раздел 4), подтвердил проведенную идентификацию.

4. Симметрия позиции Sr^{2+} во второй низкотемпературной фазе C_i (а в случае локальной компенсации C_1), вследствие чего для количественного описания центров Gd^{3+} необходимо было использовать полный спиновый гамильтониан

$$\hat{H} = \hat{g}\beta(BS) + \frac{1}{3}\sum_{i=0}^{2} (b_{2i}O_{2i} + c_{2i}\Omega_{2i}) + \frac{1}{60}\sum_{i=0}^{4} (b_4O_{4i} + c_{4i}\Omega_{4i}) + \frac{1}{1260}\sum_{i=0}^{6} (b_{6i}O_{6i} + c_{6i}\Omega_{6i}),$$
(2)

где O_{ri} , Ω_{ri} — спиновые операторы Стивенса [12].

Рис. 3. Угловое поведение компонент перехода 5-6 центра типа 1 около В || С₂ при температуре 372 К. Точки эксперимент, кривые — расчет.

Рис. 4. Температурная зависимость B_{res} центров типа 2 с $OK \perp \mathbf{B}$ при $\mathbf{B} \parallel \mathbf{C}_4$ (переход 6–7). Поведение других переходов аналогично.

Оптимизированные параметры спиновых гамильтонианов четырех триклинных центров приведены в табл. 1 (параметры b_{65} , b_{66} , c_{65} , c_{66} малы и имеют большую погрешность). На рис. 3,5 кроме экспериментальных точек приведены расчетные угловые зависимости в плоскости $C_4-C_2-C_4$ (направления кубической фазы), иллюстрирующие точность определения параметров \hat{H} .

Для нахождения углов разворота тензоров тонкой структуры использовались выражения, которые были получены из условия равенства нулю в повернутой на угол Δ системе координат параметров c_{44} , c_{64} , c_{22} , b_{21} соответственно,

$$\Delta = 1/4 \operatorname{arctg}(c_{r4}/b_{r4}), \quad r = 4.6, \tag{3}$$

$$\Delta = 1/2\operatorname{arctg}(c_{22}/b_{22}),\tag{4}$$

$$\Delta = 1/2 \operatorname{arctg}\{b_{21}/(b_{22} - 3b_{20})\}.$$
(5)

Для нахождения Δ из условия равенства нулю b_{41} приходилось минимизировать модуль следующего выражения:

$$b_{41(\text{new})} = -5b_{40}\{\sin\Delta\cos\Delta(7\cos^2\Delta - 3)\} + 0.25b_{41}\{28\cos^4\Delta - 27\cos^2\Delta + 3\} + b_{42}\{\sin\Delta(7\cos^3\Delta - 4\cos\Delta)\} + 0.25b_{43}\{\sin^2\Delta(4\cos^2\Delta - 1)\} + b_{44}\{\sin^3\Delta\cos\Delta\}.$$
(6)

Рис. 5. Угловое поведение средней компоненты (рис. 4) перехода 6–7 центров типа $2 \perp 1$ и $2 \perp 2$ около **В** || **С**₄ при температуре 372 К. Звездочкой помечены азимутальные зависимости, остальные зависимости полярные: точки — эксперимент, кривые — расчет.

Параметры c_{44} , c_{64} , c_{22} отвечают за поворот вокруг оси z параметры b_{21} , b_{41} — вокруг оси y.

Результаты расчетов приведены в табл. 2. В этой же таблице приведены углы разворота δ , являющиеся результатом совместного действия ψ и φ , вокруг третьего направления, определенные с помощью (3)–(6) и поворота системы координат на $\pi/2$ вокруг оси z, переводящего c_{r1} в b_{r1} . Величина параметра порядка ψ , полученная из ренгеновских исследований с помощью выражения [2]

$$\psi^2 = 2(1 - a/c),\tag{7}$$

составляет 6.8° для всех изученных центров.

Рентгеновские исследования [2] не позволяют сделать оценку величины параметра φ .

