Обнаружение кубооктаэдрических кластеров La_6F_{37} в смешанных кристаллах $(BaF_2)_{1-x}(LaF_3)_x$ методом ЭПР

© Л.К. Аминов, И.Н. Куркин, С.П. Курзин, И.А. Громов*, Г.В. Мамин, Р.М. Рахматуллин

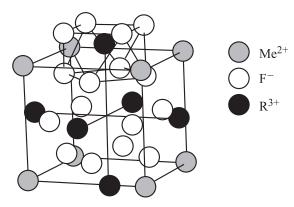
Казанский государственный университет, 420008 Казань, Россия
* Laboratory of Physical Chemistry, ETH-Honggerberg, 8093 Zurich, Switzerland E-mail: Igor.Kurkin@ksu.ru

(Поступила в Редакцию 28 февраля 2007 г.)

Исследованы спектры ЭПР смешанных кристаллов (BaF2) $_{1-x}$ (LaF3) $_x$ (x=0,0.001,0.002,0.005,0.01,0.02), активированных ионами Ce³+ (0.1%), на частоте $\nu\approx 9.5$ GHz при температуре T=10 и 15 K в магнитных полях до 1.45 Т. В "чистом" BaF2 (x=0) наблюдается известный спектр одиночного тетрагонального центра Ce³+ $_$ F $_$ (O-центр, $g_{\parallel}=2.601;$ $g_{\perp}=1.555$). При $x\neq 0$ возникают новые спектральные линии, обусловленные кластерами, содержащими ионы Ce³+ и La³+, а интенсивность спектра O-центров быстро уменьшается с ростом концентрации трифторидов x. По угловой зависимости возникающего при $x\geq 0.002$ сложного спектра ЭПР выделена группа линий, соответствующих тетрагональному парамагнитному центру с сильно анизотропным g-фактором, $g_{\parallel}=0.725;$ $g_{\perp}=2.52$ (K-центр). Этот центр идентифицируется как кубооктаэдрический кластер La $_6$ F37, в котором один из ионов La³+ замещен ионом Ce³+.

Работа поддержана Академией наук Республики Татарстан (грант № 0.6-6.1.3/2006($\Phi\Pi$)) и проектом МОН РФ (РНП.2.1.1.7348).

PACS: 76.30.-v, 76.30.Kg


1. Введение

Смешанные кристаллы фторидов $(MeF_2)_{1-x}(RF_3)_x \equiv$ $\equiv Me_{1-x}R_xF_{2+x}$ (Me = Ca, Sr, Ba; R = Y, Lu, La и другие лантаноиды) являются однофазными в широком дипазоне концентраций $0 \le x \le 0.4$ и обладают кубической решеткой флюорита СаF2 (см., например, [1]). При малых концентрациях трифторидов RF3 ($x \le 0.001$) ионы R^{3+} замещают ионы Me^{2+} , а компенсирующие ионы F- занимают центры "пустых" кубов фтора либо около иона R^{3+} (локальная компенсация), либо вдали от него (нелокальная компенсация). При этом соседние матричные ионы слегка смещаются из своих равновесных положений в идеальной решетке MeF2. Примесные центры, появляющиеся при внедрении парамагнитных редкоземельных ионов (которые в дальнейшем будем обозначать посредством Re), были всесторонне исследованы методами ЭПР [2] и оптической спектроскопии [3] в различных матрицах CaF₂, SrF₂, BaF₂. Были обнаружены центры с кубической, тетрагональной, тригональной и ромбической симметрией, установлены параметры кристаллического поля для позиций Re и измерены соответствующие *g*-факторы. Пространственная структура примесных центров в некоторых кристаллах MeF₂: Re³⁺ рассчитана в рамках модели обменных зарядов [4].

