Порог и вероятность ударной ионизации электронами в узкощелевых полупроводниках *p*-типа с сильно вырожденными дырками

© А.В. Дмитриев, А.Б. Евлюхин*

Московский государственный университет им. М.В.Ломоносова, 119899 Москва, Россия *Владимирский государственный технический университет, 600026 Владимир, Россия

(Поступила в Редакцию 7 февраля 1996 г. В окончательной редакции 10 сентября 1996 г.)

> Теоретически рассмотрен процесс ударной ионизации электронами состояний в зоне тяжелых дырок в узкощелевом полупроводнике *p*-типа с кейновским законом дисперсии энергетических зон при условии, что уровень Ферми дырок расположен в валентной зоне. Определена зависимость минимальной энергии электрона для процесса ионизации состояния на уровне Ферми в валентной зоне. Рассчитана вероятность ударной ионизации для электронов с энергией, близкой к пороговой, в случае, когда импульс Ферми тяжелой дырки превышает пороговый импульс дырки для данного процесса ионизации. Найдены соотношения между температурами дырок и электронов с энергией порядка пороговой, которые определяют область применимости полученных результатов.

Межзонные оже-переходы играют важную роль в рекомбинации носителей заряда в узкощелевых полупроводниках [1]. Ударная ионизация также принадлежит к переходам подобного типа. Поэтому их изучению в узкощелевых полупроводниках постоянно уделялось и уделяется большое внимание, особенно это относится к полупроводникам с кейновским спектром энергетических зон. Наиболее последовательный подход в изучении оже-переходов в полупроводниках с кейновским спектром зон был развит Гельмонтом и соавторами в серии работ [2–7]. Однако в работах [2-4] все расчеты выполнены для случая невырожденных дырок. Но фактически в таких системах при низкой температуре и относительно высоком уровне легирования акцепторами дырки могут становиться вырожденными. Поэтому представляет интерес рассмотреть задачу об оже-переходах в кейновских узкощелевых полупроводниках р-типа с вырожденными дырками. Частично мы коснулись этого вопроса в работах [8,9], посвященных ожерекомбинации.

В данной работе мы рассмотрим другой возможный переход в подобной системе, а именно ударную ионизацию электронами состояний в зоне тяжелых дырок. Мы будем использовать приближения, позволяющие найти явное выражение для вероятности ударной ионизации электронами состояний в валентной зоне вырожденных тяжелых дырок. Расчет проведем для полупроводника с изотропным кейновским спектром в трехзонном приближении [2] для случая, когда уровень Ферми равновесной системы расположен в валентной зоне.

1. Пороговые соотношения для процесса ударной ионизации с уровня Ферми

При ударной ионизации в сильно вырожденных полупроводниках *p*-типа может возникнуть ситуация, когда пороговое значение энергии ионизующего электрона (т.е. наименьшая энергия электрона, способного еще производить ударную ионизацию) будет зависеть от положения уровня ферми в валентной зоне [10]. Это может произойти тогда, когда уровень Ферми системы будет расопложен в валентной зоне ниже состояния, из которого происходит ударная ионизация электронов с пороговой энергией, определяемой только законами сохранения энергии и импульса (рис. 1). Мы будем называть эту величину обычным порогом, чтобы отличать ее от порога ионизации, который будет зависеть от положения уровня Ферми *F* (см. далее). Обычные пороговые величины для всех состояний, участвующих в процессе ударной ионизации, были найдены в [2]. В данной работе величины, относящиеся к обычному порогу, будут обозначаться индексом Т. Важно отметить, что пороговое значение импульса тяжелой дырки q_T не равно нулю, и в приближении $m_h > m_c$ определяется выражением

$$q_T = k_T = (4m_c E_q)^{1/2},\tag{1}$$

где k_T — обычное пороговое значение импульса ионизующего электрона, m_c — масса электрона на дне зоны проводимости, m_h — масса тяжелой дырки, E_g ширина запрещенной зоны. Величины, относящиеся к порогу ионизации с уровня Ферми, будем отмечать индексом i.

Мы рассматриваем ударную ионизацию электронами состояний в зоне тяжелых дырок, так как этому процессу соответствует наименьшая обычная пороговая энергия электрона [2,11].