Анализ данных табл. 1,2 показывает, что параметры шестого ранга из-за большой погрешности не подходят для определения углов поворота октаэдра. Факт большого изменения при структурных превращениях величины b_{20} по сравнению с b_{40} и b_{60} (диагональные парметры квадратично зависят от ψ и φ [6]) свидетельствует о значительном вкладе деформации в b_{20} , что дает основание предполагать большую чувствительность к деформации и других параметров второго ранга. Это предположение подтверждается неразумными значениями величины δ (реалистическое значение составляет доли градуса), а также большим разбросом значений ψ , φ и δ , полученных посредством минимизации модуля соответствующих параметров второго ранга. Таким образом, наиболее достоверные данные о локальных параметрах порядка можно получить из углов поворота главных осей тензора четвертого ранга

$$\psi = \psi_{\parallel} = 7.2(5)^{\circ}, \quad \varphi = \varphi_{\parallel} = 3.9(5)^{\circ},
\psi_{\perp} = 5.4(5)^{\circ}, \qquad \varphi_{\perp} = 1.5(4)^{\circ}.$$
(8)

Как видно, локальные углы поворота центров типа 2 с φ или ψ , параллельными OK, и центров типа 1 неплохо согласуются друг с другом и с рентгеновскими результатами, тогда как наличие в плоскости поворота компенсатора заметно уменьшает величину локального параметра порядка, что уже было замечено в первой низкосимметричной фазе [11]:

$$\psi = \psi_{\parallel} = 6.4^{\circ}, \quad \psi_{\perp} = 3^{\circ}, \quad \psi_{x=\text{ray}} = 5.7^{\circ}.$$
 (9)

В [11] на основе суперпозиционной модели [13,14] по изменению величины аксиального параметра \hat{H} при первом переходе сделан вывод о сжатии октаэдра вдоль оси поворота. Этот вывод противоречит результатам ЭПР-исследований ян-теллеровского иона Cu^{2+} в RbCdCl₃ [15], которые убедительно показали, что при фазовом переходе с конденсацией вращательной моды расстояние металл-лиганд вдоль оси поворота увеличивается больше, чем в перпендикулярной плоскости.

Рассмотрим полученные в фазе D_{2h}^{17} результаты в рамках суперпозиционного приближения. Согласно [14], имеем

$$b_{2i} = \sum_{l=1}^{6} \bar{b}_2^l K_{2i}(\theta_l, \varphi), \qquad (10)$$

где

$$K_{20} = \frac{1}{2} (3\cos^2 \theta - 1), \quad K_{22} = \frac{3}{2}\sin^2 \theta \cos 2\varphi,$$
$$\bar{b}_2^l = \left\{ \chi_p A_{2p}(R_0) (R_0/R_l)^3 + \chi_s A_{2s}(R_0) (R_0/R_l)^{10} \right\},$$

остальные параметры приведены в [14].

При значении $R = 0.280 \, {\rm nm}$ параметр $ar{b}_2 = 3 \cdot 10^{-2} \, {\rm cm}^{-1}$ и связь изменения $ar{b}_2$ с радиальным смещением лиганда ΔR можно записать как

$$\Delta \bar{b}_2(\text{MHz}) = -19 \cdot 10^{-4} \Delta R(\text{nm}).$$
 (11)

Тогда из (10) получим $b_{22} = 3 \cdot 19 \cdot 10^{-4} (\Delta R^y - \Delta R^x)$, где ΔR^y , ΔR^x — радиальные сдвиги лигандов, находящихся на *y*- и *x*-осях соответственно. Для центра типа 1 параметр $b_{22} = -4$ МНz появляется при $\varphi \parallel y$ и требует, согласно модели, сжатия октаэдра вдоль φ , что согласуется с выводами [11]. Иной результат получается для центра 2 \parallel : положительность b_{22} (табл. 1) можно объяснить только вытягиванием октаэдра вдоль φ . Продолжая этот анализ, находим, что поворот φ для центра 2 \perp 1 сопровождается вытягиванием, а для центра 2 \perp 2 — сжатием хлорного октаэдра (изменение знака деформации при переходе от 2 \perp 1 к 2 \perp 2 снимает противоречие, обсуждаемое в разделе 3). Сдвиги лигандов, согласно (11), составляют величину порядка 10⁻⁵ nm.