Увеличение концентрации x трифторидов приводит к формированию более протяженных структурных дефектов — кластеров. Кластеры включают в себя несколько катионов $R^{3+}(Re^{3+})$, замещающих Me^{2+} в узлах катионной подрешетки флюорита, вакансии в узлах фторовой подрешетки и анионы F^- в пустотных позициях. Предложено много моделей кластеров на основе рент-

геноструктурных исследований и исследований дифракции нейтронов. Эти модели классифицируются в работе [5], посвященной корреляциям между кластеризацией и электропроводностью, как модели типов $n_V: n_{F'}: n_{F''}$ согласно числу анионных вакансий V, междоузельных анионов F', смещенных от центра куба к середине ребра куба $[(1/21/21/2) \rightarrow (1/2uu)]$ и анионов F", смещенных вдоль тригональной оси $[(1/2 \, 1/2 \, 1/2) \rightarrow (vvv)].$ Чаще других обсуждаются кубооктаэдрические кластеры 8:12:0 и 8:12:1 (R₆F₃₆ и R₆F₃₇ в другом обозначении) [1,5,6-9]. Эти кластеры (рис. 1) могут быть представлены как гранецентрированный катионный куб, в котором катионы Ме в центрах граней заменены на R, когда как внутренний куб из восьми ионов F перестроен в кубооктаэдр из двенадцати ионов F; еще один ион F может быть помещен в центр кубооктаэдра. Остающиеся 24 иона фтора в формуле R₆F₃₇ принадлежат соседним кубическим ячейкам. Такие кластеры неотъемлемые части некоторых упорядоченных фаз. Например, кристалл KY_3F_{10} состоит из чередующихся кубов $(KY_3F_8)^{2+}$ и $(KY_3F_{12})^{2-}$; последний куб имеет структуру, показанную на рис. 1, за исключением центрального иона F^- .

Прямое наблюдение кластеризации Re-ионов методами ЭПР в парамагнитных смешанных кристаллах $(MeF_2)_{1-x}(ReF_3)_x$ затруднено из-за сильного уширения резонансных линий при концентрациях $x\sim 1\%$. С повышением концентрации редкоземельных ионов также резко возрастает сложность оптических спектров. В этом отношении двойные растворы $(MeF_2)_{1-x-y}(RF_3)_x(ReF_3)_y$ с диамагнитными R (La, Lu, Y) и малыми концентрациями у парамагнитного

Рис. 1. Кубооктаэдрический кластер типа 8:12:1 (R_6F_{37}) в смешанных кристаллах $MeF_2(1-x)+RF_3(x)$. Ионы R^{3+} немного смещены за пределами куба. Показаны также четыре иона F^- ячейки MeF_2 , смежной с кластером сверху. Эти ионы вместе с четырьмя ионами F^- в пределах куба формируют ближайшее окружение верхнего иона R^{3+} .

компонента Re кажутся более удобными. Наблюдая оптически детектируемые спектры ЭПР в ряде таких составов, Казанский [6], заключил, что формирование кластеров определяется суммарной концентрацией x+y трифторидов и спектры ЭПР ионов Re^{3+} при концентрациях $x+y\geq 0.001$ отражают тетрагональную симметрию позиций Re ионов в кластерах $(\mathrm{R,Re})_6\mathrm{F}_{37}$. Эта же точка зрения проводится и в более поздних публикациях [7-9].

Для проверки указанных положений представлялось полезным исследовать обычные спектры ЭПР различных смешанных кристаллов $(MeF_2)_{1-x}(RF_3)_x(ReF_3)_y$ в возможно более широком диапазоне концентраций x, y, что и было осуществлено. Первоначально были изучены кристаллы $(BaF_2)_{1-x}(LaF_3)_x$, активированные ионами Yb^{3+} (y = 0.1%) с x = 0-0.05 [10,11]. Было установлено, что уже начиная с малой концентрации x = 0.001в спектре ЭПР возникают линии, дополнительные к спектру основного одиночного тригонального центра $Yb^{3+}-F^-$, наблюдаемого в "чистом" BaF_2 (x=0). Угловая зависимость спектров указывает на то, что практически все дополнительные линии обусловлены тригональнаым кластерами, а простые вычисления свидетельствуют, что это могут быть линейные кластеры типа $La^{3+}-F^{-}-Yb^{3+}-F^{-}$, вытянутые вдоль тригональной оси. Никаких следов тетрагонального спектра, который можно было бы приписать ионам Yb³⁺ в кластерах La₆F₃₇, обнаружено не было. Это еще не означало, что подобные кластеры в кристалле $(BaF_2)_{1-x}(LaF_3)_x$ отсутствуют. Возможно просто, что затруднено включение в такие кластеры ионов Yb^{3+} .