Перейдем к расчету пороговой величины энергии электрона для ионизации состояния на уровне Ферми в зоне тяжелых дырок, при этом будем предполагать, что $q_F > q_T (q_F -$ импульс Ферми тяжелых дырок) и выполняется неравенство

$$q_F - q_T \ll q_T. \tag{2}$$

Рис. 1. Диаграмма процесса ударной ионизации электроном состояния на уровне Ферми в зоне тяжелых дырок при условии, что импульс Ферми тяжелой дырки превышает пороговый импульс дырок для данного процесса. Штриховой линией показана ионизация с истинного порога.

Учитывая закон сохранения импульса, запишем закон сохранения энергии

$$\mathcal{E}_c(\mathbf{k}) = \mathcal{E}_c(\mathbf{q}_1) + \mathcal{E}_c(\mathbf{q}_2) + \mathcal{E}_h(\mathbf{k} - \mathbf{q}_1 - \mathbf{q}_2) + E_g, \quad (3)$$

где **k** — импульс ионизующего электрона до столкновения, **q**₁ — импульс того же электрона после ионизации, **q**₂ — импульс электрона, возникающего в зоне проводимости, **q** = **k** – **q**₁ – **q**₂ — импульс тяжелой дырки, возникающей в валентной зоне. Энергии электронов $\mathcal{E}_c(\mathbf{k})$, $\mathcal{E}_c(\mathbf{q}_1)$, $\mathcal{E}_c(\mathbf{q}_2)$ отсчитываются от дна зоны проводимости, а энергия дырки $\mathcal{E}_h(\mathbf{k} - \mathbf{q}_1 - \mathbf{q}_2)$ от потолка валентной зоны. Условие (2) позволяет нам использовать параболическое приближение для энергий низкоэнергетических электронов с импульсами **q**₁ и **q**₂.

Для того чтобы определить пороговые соотношения между **k**, **q**₁ и **q**₂, необходимо минимизировать правую часть уравнения (3) по переменным **q**₁ и **q**₂ (см. [12]) при условии, что $\mathcal{E}_h = F = q_F^2/2m_h$. Для этого воспользуемся методом неопределенных множителей Лагранжа. Составим функции

$$f(\mathbf{q}_{1}, \mathbf{q}_{2}, \lambda) = \frac{\mathbf{q}_{1}^{2} + \mathbf{q}_{2}^{2}}{2m_{c}} + \frac{(\mathbf{k} - \mathbf{q}_{1} - \mathbf{q}_{2})^{2}}{2m_{h}} + E_{g} + \lambda \left[\frac{(\mathbf{k} - \mathbf{q}_{1} - \mathbf{q}_{2})^{2}}{2m_{h}} - F \right],$$
(4)

где λ — неопределенный множитель Лагранжа, **k** входит в функцию f как параметр. Решая задачу на условный экстремум, получим соотношения между пороговыми импульсами

$$\mathbf{q}_{1i} = \mathbf{q}_{2i},$$

$$\mathbf{q}_{2i} = \frac{\mathbf{k}_i}{2k_i} (k_i - q_F).$$
 (5)

Пороговое значение импульса k_i высокоэнергетического электрона находится из закона сохранения энергии (3)

$$\left(\frac{E_g^2}{4} + \frac{E_g}{2m_c}k_i^2\right)^{1/2} = \frac{3}{2}E_g + \frac{(q_F)^2}{2m_h} + \frac{(k_i - q_F)^2}{4m_c}.$$
 (6)

Решение уравнения (6) представлено графически на рис. 2 в виде зависимости k_i от q_F . Минимум величины k_i соответствует обычному пороговому значению. На графике также представлена ветвь с $q_F < q_T$; в этой области k_i , естественно, больше, чем величина обычного порога k_T . Из рис. 2 видно, что полученная зависимость быстро стремится к определенной асимптотике при уменьшении отношения m_c/m_h , так что уже при $m_c/m_h \sim 10^{-3}$ она мало чувствительна к дальнейшему уменьшению m_c/m_h .

Рис. 2. Зависимость минимального импульса электрона, способного ионизовать состояния на уровне Ферми тяжелых дырок, от импульса Ферми тяжелой дырки. m_c/m_h : 1 - 0.05, 2 - 0.01, 3 - 0.001, 4 - 0.0001. Импульсы приведены в единицах $q_g = (2m_c E_g)^{1/2}$.

