06

Анизотропия магнетосопротивления пленок La_{0.67}Ba_{0.33}MnO₃, латерально сжатых подложкой из галата неодима

© Ю.А. Бойков,¹ Т. Клаесон²

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
 ² Чалмерский технический университет, S-41296 Гетеборг, Швеция e-mail: yu.boikov@mail.ioffe.ru

(Поступило в Редакцию 18 сентября 2013 г.)

Рассогласование в параметрах кристаллических решеток индуцировало двуосное латеральное сжатие пленок (35 nm) La_{0.67}Ba_{0.33}MO₃, выращенных когерентно на подложках из галлата неодима. Механические напряжения, возникшие в процессе зародышеобразования и роста манганитного слоя, способствовали обеднению последнего щелочно-земельным элементом. Это привело к уменьшению объема элементарной ячейки выращенных пленок и к понижению температуры T_M , при которой их электросопротивление достигало максимальной величины. Экстремальные значения отрицательного магнетосопротивления ($MR \approx 17\%$ при $\mu_0 H = 1$ T) выращенных пленок наблюдались при температурах, близких к комнатной. При $T < T_M$ отклик электросопротивления пленок на магнитное поле зависел от направления последнего относительно нормали к плоскости подложки и относительно направления измерительного тока. При T = 95 K рассеяние дырок на 90° доменных стенках приводило к увеличению электросопротивления манганитных пленок примерно на 1.1%, а отрицательное анизотропное магнетосопротивление достигало 1.5%.

Введение

Резкий отклик электросопротивления (ρ) манганитов La_{1-x}R_xMnO₃ (R — Ba, Ca, Sr, . .) на изменение магнитного поля (H) обусловливает перспективность их использования в чувствительных элементах магнеторезистивных сенсоров [1,2]. Для применения в реальных устройствах наиболее привлекательны эпитаксиальные наноразмерные пленки манганитов, температура Кюри (T_{Curie}) для которых близка к комнатной.

Одной из эндемических особенностей перовскитоподобных манганитов является сосуществование в их объеме различных электронных/магнитных фаз, взаимные трансформации которых при изменении температуры и/или под воздействием магнитного поля существенно влияют на их электро- и магнетотранспортные параметры. Динамика фазовых превращений в манганите зависит от его структуры, концентрации использованного легирующего щелочно-земельного элемента (х в химической формуле), типа и уровня механических напряжений и т.д. Для объемных кристаллов La_{1-x}R_xMnO₃ характерно слабое [3] проявление магнетокристаллической анизотропии. Однако последняя становится четко выраженной [4] в случае наноразмерных эпитаксиальных манганитных пленок, упруго напряженных "массивной" подложкой.

В настоящей работе исследованы структура, электрои магнетосопротивление пленок La_{0.67}Ba_{0.33}MO₃ (LBMO), двуосно механически сжатых подложкой со значительным орторомбическим искажением элементарной ячейки.

1. Эксперимент

Метод лазерного испарения (KrF, $\lambda = 248$ nm, $\tau = 30$ ns) был использован для выращивания пленок LBMO толщиной d = 35 nm на подложках (001)NdGaO₃ (NGO). Температура подложки при осаждении манганитного слоя равнялась 790°С, а давление кислорода в ростовой камере поддерживалось на уровне 30 Ра. Плотность лазерного излучения на поверхности испаряемой керамической мишени LBMO составляла 1.5 J/cm². После воздействия 100 лазерных импульсов на мишень толщина манганитного слоя возрастала примерно на 2 nm.

Структура выращенных пленок LBMO исследовалась с использованием рентгеновской дифракции (Philips X'pert MRD, Cu $K_{\alpha 1}$, $\omega/2\theta$ - и ϕ -сканы, кривые качания). Рентгеновские сканы ($\omega/2\theta$) были визуализированы в симметричной брэгговской конфигурации в условиях, когда падающий и отраженный рентгеновские пучки находились в плоскости, перпендикулярной (001) или (101)NGO (здесь и далее использованы индексы для псевдокубической элементарной ячейки галлата неодима). Толщина выращенных манганитных слоев контролировалась по ширине сателлитных пиков на визуализированных дифрактограммах.