	-			-
Параметр	Тип 1	Тип 2	Тип $2\perp 1$	Тип $2 \perp 2$
	$(z \parallel \psi, y \parallel arphi)$	$(z \parallel \psi \parallel OK, y \parallel arphi)$	$(z \parallel OK, x \parallel arphi, y \parallel \psi)$	$(z \parallel OK \parallel arphi, y \parallel \psi)$
g_x	1.9930(15)	1.9920(10)	1.9930(15)	1.9930(15)
g_y	1.9930(15)	1.9930(15)	1.9930(15)	1.9950(10)
g_z	1.9950(20)	1.9950(15)	1.9930(10)	1.9920(15)
b_{20}	29(1)	-573(2)	-638(2)	-631(2)
b_{21}	-7(12)	-56(6)	-274(8)	-276(8)
b_{22}	-4(3)	4(2)	-27(3)	-22(3)
b_{40}	-33.7(4)	-33.0(4)	-32.0(5)	-32.0(5)
b_{41}	-45(6)	18(3)	-61(4)	-63(4)
b_{42}	-1(3)	-1(4)	-5(4)	-5(4)
b_{43}	38(20)	-24(30)	54(18)	55(15)
b_{44}	-153(4)	-171(4)	-188(4)	-185(4)
b_{60}	1.0(6)	0.4(6)	1.3(6)	1.1(6)
b_{61}	-1(8)	-5(6)	(6)	7(6)
b_{62}	0(7)	-1(6)	-1(5)	-3(6)
b_{63}	5(10)	9(18)	20(18)	26(18)
b_{64}	-24(7)	-20(9)	-26(8)	-22(10)
c_{21}	70(13)	-115(9)	-96(6)	-66(8)
c_{22}	0(6)	-1(6)	33(4)	4(3)
c_{41}	3(6)	-8(4)	-19(4)	2(4)
c_{42}	-2(8)	-6(6)	3(5)	2(4)
c_{43}	0(15)	-37(15)	-22(30)	7(26)
c_{44}	-80(5)	98(3)	4(6)	52(6)
c_{61}	4(8)	-11(9)	-3(6)	1(9)
c_{62}	-3(12)	-17(15)	1(10)	0(10)
c_{63}	-11(10)	-34(21)	17(15)	0(36)
c_{64}	-13(7)	15(9)	-1(10)	8(10)
n	120	137	140	152
f	5.72	5.98	5.51	5.83

Таблица 1. Параметры спиновых гамильтонианов центров Gd³⁺ в CsSrCl₃ во второй низкосимметричной фазе (372 K)

П римечание. Величины b_{ri}, c_{ri}, f приведены в MHz, *OK*-ось компенсации, n — число экспериментальных точек, участвовавших в оптимизации, $f = \sqrt{\frac{\sum (\nu_{\text{theor}} - \nu_{\text{exper}})^2}{n(n-1)}}$ — среднеквадратичное отклонение при оптимальных параметрах.

Таблица 2. Углы поворота октаэдра, определенные из углов разворота тензоров тонкой структуры и ренгеновских исследований

Минимизируемый параметр	Тип 1	Тип 2 ∥	Тип $2\perp 1$	Тип $2\perp 2$
$c_{22} \\ c_{44} \\ c_{64} \\ b_{21} \\ b_{41} \\ c_{21} \\ c_{41}$	$\psi = 0(30) \psi = 6.9(5) \psi = 7(4) \varphi = 2(5) \varphi = 3.8(5) \delta = 20(3) \delta = 0.2(6)$	$egin{aligned} \psi_{\parallel} &= 7(30) \ \psi_{\parallel} &= 7.5(4) \ \psi_{\parallel} &= 9(5) \ arphi_{\perp} &= 0.8(2) \ arphi_{\perp} &= 1.5(4) \ \delta &= 1.9(2) \ \delta &= 0.7(3) \end{aligned}$	$egin{aligned} \delta &= 25(4) \ \delta &= 0.3(5) \ \delta &= 0(5) \ \psi_{\perp} &= 4.1(2) \ \psi_{\perp} &= 5.3(5) \ arphi_{\perp} &= 1.6(4) \ arphi_{\perp} &= 1.6(4) \end{aligned}$	$egin{aligned} arphi_{\ } &= 5(4) \ arphi_{\ } &= 3.9(5) \ arphi_{\ } &= 5(5) \ \psi_{\perp} &= 4.2(2) \ \psi_{\perp} &= 5.5(5) \ \delta &= 1.0(1) \ \delta &= 0.2(3) \end{aligned}$

П р и м е ч а н и е. Знаки ∥ и ⊥ указывают на ориентацию оси поворота относительно *ОК*. Величины углов приведены в градусах без учета знаков.