2. Вероятность ударной ионизации

Выражение для вероятности ударной ионизации электроном с импульсом **k** может быть записано в полной аналогии с работами [2,3] в виде

$$W(\mathbf{k}) = \frac{2\pi}{\hbar} \left(\frac{4\pi e^2}{\varkappa}\right)^2 \frac{\hbar^4}{8} \int \frac{d\mathbf{q} d\mathbf{k}_{12}}{(2\pi\hbar)^6} \\ \times \left\{ \frac{B^{cc}(\mathbf{k}, \frac{1}{2}[(\mathbf{k} - \mathbf{q} + \mathbf{k}_{12}])B^{ch}(\mathbf{q}, \frac{1}{2}[(\mathbf{k} - \mathbf{q} - \mathbf{k}_{12}])]}{|\frac{1}{2}[\mathbf{k} + \mathbf{q} - \mathbf{k}_{12}]|^4} \\ - \frac{D(\mathbf{k}, \frac{1}{2}[\mathbf{k} - \mathbf{q} - \mathbf{k}_{12}], \mathbf{q}, \frac{1}{2}[\mathbf{k} - \mathbf{q} + \mathbf{k}_{12}]]}{|\frac{1}{2}[\mathbf{k} + \mathbf{q} - \mathbf{k}_{12}]|^2 |\frac{1}{2}[\mathbf{k} + \mathbf{q} + \mathbf{k}_{12}]|^2} \right\} \\ \times \delta \left[\mathcal{E}_c(\mathbf{k}) - \mathcal{E}_c\left(\frac{1}{2}[\mathbf{k} - \mathbf{q} - \mathbf{k}_{12}]\right) \\ - \mathcal{E}_c\left(\frac{1}{2}[\mathbf{k} - \mathbf{q} + \mathbf{k}_{12}]\right) - \mathcal{E}_h(\mathbf{q}) - E_g \right] [1 - f_h], \quad (7)$$

где f_h — функция распределения для дырок, e заряд электрона, \varkappa — диэлектрическая проницаемость. В (7) уже учтен закон сохранения импульса, а также сделана замена $\mathbf{q}_1 = \frac{1}{2}[\mathbf{k} - \mathbf{q} + \mathbf{k}_{12}],$ $\mathbf{q}_2 = \frac{1}{2}[\mathbf{k} - \mathbf{q} - \mathbf{k}_{12};$ множитель (1/8) — якобиана перехода к новым переменным интегрирования, h постоянная Планка, деленная на 2π . Величины $B^{cc}(\mathbf{k}, \mathbf{q}_1), B^{ch}(\mathbf{q}, \mathbf{q}_2), D(\mathbf{k}, \mathbf{q}_2, \mathbf{q}, \mathbf{q}_1)$ — интегралы перекрытия между блоховскими амплитудами различных подзон зоны проводимости и валентной зоны тяжелых дырок.

В выражении (7) не учитываются эффекты экранирования, так как предполагается, что характерный импульс передачи **К** для данного процесса значительно превышает испульс экранирования ($|\mathbf{K}| > q_F$).

Будем предполагать для начала, что температура дырок $T_h = 0$. Выполним расчет для случая, когда средняя энергия носителей в зоне проводимости $\bar{\mathcal{E}} \ll E_g$. Тогда число электронов с большой энергией, способных производить ударную ионизацию, мало и быстро спадает с ее ростом (см., например, [13]), поэтому процесс ударной ионизации будет определяться электронами с импульсами из области, непосредственно близкой к порогу,

$$k - k_i \ll k_i. \tag{8}$$

Также будем считать, что $q_F > q_T$ и выполняется неравенство (2).

Учитывая условие (8), подставим в (7) все величины, вычисленные при пороговых значениях параметров для ионизации с уровня Ферми F, а аргумент δ -функции разложим по импульсам в этой пороговой точке, считая отклонения от пороговых значений малыми. Для записи величин B^{ch}, B^{cc} и Dвоспользуемся результатами работ [2,3]

$$B^{cc}(\mathbf{k},\mathbf{q}_1) = 4/3,$$

$$B^{ch}(\mathbf{q}_2, \mathbf{q}) = \frac{3[\mathbf{q}_2, \mathbf{q}]^2}{4m_c \mathbf{q}^2 E_g},\tag{9}$$

$$D = F(k^2) \left\{ [\mathbf{k}, \mathbf{q}]^2 - [\mathbf{k}, \mathbf{k}_{12}]^2 \right\}.$$
 (10)

Явный вид функции $F(k^2)$ нам не потребуется, так как вклад члена, пропорционального D, в вероятность обращается в нуль в результате интегрирования по углам.