Данные по морфологии поверхности выращенных манганитных слоев были получены с использованием микроскопа атомных сил (*AFM*, Nanoscope IIIa, режим высоты).

Сопротивление R манганитных пленок измерялось в конфигурации van der Pauw в магнитном поле ($\mu_0 H$ до 5 T) и без него. Измерительный ток (I_b) в пленке

протекал параллельно или нормально к *H*. Электросопротивление пленок рассчитывалось с использованием соотношения $\rho = \pi R d / \ln 2$ [5]. Четыре серебряных контакта, расположенные на углах квадрата, формировались на свободной поверхности манганитного слоя методом термического испарения.

2. Полученные результаты и их обсуждение

Рассогласование $m \approx 0.013$ в параметрах кристаллических решеток LBMO (параметр псевдокубической ячейки $a_{\rm LBMO} = 0.391$ nm [6]) и NGO (параметр псевдокубической ячейки $a_{\rm NGO} = 0.3851$ nm [7]) положительное [$m = (a_{\rm LBMO}/a_{\rm NGO})/a_{\rm NGO}$]). Это индуцирует двуосные сжимающие в плоскости подложки механические напряжения в манганитном слое, выращенном на галлате неодима. Существенное орторомбическое искажение элементарной ячейки NGO способствует уменьшению плотности двойниковых границ в манганитном слое, сформированном на ее поверхности. Ферромагнитное упорядочение спинов на ионах марганца в объемных стехиометрических кристаллах LBMO происходит при $T_{\rm Curie} \approx 340$ K [6,8].

2.1. Структура выращенных пленок LBMO

Рентгеновская дифрактограмма, полученная для гетероструктуры LBMO/NGO в условиях, когда (001)NGO перпендикулярна плоскости, в которой находились падающий и отраженный рентгеновские пучки, показана на рис. 1. На скане присутствуют пики (00*n*) только от подложки и манганитной пленки, что свидетельствует об отсутствии в объеме последней макровключений вторичных кристаллических фаз. Наличие системы сателлитных толщинных пиков на измеренных дифрактограммах (см. вставку (*a*) на рис. 1) свидетельствует о высокой однородности выращенных манганитных слоев по толщине.

Для оценки параметров элементарной ячейки пленок LBMO в плоскости подложки (a_{\parallel}) и вдоль нормали к ее поверхности (a_{\perp}) были использованы значения 2θ для пиков (303) и (004)LBMO. Фрагмент скана, измеренного в условиях, когда плоскость, включающая падающий и отраженный рентгеновские пучки была нормальна к (101)NGO, показан на вставке (*b*) на рис. 1. Из-за сжимающих латеральных напряжений параметр $a_{\parallel} = 0.3853 \pm 0.0005$ nm в пленке LBMO был существенно меньше параметра $a_{\perp} = 0.3967 \pm 0.0005$ nm. Следует отметить, что параметр a_{\parallel} практически совпадал с параметром псевдокубической элементарной ячейки NGO, т. е. манганитный слой был выращен когерентно на поверхности подложки.

Эффективный объем $V_{\rm eff} = a_{\perp} \times a_{\parallel}^2 = 58.89 \cdot 10^{-3} \, \rm nm^3$ элементарной ячейки пленки LBMO был заметно

Рис. 1. Рентгеновская дифрактограмма ($\omega/2\omega$) для пленки (35 nm)LBMO, визуализированная в условиях, когда плоскость, в которой находятся падающий и отраженный рентгеновские пучки, ортогональна (001)NGO. На вставке *а* показан фрагмент той же дифрактограммы в окрестности пика (002)LBMO. Сателлитные толщинные пики отмечены стрелками. На вставке *b* приведен фрагмент рентгеновского скана, полученного для той же гетероструктуры в условиях, когда плосскость, в которой находятся падающий и отраженный рентгеновские пучки, ортогональна (101)NGO.