Складывается впечатление, что характер деформации при фазовом переходе октаэдра с примесным ионом, определяемый в ЭПР-исследованиях, сильно зависит от типа дефекта и лишь с большой осторожностью может переноситься на беспримесну[Аю решетку; в этом случае просто неправомерно говорить о противоречии выводов [11] и [15] относительно знака деформации октаэдра.

Метод симметрийной классификации спектров ЭПР [6] позволяет связать параметры спинового гамильтониана с параметрами порядка через феноменологические коэффициенты, бо́льшая часть которых

Рис. 6. Угловая зависимость B_{res} перехода 6-7 центров типа 1 около $\mathbf{B} \perp \mathbf{C}_2$ при температуре 357 К. a — расчет, *b* — эксперимент.

может быть определена из данных первой и второй низкотемпературных фаз. Положив неизвестные коэффициенты равными нулю и взяв следующие величины параметров порядка:

$$\psi = 7^{\circ}, \quad \psi_1 = 4^{\circ}, \quad \psi_2 = 3^{\circ},$$

получим параметры \hat{H} второго и четвертого ранга для бывшего кубического центра в третьей низкотемпературной фазе. На рис. 6, а приведен фрагмент угловой зависимости, рассчитанной в этом приближении для центров типа 1, а на рис. 6, b показан тот же фрагмент, измеренный на неполидоменном образце при температуре 357 К. Нетрудно заметить, что экспериментальная зависимость неплохо согласуется с расчетной, что еще раз свидетельствует о правильности выбора последовательности (1).

5. В работе [16] с помощью монометода Лауэ на кристалле ниобата калия была получена температурная эволюция теплового диффузного рассеяния и сформулирована гипотеза о существовании кооперативных тепловых колебаний атомов, связанных в протяженные объекты различной размерности и приводящих к особому диффузному рассеянию. В развитие этой гипотезы авторами [17] был разработан кристаллохимический анализ структуры, позволяющий определять размерность, форму и ориентацию протяженных когерентных объектов, а также теоретически предсказана полная картина диффузного рассеяния и исследована связь указанных объектов со структурными фазовыми переходами, в том числе и в кристаллах структуры перовскита. Для этого класса кристаллов найдена связь соотношения ионных радиусов с типом возможных структурных переходов (конденсация полярной — "шифтинг" — или вращательных мод — "тилтинг" и "антитилтинг") и их количеством. Одним из выводов [17] является существование в прафазе "тилтинговых" кристаллов трех ненулевых и равных компонент параметра порядка, определенного как амплитуда смещения когерентного объекта и наблюдаемого в эффектах рассеяния.

Попытаемся оценить величину угла поворота октаэдра в прафазе, используя данные ЭПР-исследований. Согласно [6], три равных поворота приводят к следующему возмущению спинового гамильтониана кубического центра:

$$\Delta \hat{H} = \Delta \hat{H}_{cub} + (-\alpha \psi_2) \Omega_{44} + (\alpha \psi_x) (\Omega_{41} + \Omega_{43}) + (\alpha \psi_y) (-O_{41} + O_{43}), \qquad (12)$$

где первое слагаемое — изменение кубического гамильтониана, а следующие описывают понижение симметрии и вызывают сдвиги угловых зависимостей $B_{\rm res}$ в плоскостях, перпендикулярных осям z, x, yсоответственно (шестой ранг опущен). Максимальное расщепление ЭПР-сигналов центров Gd^{3+} с противоположными знаками ψ следует ожидать при угле в 22.5° от **В** || **С**₄ в плоскости, перпендикулярной C_4 .