Запишем интеграл, определяющий вероятность ударной ионизации, в сделанных предположениях

$$W(\mathbf{k}) = \frac{2\pi}{h} \left(\frac{4\pi e^2}{\varkappa}\right)^2 \frac{h^4}{2(k_i + q_F)^4} \int_{q \ge q_F} \frac{d\mathbf{q}}{(2\pi h)^3} \int \frac{d\mathbf{k}_{12}}{(2\pi h)^3} \\ \times \left[\frac{1}{m_c q_F^2 E_g} \left\{ [\mathbf{k}, \mathbf{q}] - [\mathbf{k}_{12}, \mathbf{q}] \right\}^2 - 4F(k^2) \left\{ [\mathbf{k}, \mathbf{q}]^2 - [\mathbf{k}, \mathbf{k}_{12}]^2 \right\} \right] \delta \left[v_c^i(k - k_i) - v_h^F(q - q_F) - \frac{(\mathbf{k} - \mathbf{q})^2}{4m_c} - \frac{\mathbf{k}_{12}^2}{4m_c} + \frac{(k_i - q_F)^2}{4m_c} \right],$$
(11)

где $v_c^i = \partial \mathcal{E}_c(k) / \partial k$ при $k = k_i, v_h^F = \partial \mathcal{E}_h(q) / \partial q$ при $q = q_F.$

После интегрирования (11) результат можно записать в виде

$$W(k) = \frac{e^4}{5\pi h^3 E_g q_F^4 \varkappa^2} \Big[4m_c^2 (v_s^i - v_h^F)^2 + 4m_c v_c^i \Delta k \Big]^3 \\ \times \Big\{ \frac{5\pi}{32} - \frac{p}{6} (1 - p^2)^{5/2} - \frac{5}{24} p (1 - p^2)^{3/2} \\ - \frac{5}{16} p (1 - p^2)^{1/2} - \frac{5}{16} \arcsin(p) \Big\},$$
(12)

где $\Delta k = k - k_i$,

$$p = \left(1 + \frac{v_c^i \Delta k}{m_c (v_s^i - v_h^F)^2}\right)^{-1/2},\tag{13}$$

 $v_s^i = (k_i - q_F)/2m_c$ — скорость низкоэнергетических электронов в пороговой точке для ионизации с уровня Ферми (см. (5)). Следует напомнить, что в точке обычного порога ($q_F = q_T$) выполняется условие $v_s^i = v_h^F$ [12], поэтому разность $v_s^i - v_h^F$ характеризует отход уровня Ферми от уровня, соответствующего обычному пороговому значению для тяжелой дырки в данном процессе. Заметим, что для случая, когда $q_F > q_T$, величина $v_s^i - v_h^F$ меньше нуля. График зависимости $v_s^i - v_h^F$ от величины импульса Ферми тяжелой дырки приведен на рис. 3. Заметим, что из равенства $v_s^i = v_h^F$ следует $k_T = q_T(1 + 2m_c/m_h)$.

Окончательное выражение (12) может быть упрощено в двух предельных случаях.

1) Если $v_c^i \Delta k \ll m_c (v_s^i - v_h^F)^2$, из (12) получим

$$W_1(k) = \frac{64m_c^{5/2}e^4(v_c^i)^{7/2}}{105\pi h^3 E_g q_F^4 \varkappa^2 (v_h^F - v_s^i)} (k - k_i)^{7/2}.$$
 (14)

Физика твердого тела, 1997, том 39, № 2

Рис. 3. Зависимости $v_s^i - v_h^F$ от величины импульса Ферми тяжелой дырки q_F . m_c/m_h : 1—0.05, 2—0.01, 3—0.001. Величина $v_s^i - v_h^F$ приведена в единицах q_g/m_c , импульс Ферми — в единицах $q_g = (2m_c E_g)^{1/2}$.