меньше объема (~ 59.78 · 10⁻³ nm³ [6]) соответствующей ячейки массивного стехиометрического кристалла LBMO. Уменьшение $V_{\rm eff}$ пленки LBMO обусловлено ее обеднением барием. Механизмы, ответственные за нарушение стехиометрии наноразмерных манганитных пленок, упруго напряженных подложкой в процессе зародышеобразования и роста, детализированы в [9]. Используя значение $V_{\rm eff}$ для выращенных пленок и данные по зависимости объема элементарной ячейки керамических объемных образцов твердых растворов La_{1-x}Ba_xMO₃ [8] от *x*, мы получили оценку доли атомов лантана (~ 20%), замещенных в выращенных пленках LBMO на атомы бария.

Для оценки среднего размера кристаллических зерен (t) в слое LBMO и эффективной деформации $(\delta a/a)$ его элементарной ячейки была использована зависимость полуширины (Q) пиков на рентгеновском скане $(\omega/2\theta)$ от θ (a — параметр ячейки). Согласно [10], $Q, t, \delta a/a$ и θ связаны соотношением

$$Q = 0.9\lambda_1/(t\cos\theta) + 2(\delta a/a)\tan\theta, \qquad (1)$$

где λ_1 — длина волны использованного рентгеновского излучения. Зависимость $Q \cos \theta vs. \sin \theta$, полученная для

Рис. 2. Зависимость $Q \cos \theta$ vs. $\sin \theta$ для пленки LBMO, выращенной на NGO. На вставке *а* показано изображение свободной поверхности манганитного слоя, полученное с использованием AFM. На вставке *b* приведены кривые качания для рентгеновских рефлексов (002) от пленки LBMO и подложки NGO.

пленки LBMO, показана на рис. 2. По отрезку, отсекаемому прямой Х на оси ординат, с использованием соотношения (1) была рассчитана величина $t \approx 40$ nm. Полученная оценка хорошо согласуется с соответствующими данными, полученными с использованием AFM, см. вставку (а) на рис. 2. Межкристаллитные границы на свободной поверхности пленки LBMO четко декорированы характерными углублениями. Азимутальная разориентация кристаллитов относительно выделенного направления в плоскости подложки составляла порядка 0.08 degree (оценка получена с использованием данных по полуширине пиков на ϕ — скане для рентгеновского рефлекса (111) от манганитной пленки). С использованием соотношения (1) и данных по наклону прямой X на рис. 2 была рассчитана величина эффективной деформации $(\delta a/a \approx 1.5 \cdot 10^{-3})$ элементарной ячейки в пленке LBMO. Полученное значение для $\delta a/a$ согласуется с соответствующими данными, имеющимися в литературе для гетероэпитаксиальных манганитных пленок [11].

Полуширина γ кривой качания ($\omega - 2\theta$), полученной для рентгеновского рефлекса (002)LBMO от гетероструктуры LBMO/NGO, примерно в 3 раза превышает соответствующее значение для монокристаллической подложки NGO, см. вставку (b) на рис. 2. Это может быть связано как с неоднородностью механических напряжений, индуцированных существенной разницей в значениях $a_{\rm NGO}$ и $a_{\rm LBMO}$, так и "внутренними" напряжениями, возникающими в манганитном слое вследствие значительной разницы в ионных радиусах La⁺³ ($\approx 1.02 \cdot 10^{-1}$ [12]) и Ba⁺²($\approx 1.34 \cdot 10^{-1}$ [12]).