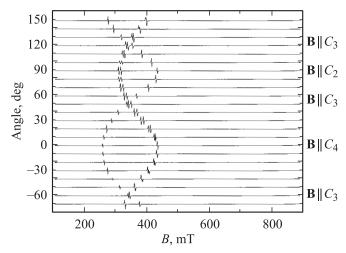
Для получения более определенных заключений были измерены спектры ЭПР тех же смешанных кристаллов $(BaF_2)_{1-x}(LaF_3)_x$, с использованием в качестве парамагнитных зондов ионов Ce^{3+} , ионный радиус которых близок к ионному радиусу La^{3+} [12]. В сложных спектрах ЭПР при x=0.02 и некоторых ориентациях внешнего магнитного поля удалось выделить линии, обусловлен-

ные центрами с тетрагональной симметрией, с сильно анизотропными g-факторами ($g_{\parallel}=0.75;\ g_{\perp}=2.4$), близкими к измеренным в системе KY_3F_{10} : Ce^{3+} . Это позволило предположить, что указанные центры представляют собой кубооктаэдрические кластеры $CeLa_5F_{37}$.

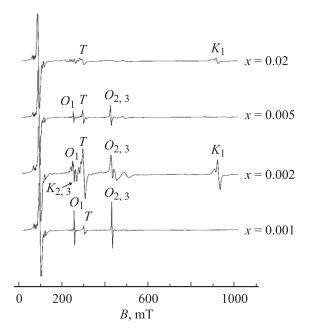
С целью уточнить приведенный вывод мы провели более детальное исследование спектров ЭПР систем $(\mathrm{BaF}_2)_{1-x}(\mathrm{LaF}_3)_x$: 0.1% Ce^{3+} в условиях, позволяющих снять полную угловую зависимость спектров ЭПР. В настоящей работе приводятся результаты этих исследований и их обсуждение.

2. Эксперимент

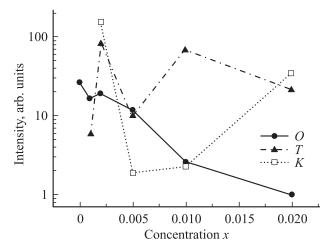
Проведено исследование спектров ЭПР кристаллов $(BaF_2)_{1-x-y}(LaF_3)_x(CeF_3)_y$ с x=0;0.001;0.02;0.005;0.01;0.02, <math>y=0.1%. Образцы были выращены методом Бриждмена—Стокбаргера во фторирующей атмосфере. Выращивание осуществлялось с использованием много-канального тигля с шестью кристаллами одновременно для обеспечения одинаковых условий роста для всех образцов.


Спектры ЭПР измерялись стационарным методом на частоте $\sim 9.5\,\mathrm{GHz}$ на спектрометрах BRUKER: E-580 при температуре $T\approx 15\,\mathrm{K}$ в магнитных полях B до $0.9\,\mathrm{T}$ и ESP-300 при температуре $\approx 10\,\mathrm{K}$ в магнитных полях до $1.45\,\mathrm{T}$. Переменное поле \mathbf{B}_1 было ориентировано вдоль оси C_2 , а постоянное поле могло быть направлено произвольным образом в плоскости, перпендикулярной \mathbf{B}_1 и содержащей оси $C_4-C_3-C_2$ кристалла. Нами были выполнены измерения угловой зависимости спектров ЭПР в плоскости, близкой $C_4-C_3-C_2$, для всех шести образцов с различным x. Для выявления реальной концентрационной зависимости интенсивности разных линий ЭПР одновременно регистрировался спектр ЭПР стандартного образца $\mathrm{CaF}_2:0.8\%\,\mathrm{Er}^{3+}$ [12].

В "чистом" ${\rm BaF_2}$ (x=0) наблюдался лишь один ЭПР-центр с тетрагональной симметрией (O-центр; $g_{\parallel}=2.601,\ g_{\perp}=1.555;$ ср. [12,13]). В ориентации ${\bf B}\parallel C_4$ наблюдается характерный спектр: одиночная линия с магнитном поле $B\approx 260\,{\rm mT}$ и сдвоенная линия в поле $435.5\,{\rm mT}.$ На рис. 2 приведена типичная для тетрагональных центров угловая зависимость этого спектра. Следует отметить, что интенсивность спектра ЭПР ионов ${\rm Ce}^{3+}$ в образце с x=0 была в несколько разменьше, чем интенсивность спектра ЭПР ионов ${\rm Yb}^{3+}$ в "чистом" ${\rm BaF_2}$ при внедрении такого же количества (0.1%) примесного иона.