Измерение угловой зависимости ширины линии ЭПР (переход 1–2) в этой плоскости при $T = T_1 + 1.5 \,\mathrm{K}$ показало, что уширение не превышает 0.05 mT при ширине линии 0.5 mT. Воспользовавшись эмпирической формулой [18], связывающей уширение и расщепление линии, получим для скрытого расщепления величину ~ 0.15 mT. Поскольку расщепление этого перехода в фазе D_{4h}^5 составляет $\sim 13\,\mathrm{mT}$ при $\psi = 6.4^\circ$ (9), а зависимость величины расщепления от ψ достаточно линейна, для остаточного угла поворота в прафазе получаем значение $\sim 0.1^{\circ}$. Следует отметить, что полученная величина является лишь оценкой сверху для ψ , поскольку существуют альтернативные механизмы уширения ЭПР-линий с минимальным вкладом при $\mathbf{B} \parallel \mathbf{C}_4$.

Малость величины остаточного угла поворота октаэдра в прафазе может быть обусловлена динамическим усреднением эффектов смещений, соответствующих повороту октаэдра. Такая ситуация актуальна, если время жизни смещенной конфигурации мало по сравнению с характерными временами ЭПР $(\sim 10^{-7} - 10^{-8} \, {\rm s})$. Иной случай реализуется в эксперименте по рассеянию [17].

В заключение авторы выражают искреннюю благодарность А.Е. Никифорову, Е.Л. Румянцеву, В.Е. Найшу и Ф.А. Кассан-Оглы за интерес к данной работе и полезные дискуссии.

Работа выполнена при поддержке гранта Госкомитета Российской Федерации по высшему образованию.

Список литературы

- Л.А. Позднякова, Б.В. Безносиков, И.Т. Коков, К.С. Александров. ФТТ 15, 12, 3586 (1973).
- [2] К.С. Александров, А.Т. Анистратов, Б.В. Безносиков, Н.В. Федосеева. Фазовые переходы в кристаллах галоидных соединений ABX₃. Наука, Новосибирск (1981). 266 с.
- [3] M. Midorikawa, Y. Ishibashi, Yu. Takagi. J. Phys. Soc. Jap. 41, 6, 2001 (1976).
- [4] А.Е. Усачев, Ю.В. Яблоков, Л.А. Позднякова, К.С. Александров. ФТТ 19, 7, 2156 (1977).
- [5] А.Е. Усачев, Ю.В. Яблоков, С.Г. Львов. ФТТ 23, 5, 1439 (1981).
- [6] М.Ю. Черницкий, В.А. Важенин, А.Е. Никифоров, А.Е. Усачев, А.И. Кроткий, М.Ю. Артемов. ФТТ 33, 12, 3577 (1991).
- [7] Е.С. Ларин. ФТТ **26**, *10*, 3019 (1984).
- [8] Y. Fujii, S. Hoshino, Y. Yamada, G. Shirane. Phys. Rev. B9, 10, 4549 (1974).
- M.I. Cohen, K.F. Young, Te-Tse Chang,
 W.S. Brower, Jr. J. Appl. Phys. 42, 13, 5267 (1971).
- [10] В.А. Важенин, К.М. Стариченко, М.Ю. Артемов, М.Ю. Черницкий. ФТТ 34, 5, 1633 (1992).
- [11] В.А. Важенин, К.М. Стариченко, М.Ю. Артемов, А.Е. Никифоров. ФТТ 36, 9, 2695 (1994).
- [12] С.А. Альтшулер, Б.М. Козырев. Электронный парамагнитный резонанс. Наука, М. (1972). 672 с.
- [13] D.J. Newman, W. Urban. Adv. Phys. 24, 793 (1975).
- [14] L.I. Levin. Phys. Sol. (b) **134**, 275 (1986).
- [15] А.Е. Усачев, Ю.В. Яблоков. ФТТ 22, 7, 2152 (1980).
- [16] R. Comes, M. Lambert, A. Guinier. Acta Cryst. A26, 244 (1970).
- [17] F.A. Kassan-Ogly, V.E. Naish. Acta Cryst. B42, 297 (1986).
- [18] E.B. Royce, N. Bloembergen. Phys. Rev. 131, 5, 1912 (1963).