2) Если
$$v_c^i \Delta k \gg m_c (v_s^i - v_h^F)^2$$
, имеем $W_2(k) = \frac{2m_c^3 e^4 (v_c^i)^3}{3h^3 E_a q_\mu^F \varkappa^2} (k - k_i)^3.$ (15)

Когда уровень Ферми совпадает с уровнем обычного порога, $v_s^i = v_h^F$ и условие для применимости формулы (15) выполняется при любом $\Delta k > 0$, поэтому выражение (15) остается в силе и для этого случая. Такая зависимость вероятности ударной ионизации от энергии ионизующего электрона соответствует и невырожденной статистике [14]. Подобная зависимость имеет место и в анизотропном случае для электрона с определенным направлением импульса [15]. Подчеркнем, однако, что коэффициент в (15) вдвое меньше, чем в аналогичном выражении для невырожденной статистики дырок, поскольку при полностью занятой валентной зоне ионизация идет из состояний как над, так и под порогом, тогда как в вырожденном случе — только из-под поверхности Ферми.

При расчете вероятности ударной ионизации предполагалось, что температура дырок $T_h = 0$. Однако эти результаты могут оставаться справедливыми и в некоторой области дырочных температур, когда $T_h \neq 0$. Величина этой области зависит от положения дырочного уровня Ферми и энергии ионизующего электрона. Далее температура измеряется в энергетических единицах.

Для получения условий применимости выражения (12) при $T_h \neq 0$ оценим вероятность ударной ионизации $\Delta W(\mathbf{k})$ электроном с импульсом **k** состояний из области порядка дырочной температуры в окрестности уровня Ферми *F*. Для этого проведем интегрирование по импульсу тяжелой дырки в пределах от q_F до $q_F + \Delta q$, где Δq — импульс, соответствующий температурному размытию уровня Ферми ($\Delta q \sim m_h T_h/q_F$), и потребуем, чтобы эта вероятность была много меньше полученной вероятности (12). Тогда получим

$$\frac{1}{6}d(1-d^2)^{5/2} + \frac{5}{24}d(1-d^2)^{3/2} + \frac{5}{16}d(1-d^2)^{1/2} + \frac{5}{16}\arcsin(d) \ll \frac{5}{32}\pi, \quad (16)$$

где

$$d = \frac{\Delta q + 2m_c (v_h^F - v_s^i)}{\left(4m_c^2 (v_h^F - v_s^i)^2 + 4m_c v_c^i \Delta \mathbf{k}\right)^{1/2}}$$

Выделение этого условия обеспечивает применимость (12) для описания вероятности ударной ионизации электронами состояний в зоне тяжелых дырок, расположенных ниже уровня ферми, когда $T_h \neq 0$. Оно связывает температуру дырок T_h , положение уровня Ферми F и энергии ионизующего электрона $\nu_c^i = \Delta k$, отсчитанную от порога.

Условие (16) может быть упрощено в предельных случаях.

1). При $v_c^i \Delta k \ll 4m_c (v_h^F - v_s^i)^2$ неравенство (16) можно переписать в виде

$$T_h \ll \left[\frac{m_c}{m_h}\right] \frac{(v_h^F - v_s^i)}{v_h^F} F \frac{v_c^i \Delta k}{m_c (v_h^F - v_s^i)^2}.$$
 (17)

При выполнении (17) справедливо выражение (14).

2). При $v_c^i \Delta k \gg 4m_c (v_h^F - v_s^i)^2$ (16) можно записать как

$$T_h \gg \left[\frac{m_c}{m_h}\right]^{1/2} F\left[\frac{v_c^i \Delta k}{F}\right]^{1/2}.$$
 (18)

При выполнении (18) справедливо выражение (15).

Как это часто бывает (см., например, [13]), электроны, способные производить ударную ионизацию, описываются функцией распределения в виде $f \sim \exp\{-\mathcal{E}/T^*\}$, где T^* — эффективная температура электронов в хвосте функции распределения ($T^* \ll \mathcal{E}_i, \mathcal{E}_i$ — пороговая энергия ионизующих электронов), при этом основная масса электронов, принимающих участие в ударной ионизации, имеет энергию, отсчитанную от порога, порядка Т*. Поэтому условия для энергии ионизующего электрона $v_c^i \Delta k$, при которых получены выражения (14) и (15), можно переписать для температуры T^* . Сделаем это, предполагая, что $v_h^F - v_s^i \sim v_h^F$. Это вполне оправдано, так как мы рассматриваем случай, когда пороговая энергия низкоэнергетических электронов при ионизации с уровня Ферми много меньше ширины щели.