2.2. Электро- и магнетосопротивление пленок LBMO

Температурные зависимости электросопротивления ρ пленки LBMO, измеренные в магнитном поле $\mu_0 H = 5 \text{ T}$ и без него, показаны на рис. 3. При $\mu_0 H = 0$ максимальное значение электросопротивления манганитных пленок наблюдалось при температуре $T_M \approx 300 \, \mathrm{K}$, которая примерно на 40° ниже температуры ферромагнитного фазового перехода для стехиометрических объемных кристаллов LBMO. Понижение T_M обусловлено относительно низкой концентрацией дырок в выращенных пленках LBMO вследствие обеднения последних щелочно-земельным компонентом. Согласно [8], *Т*_{Curie} для объемного кристалла твердого раствора La_{0.8}Ba_{0.20}MnO₃ равна примерно 300 К. Таким образом, значение Т_М хорошо согласуется с полученной на основе рентгеновских данных оценкой величины х для сформированных манганитных пленок. Резкое падение электросопротивления пленок LBMO с понижением температуры (*T* < *T_M*) связано с разрастанием высоко проводящих ферромагнитных доменов и ослаблением рассеяния дырок на спиновых волнах в их объеме. Магнитное поле способствует ферромагнитному упорядочению спинов на ионах марганца в пленке LBMO, что четко проявляется в сдвиге максимума на температурной зависимости ее электросопротивления в сторону высоких температур. Максимум на кривой $\rho(T, \mu_0 H = 5 \text{ T})$ наблюдался при температуре порядка 345 К (рис. 3).

Температурная зависимость магнетосопротивления $MR = [\rho(\mu_0 H = 1 \text{ T}) - \rho_0]/\rho_0$, где $\rho_0 \equiv \rho(\mu_0 H = 0)$, пленки LBMO показана на рис. 3. Отрицательное магнетосопротивление достигало своего максимума при температурах порядка 285 К. При увеличении

Рис. 3. Температурные зависимости ρ (1, 2) и (3) пленки LBMO/NGO. 1 — $\mu_0 H = 0$, 2 — $\mu_0 H = 5$ T, 3 — $\mu_0 H = 1$ T. На вставке показано изменение магнетосопротивления манганитной пленки с увеличением $\mu_0 H$.

Журнал технической физики, 2014, том 84, вып. 7

 $\mu_0 H$ от 1 T до 5 T MR(T = 285 K) манганитной пленки увеличивалось примерно в 3 раза (вставка на рис. 3). Следует отметить значительную (~ 95 K) полуширину пика на кривой MR(T). Данный факт может быть обусловлен присутствием в объеме манганитного слоя (наиболее вероятно в области межблочных границ) наноразмерных включений фазы с нарушенной стехиометрией и низкой температурой Кюри. При понижении температуры до 4.2 K объемная доля неферромагнитной фазы в пленке LBMO существенно уменьшалась. Наблюдавшаяся практически линейная зависимость MR(T = 4.2 K) пленки от поля (вставка на рис. 3) обусловлена ослаблением электрон-магнонного взаимодействия при увеличении $\mu_0 H$.

При $T \ll T_M$ основной объем манганитной пленки LBMO составляет ферромагнитная фаза, и заметное влияние на характер зависимости ее электросопротивления от магнитного поля могут оказывать как рассеяние дырок на магнонах и доменных стенках, так и анизотропное магнетосопротивление (AMR), которое индуцировано спин-орбитальным взаимодействием. AMR зависит от угла ψ между направлением электрического тока и вектором намагниченности M в образце. Согласно [13], изменение ρ ферромагнетика в магнитном поле может быть аппроксимировано соотношением

$$\rho = \rho_1 + \Delta \rho \sin^2 \psi, \qquad (2)$$

где ρ_1 — изотропная составляющая электросопротивления, $\Delta \rho$ — разность между значениями электросопротивления, измеренными при $M \parallel I_b$ и $M \perp I_b$. Второй член в правой части соотношения (2) учитывает вклад AMR.