На рис. 3 приводятся спектры ЭПР рассматриваемых систем в ориентации $\mathbf{B} \parallel C_4$ для x=0.001; 0.002; 0.005; 0.02. С ростом x интенсивность линий исходного O-центра быстро уменьшается и, кроме того, возникают дополнительные линии, обусловленные, очевидно, кластерами, содержащими ионы лантана и церия. Наиболее интенсивные дополнительные линии на рис. 3

¹ Образцы были выращены Р.Ю. Абдулсабировым и С.Л. Корабпёвой


обозначены как K_1 и T. Зависимость интенсивности O-T-и R-центров от концентрации x лантана изображена на рис. 4. Какой-либо закономерности в функциональной зависимости интенсивности T- и K-центров от x не наблюдается. Из дополнительных линий отметим возникающую начиная с $x \approx 0.002$ линию K_1 (рис. 3) с эффективным g-фактором g=0.725. Ширина этой линии в несколько раз превышает ширину линий O-центра, а интенсивность при x=0.02 сравнима с интенсивностью O-линий в "чистом" BaF_2 . Приведенная на рис. 5 угловая зависимость спектра $Э\Pi P$ для x=0.02 свидетельствует

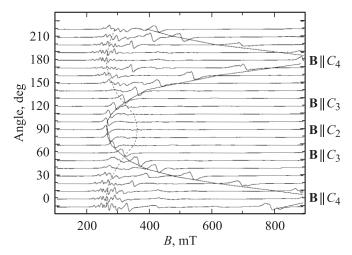

Рис. 2. Угловая зависимость спектра ЭПР в образце $Ba_{1-x}La_xF_{2+x}+0.1\%$ Ce^{3+} для x=0 в плоскости $C_4-C_3-C_2$.

Рис. 3. Спектр ЭПР ионов Ce^{3+} в смешанных кристаллах $Ba_{1-x}La_xF_{2+x}+0.1\%$ Ce^{3+} для некоторых значений x при ориентации $B\|C_4$. Линии O_1 и $O_{2,3}$ соответствуют основному тетрагональному центру ионов Ce^{3+} ; L_1 и $K_{2,3}$ — линии кубооктаздрического кластера; T — счетверенная линия тригонального центра. Интенсивная линия в магнитном поле $\sim 100\,\mathrm{mT}$ — спектр ЭПР стандартного образца $CaF_2+0.8\%$ Er^{3+} .

Рис. 4. Интенсивность O-, T- и K-центров ионов Ce^{3+} в монокристаллах $Ba_{1-x}La_xF_{2+x}+0.1\%$ Ce^{3+} в зависимости от концентрации LaF_3 .

Рис. 5. Угловая зависимость спектра ЭПР в образпе $\mathrm{Ba}_{1-x}\mathrm{La}_x\mathrm{F}_{2+x}+0.1\%$ Ce^{3+} для x=0.02 в плоскости $C_4-C_3-C_2$.

о том, что линия K_1 принадлежит тетрагональному центру (K-центр; $g_{\parallel}=0.725, g_{\perp}=2.52$). Указанные значения g-факторов близки к значениям, полученным для системы $\mathrm{KY_3F_{10}:Ce^{3+}}$ ($g_{\parallel}\sim0.725, g_{\perp}=2.46,$ см. [14]). Отметим, что в работе [14] значение g_{\parallel} для ионов $\mathrm{Ce^{3+}}$ было оценено из угловой зависимости спектра ЭПР ввиду отсутствия достаточно сильного магнитного поля. Мы провели прямое измерение величины g_{\parallel} и получили $g_{\perp}=0.807.$ Перейдем к обсуждению полученных результатов.