Выражение (14) будет описывать вероятность ударной ионизации электронами состояний из-под уровня Ферми в зоне тяжелых дырок при $q_F > q_T$ для систем с температурой электронов в хвосте T^* и температурой дырок T_h , удовлетворяющих следующим условиям:

$$T_h \ll T^* \ll (8m_c/m_h)F \sim (m_c/m_h)^2 E_g.$$
 (19)

Выражение (15) будет описывать вероятность ударной ионизации состояний из-под уровня Ферми в зоне тяжелых дырок при $q_F > q_T$, когда

$$T_h \ll [(m_c/m_h)FT^*]^{1/2} \sim (m_c/m_h)(E_gT^*)^{1/2},$$

 $(8m_c/m_h)F \ll T^* \ll E_g.$ (20)

Когда $q_F = q_T$ и как следствие $v_h^F - v_s^i = 0$, вероятность ударной ионизации описывается только выражением (15), при этом в условиях (20) второе неравенство сводится только к $T^* \ll E_g$.

В заключение сделаем замечание относительно использования полученных результатов для подсчета скорости ударной ионизации. При этом следует иметь в виду, что эта скорость зависит как от вероятности ударной ионизации электроном с энергией E, так от вероятности того, что состояние с этой энергией занято электроном. Поэтому выражение (12) может быть использовано для подсчета скорости ударной ионизации только в том случае, когда основной вклад в этот процесс вносят переходы в зону проводимости электронов из состояний в валентной зоне, расположенных глубже, чем уровень Ферми. Это зависит от соотношений между импульсом q_F , пороговым значением q_F и температурами электронов T^* и дырок T_h .

1) Если $(q_F^2 - q_T^2)/2m_h \ll T_h$, то область применимости выражения (12) для подсчета скорости ударной ионизации определяется неравенством (16).

2) Если $(q_F^2 - q_T^2)/2m_h \gg T_h$, то помимо неравенства (16) необходимо выполнение условия $T^* \gg T_h(m_h/m_c)(k_i - k_T)/(q_F - q_T)$. При этом, если воспользоваться параболической аппроксимацией в области выполнения неравенства (2) для зависимости k_i от q_F (рис. 2)

$$k_i(q_F) \approx q_T (1 + 2m_c/m_h) + (q_F - q_T)^2/q_g,$$
 (21)

то данное условие можно записать в виде

$$T^* \gg T_h(m_h/m_c)(q_F - q_T)/q_g,$$
 (22)

где $q_g^2 = 2m_c E_g$.

Работа была частично поддержана грантами Российского фонда фундаментальных исследований и Международного научного фонда, а также грантом в области фундаментального естествознания Госкомитета РФ по высшему образованию.

Список литературы

- [1] G. Nimtz. Phys. Rep. 63, 266 (1980).
- [2] Б.Л. Гельмонт. ЖЭТФ **75**, *2(8)*, 536 (1978).
- [3] Б.Л. Гельмонт. ФТП **14**, *12*, 1913 (1980).
- [4] Б.Л. Гельмонт. ФТП **15**, *8*, 1316 (1981).
- [5] Б.Л. Гельмонт, З.Н. Соколова, В.Б. Халфин. ФТП 17, 433 (1983).
- [6] Б.Л. Гельмонт, З.Н. Соколова. ФТП **16**, *10*, 1670 (1982).
- [7] Б.Л. Гельмонт, З.Н. Соколова, И.Н. Яссиевич. ФТП 16, 3, 592 (1982).
- [8] А.В. Дмитриев, А.Б. Евлюхин. Изв. РАН. Сер. физ. 59, 8, 122 (1995).
- [9] А.В. Дмитриев, А.Б. Евлюхин. ФТП. 29, 1733 (1995).
- [10] А.С. Волков, А.А. Гуткин, С.Е. Кумеков. ФТП 4, 1856 (1970).
- [11] A.R. Beattie. J. Phys. Chem. Sol. 23, 1049 (1962).
- [12] Е.М. Лифшиц, Л.П. Питаевский. Статистическая физика. М. (1978). Ч. 2. 448 с.
- [13] A.P. Dmitriev, M.P. Mikhailova, I.N. Yassievich. Phys. Stat. Sol. (b) **140**, 9 (1987).
- [14] B. Gelmont, Kim Ki-Sang, S. Michael. Phys. Rev. Lett. 69, 1280 (1992).
- [15] A.R. Beattie. Semicond. Sci. Technol. 3, 48 (1983).