Ось легкого намагничивания в манганитной пленке, двуосно сжатой подложкой, параллельна направлению, вдоль которого длина цепочек Mn-O-Mn максимальна [4]. В выращенных пленках LBMO указанное направление параллельно нормали к плоскости подложки. На рис. 4, а показана зависимость $\rho(T = 95 \,\mathrm{K}) \,\mathrm{vs.} \,\mu_0 H$ для пленки LBMO, измеренная при направлении магнитного поля, параллельном (001)NGO и I_b. Электросопротивление пленок LBMO практически линейно увеличивалось при изменении $\mu_0 H$ от -1 T до -0.4 Т. Это обусловлено усилением рассеяния носителей заряда на спиновых волнах [14]. При указанных выше значениях $\mu_0 H$ вектор намагниченности M в пленках ориентирован вдоль направления поля и, согласно соотношению (2) AMR, не оказывает существенного влияния на их электросопротивление. Касательные к кривым $\rho(\mu_0 H)$, визуализированным при больших значениях $\mu_0 H$, показаны штрихами. Используя указанные касательные, мы определили величину электросопротивления ρ_m , (рис. 4, *a*), манганитной пленки при $\mu_0 H = 0$ и доминирующей роли электрон-магнонного рассеяния в процессах релаксации носителей заряда. При изменении $\mu_0 H$ от -0.4 T до 0 зависимость электросопротивления от поля заметно ослабевала, что обусловлено появлением в объеме манганитной пленки доменов, вектор

Рис. 4. *а* — зависимость ρ пленки LBMO от $\mu_0 H$ при $H \parallel I_b$. На вставке показано изменение $\mu_0 H_C$ с температурой для той же пленки. *b* — зависимости отношения ρ/ρ_m от $\mu_0 H$ для пленки LBMO, полученные при $H \perp (001)$ NGO и при $H \parallel (001)$ NGO, но перпендикулярном I_b . Y = 95 K.

намагниченности в которых перпендикулярен плоскости подложки (параллелен оси легкого намагничивания). Это приводит к усилению рассеяния носителей заряда на 90° доменных стенках и к увеличению AMR. Рассеяние дырок на доменных стенках способствует росту ρ пленок LBMO, а увеличение анизотропного магнетосопротивления должно приводить к уменьшению их электросопротивления, поскольку AMR манганитных пленок, двуосно сжатых подложкой, отрицательно [15].

Чтобы детализировать влияние доменных стенок на электросопротивление выращенных пленок, были измерены зависимости $\rho(\mu_0 H)$ при а) H, параллельном (001)NGO, но перпендикулярном I_b , b) $H \perp$ (001)NGO. В первом случае появление в объеме манганитной пленки доменов, вектор намагниченности в которых направлен вдоль оси легкого намагничивания, может приводить к усилению рассеяния дырок на 90° доменных стенках, но AMR при этом изменяться не должно (поскольку остается неизменным величина ψ). Во втором случае при $\mu_0 H$, меньших $\mu_0 H_C$, в объеме пленки LBMO должны появляться 180° доменные стенки, а AMR, как и в первом случае, должно оставаться неизменным. H_C — коэрцетивное поле, связанное с разворотом вектора намагниченности в пленке LBMO вдоль оси легкого намагничивания (показано на рис. 4, *a*). Величина H_C уменьшалась с повышением температуры (вставка на рис. 4, *a*).

Зависмость отношения ρ/ρ_m от $\mu_0 H$, полученная для пленки LBMO при $H \parallel (001)$ NGO, но перпендикулярном I_b , показана на рис. 4, b, кривая I. В соответствии с ожиданиями появление (при $H < H_C$) в объеме манганитной пленки доменов, вектор намагниченности в которых параллелен оси легкого намагничивания, сопровождалось увеличением ρ/ρ_m . Максимальное значение (~ 1.013) указанного отношения достигалось при $\mu_0 H_M \approx 0.03$ Т. Из сопоставления данных, представленных на рис. 4, *a* и 4, *b*, следует, что AMR при значениях $\mu_0 H$ в несколько десятков mT составляет порядка 1.5%.