3. Обсуждение

Близость g-факторов K-центра рассматриваемой системы и ионов Ce^{3+} в кристалле KY_3F_{10} свидетельствует о том, что кристаллическое поле на парамагнитном ионе в K-центре а значит, и ближайшее окружение этого иона

должны быть близки к полю и окружению иона Ce^{3+} в KY_3F_{10} . Основным состоянием иона Ce^{3+} в KY_3F_{10} является дублет $|J=5/2; M=\pm 1/2\rangle$ с небольшой примесью состояний $|\pm 1/2\rangle, |\mp 7/2\rangle$ возбужденного мультиплета с J=7/2. Добавление в центр кубооктаэдра CeY_5F_{36} дополнительного иона F^- не меняет симметрию поля на ионе Ce^{3+} , а значит, и основное состояние. Возможна лишь модификация указанной примеси состояний возбужденного мультиплета, а потому g-факторы иона Ce^{3+} в кластерах R_6F_{36} и R_6F_{37} не должны сильно различаться. Таким образом, с большей достоверностью K-центр представляет собой кубооктаэдрический кластер La_6F_{37} , в котором один из ионов лантана замещен ионом церия.

Если ионы церия легко включаются в кластеры La_6F_{37} , то они, по-видимому, и сами образуют кластеры Ce_6F_{37} . Возможно, этим объясняется отмеченный выше факт меньшей интенсивности спектров ЭПР одиночных центров Ce^{3+} (по сравнению с Yb^{3+}) в "чистом" BaF_2 .

При используемых в экспериментах ориентациях магнитных полей \mathbf{B}_0 и \mathbf{B}_1 относительно образца ($\mathbf{B}_1 \parallel C_2$, ${\bf B}_0$ вращается в плоскости, перпендикулярной ${\bf B}_1$) в кристалле выделяетстя одна ось четвертого порядка (обозначим ее z), перпендикулярная ${\bf B}_1$, и две оси $(x \ u \ y)$, расположенные под углом 45° к \mathbf{B}_1 . В спектре ЭПР тетрагональных центров одиночная линия (O_1 и K_1 соответственно для О- и К-центров) обусловлена центрами, оси которых ориентированы вдоль z, а сдвоенные линии $(O_{2,3}$ и $K_{2,3})$ — центрами с осями, паралельными x и y. При вращении \mathbf{B}_0 в плоскости $C_4 - C_3 - C_2$ угол между ${\bf B}_0$ и z проходит весь интервал значений от 0до 180° , тогда как угол между полем и осями x и yменяется лишь от 45 до 135°. На рис. 5 изменение позиций линии K_1 в зависимости от ориентации \mathbf{B}_0 в плоскости $C_4 - C_3 - C_2$ отмечено сплошной линией, а сдвоенной линии $K_{2,3}$ — пунктиром. Небольшое расщепление линий O_2, O_3 и K_2, K_3 на рис. 2 и 5 связано с неточностью установки плоскости.

Обращает на себя внимание сильная ориентационная зависимость интенсивности линий K_2 , K_3 . Ее можно пояснить следующим образом. Расчет интенсивности перехода между стационарными состояниями α и β аксиального центра с эффективным спином S=1/2 в поле B_0 , $I\sim |\langle\alpha|\mathbf{B}_1\mathbf{g}\mathbf{S}|\beta\rangle|^2$, приводит при взаимно перпендикулярных \mathbf{B}_1 и \mathbf{B}_0 к следующей угловой зависимости:

$$I \propto g_{\perp}^2 \left[1 + \frac{(g_{\parallel}^2 - g_{\perp}^2)\cos^2\vartheta_1}{g_{\parallel}^2\cos^2\vartheta + g_{\perp}^2\sin^2\vartheta} \right],$$

где ϑ_1 — угол между \mathbf{B}_1 и осью симметрии центра, ϑ — угол между \mathbf{B}_0 и той же осью. Для линии K_1 $\vartheta_1=90^\circ$, и ее интенсивность $I_1\sim g_\perp^2$ не зависит от ориентации постоянного поля \mathbf{B}_0 . Для линий K_2 , K_3 угол $\vartheta_1=45^\circ$, и поскольку $g_\parallel^2< g_\perp^2$, $I_{2,3}< I_1$ при любых углах ϑ . Отношение I_2/I_1 максимально при $\mathbf{B}_0\parallel z(C_4)$ ($\vartheta=90^\circ$) и достигает значения 0.54. При $\mathbf{B}_0\parallel C_3$ ($\cos^2\vartheta=1/3$) это отношение равно примерно 0.36, а при $\mathbf{B}\parallel C_2$ ($\vartheta=45^\circ$) достигает минимального значения 0.16. Для O-центра $g_\parallel^2>g_\perp^2$ и соответственно $I_2>I_1$, но вследствие от-

носительно меньшей (чем для K-центра) анизотропии g-фактора невелика и анизотропия интенсивности I_2 , что качественно прослеживается на рис. 2.

Замещение элемента Ba_6F_{32} решетки флюорита кубооктаэдрическим комплексом La_6F_{37} приводит к необходимости компенсации возникающего избытка положительного заряда. Одним из вариантов компенсации является включение в октаэдр La_6 одного иона бария: $La_6 \to BaLa_5$. Подобный вариант обсуждался в работе [1] при установлении структуры системы $(CaF_2)_{14/19}(YF_3)_{5/19}$ (x=0.26) с упорядоченным расположением кубооктаэдрических кластеров. Возможно, что именно эта вариативность структуры кластера K-центра является причиной уширения соответствующих линий спектра ЭПР ионов Ce^{3+} .

Помимо описанных линий O- и K-центров в спектре ЭПР системы $(\mathrm{BaF}_2)_{1-x}(\mathrm{LaF}_3)_x$: Ce^{3+} фиксируются и другие дополнительные линии. Предварительный анализ показал, что T-линия является центром тригональной симметрии с g-факторами: $g_{\parallel} \sim 1.2, \ g_{\perp} \sim 2.5$. Другие линии, возможно, связаны с линейными тетрагональными кластерами вида $\mathrm{La}^{3+}\mathrm{-F}^-\mathrm{Ce}^{3+}\mathrm{-F}^-$ (по аналогии с тригональными кластерами в кристаллах $(\mathrm{BaF}_2)_{1-x}(\mathrm{LaF}_3)_x$: Yb^{3+} , см. [10,11]), однако полная расшифровка спектров ЭПР требует дальнейших исследований.

Авторы благорадят А.А. Родионова за помощь в работе.

Список литературы

- [1] D.J.M. Bevan, J. Strahle, O. Greis. J. Solid State Chem. **44**, 75 (1982).
- [2] С.А. Альтшулер, Б.М. Козырев. Электронный парамагнитный резонанс соединений элементов промежуточных групп, Наука, М. (1972).
- [3] А.А. Каминский. Лазерные кристаллы. Наука, М. (1975).
- [4] М.П. Давыдова, Б.З. Малкин, А.Л. Столов. Спектроскопия кристаллов. Наука, Л. (1972). С. 27.
- [5] J.M. Reau, P. Hagenmuller. Appl. Phys. A 49, 3 (1989).
- [6] С.А. Казанский. ЖЭТФ 89, 1258 (1985).
- [7] С.А. Казанский, А.И. Рыскин. ФТТ 44, 1356 (2002).
- [8] А.Е. Никифоров, А.Ю. Захаров, М.Ю. Угрюмов, С.А. Казанский, А.И. Рыскин, Г.С. Шакуров. ФТТ 47, 1381 (2005).
- [9] S.A. Kazanskii, A.I. Ryskin, A.E. Nikiforov, A.Yu. Zaharov, M. Yu. Ougrumov, G.S. Shakurov. Phys. Rev. B 72, 014127 (2005).
- [10] L.K. Aminov, R. Yu. Abdulsabirov, M.R. Gafurov, S.L. Korableva, I.N. Kurkin, S.P. Kurzin, R.M. Rakhmatullin, A.G. Ziganshin. Appl. Magn. Res. 28, 41 (2005).
- [11] L.K. Aminov, R.Yu. Abdulsabirov, S.L. Korableva, I.N. Kurkin, S.P. Kurzin, A.G. Ziganshin, S.B. Orlinskii. Appl. Magn. Rev. 29, 561 (2005).
- [12] Л.К. Аминов, Р.Ю. Абдулсабиров, С.Л. Кораблева, И.Н. Куркин, С.П. Курзин, А.Г. Зиганшин, И.А. Громов. ФТТ 47, 1413 (2005).
- [13] А.А. Антипин, И.Н. Куркин, Г.К. Чиркин, Л.Я. Шекун. ФТТ 6, 2014 (1964).
- [14] В.А. Иваньшин, И.Н. Куркин, И.Х. Салихов, Ш.И. Ягудин. ФТТ 28, 2580 (1986).