Зависимость отношения ρ/ρ_m от $\mu_0 H$, для пленки LBMO, визуализированная при $H \perp (001)$ NGO, приведена на рис. 4, *b*, кривая 2. При направлении магнитного поля, параллельном оси легкого намагничивания, наиболее значительное увеличение (~ 0.4%) электросопротивления пленки, обусловленное рассеянием дырок на 180° доменных стенках, наблюдалось при $\mu_0 H_M \approx 0.25$. Заметно большая величина H_M при $H \perp (001)$ NGO, чем в случае $H \parallel (001)$ NGO, частично связана с влиянием поля размагничивания.

Заключение

Ось легкого намагничивания в пленке (35 nm)LBMO, двухосно латерально сжатой подложкой из галлата неодима, ориентирована вдоль нормали к (001)NGO. Пик отрицательного магнетосопротивления (до 50% при $\mu_0 H = 5 \text{ T}$) манганитной пленки наблюдается при температурах, близких к комнатной. При $T \ll T_M$ отклик магнетосопротивления пленки (35 nm)LBMO на магнитное поле ($\mu_0 H < 1 \text{ T}$) определяется интенсивностью электрон-магнонного взаимодействия, рассеянием дырок на доменных стенках и величиной анизотропного магнетосопротивления.

Финансовая поддержка исследований была частично получена из проекта РФФИ № 11-02-00609-а и проекта Visby.

Список литературы

- Goyal A., Rajeswari M., Shreekala R., Lofland S.E., Bhagat S.M., Boettcher T., C. Kwon C., Ramesh R., Venkatesan T. // Appl. Phys. Lett. 1997. Vol. 71. N 17. P. 2535–2537.
- [2] Pannetier M., Fermon C., Le Goff G., Simola J., E. Kerr E. // Science. 2004. Vol. 304. N 5677. P.1648–1650.
- [3] O'Donnell J., Rzchowski M.S., Eckstein J.N., Bozovic I. // Appl. Phys. Lett. 1998. Vol. 72. N 14. P. 1775–1777.

- [4] Wang H.S., Li Q., Liu K., Chien C.L. // Appl. Phys. Lett. 1999. Vol. 74. N 15. P. 2212–2214.
- [5] Kamins T.I. //J. Appl.Phys. 1971. Vol. 42. N 11. P. 4357–4365.
- [6] Wiedenhorst B., Höfener C., Lu Y., Klein J., Alff L., Gross R., Freitag B.H., Mader W. // Appl. Phys. Lett. 1999. Vol. 74. N 24. P. 3636–3638.
- [7] Dai P., Zhang J., Mook H.A., Lion S.-H., Dowben P.A., *Plummer E.W.* // Phys. Rev. B. 1996. Vol. 54. N 6. P. R3694–R3697.
- [8] Zhang J., Tanaka H., Kanki T., Choi J.-H., Kawai T. // Phys. Rev. B. 2001. Vol. 64. N 18. P. 184 404–184 411.
- [9] Boikov Yu.A., Gunnarsson R., Claeson T. // J. Appl. Phys. 2004. Vol. 96. N 1. P. 435–442.
- [10] Specht E.D., Clausing R.E., Heathly L. // J. Mater. Res. 1990.
 Vol. 5. N 11. P. 2351–2357.
- [11] Бойков Ю.А., Данилов В.А. // ФТТ. 2008. Т. 50. № 3. С. 436–439.
- [12] Weast R.C. ed., CRC Handbook of Chemistry and Physics. 59th Edition. CRC PRESS. Inc., 1978. Florida. P. F-213.
- [13] Dahlberg E.D., Riggs K., Prinz G.A. // J. Appl. Phys. 1988. Vol. 63. N 8. P. 4270–4275.
- [14] Raquet B., Viret M., Sondergard E., Cespedes O., Mamy R. // Phys. Rev. B. 2002. Vol. 66. N 2. P. 024 433–024 444.
- [15] Li Q., Wang H.S., Hu Y.F., Wertz E. // J. Appl. Phys. 2000. Vol. 87. N 9. P. 5573–5575.