# Влияние пространственной дисперсии на форму светового импульса при его прохождении сквозь квантовую яму

© Л.И. Коровин, И.Г. Ланг, С.Т. Павлов\*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия \* Физический институт им. П.Н. Лебедева Российской академии наук, 119991 Москва, Россия E-mail: korovin@mail.ioffe.ru

#### (Поступила в Редакцию 6 февраля 2007 г.)

Вычислены отражение, прохождение и поглощение симметричного электромагнитного импульса, несущая частота которого близка к частоте прямых межзонных переходов в квантовой яме. Уровни энергии в квантовой яме предполагаются дискретными, учитываются два близкорасположенных возбужденных уровня. Рассматривается случай достаточно широкой ямы, когда длина волны, соответствующая несущей частоте импульса, сравнима с шириной ямы и следует учитываются зависимость матричного элемента импульса межзонного перехода от волнового вектора света. Показатели преломления квантовой ямы и барьеров считаются равными друг другу. Задача решена для произвольного соотношения между радиационным и нерадиационным временами жизни возбужденных электронных состояний. Показано, что учет пространственной дисперсии существенно влияет на форму отраженного и прошедшего импульсов. Наибольшие изменения имеют место в случае, когда обратное радиационное время жизни мало отличается от разности частот учитываемых межзонных переходов.

PACS: 78.20.Bh, 78.67.De

Облучение световыми импульсами низкоразмерных полупроводниковых систем представляет интерес, так как отраженный и прошедший импульсы несут информацию как о структуре уровней энергии системы, так и о проходящих в ней релаксационных процессах.

Радиационный механизм релаксации возбужденных уровней энергии в квазидвумерных системах (квантовых ямах) возникает вследствие нарушения трансляционной симметрии в направлении, перпендикулярном плоскости квантовой ямы [1,2]. При слабом легировании, низких температурах и достаточно совершенных границах квантовой ямы вклад радиационного механизма релаксации может быть сравним со вкладами нерадиационных механизмов. В такой ситуации нельзя ограничиться линейным по взаимодействию электрона с электромагнитным полем приближением, а необходимо учитывать все порядки этого взаимодействия [3–9]. Изменение формы асимметричного светового импульса при его прохождении сквозь квантовую яму исследовалось в работах [10-13], прохождение симметричного импульса — в [13-15]. Результаты этих работ справедливы для узких квантовых ям, когда выполнено неравенство  $kd \ll 1$  (d — ширина квантовой ямы, k — модуль волнового вектора световой волны, соответствующей несущей частоте импульса) и оптические характеристики квантовой ямы не зависят от d. Однако возможна ситуация, при которой размерное квантование сохраняется и для широких квантовых ям, когда параметр  $kd \ge 1$ (соответствующие оценки приведены в [16]). В этом случае необходим учет пространственной дисперсии как монохроматической волны [9,17], так и волн, составляющих импульс [16].

Предлагаемая работа посвящена исследованию влияния пространственной дисперсии на оптические характеристики (отражение, пропускание и поглощение) квантовой ямы при облучении симметричным импульсом. Рассматривается система, состоящая из глубокой полупроводниковой квантовой ямы первого типа, расположенной в интервале  $0 \le z \le d$ , и двух полубесконечных барьеров. Система находится в постоянном сильном магнитном поле, направленном перпендикулярно плоскости квантовой ямы, которое обеспечивает дискретность уровней энергии в яме. Возбуждающий световой импульс распространяется вдоль оси z со стороны отрицательных z. Барьеры прозрачны для импульса, а в квантовой яме импульс поглощается, вызывая прямые межзонные переходы. Подразумевается собственный полупроводник и нулевые температуры.

Окончательные результаты получены для двух близкорасположенных уровней электронной системы (дублета) в квантовой яме. Влиянием других уровней на оптические характеристики можно пренебречь, если несущая частота импульса  $\omega_l$  близка к частотам  $\omega_1$  и  $\omega_2$  уровней дублета, а остальные уровни расположены достаточно далеко от них. Предполагается также, что дублет расположен близко к минимуму зоны проводимости и уровни энергии можно рассматривать в приближении эффективной массы, а барьеры считать бесконечно высокими.

Дискретными уровнями в квантовой яме в случае  $\hbar \mathbf{K}_{\perp} = 0$ , где  $\hbar \mathbf{K}_{\perp}$  — вектор суммарного квазиимпульса пары в плоскости ямы, являются экситонные уровни в нулевом магнитном поле либо уровни в сильном магнитном поле, направленном перпендикулярно плоскости ямы. В качестве примера далее рассматривается уровень электронно-дырочной пары в сильном магнитном поле, направленном вдоль оси *z*, без учета кулоновского взаимодействия между электроном и дыркой, которое является слабым возмущением для сильных магнитных полей и не очень широких ям [18].

#### 1. Электрическое поле

Пусть на одиночную квантовую яму падает со стороны отрицательных *z* симметричный возбуждающий импульс. По аналогии с [13–15] его электрическое поле выбирается в виде

$$\mathbf{E}_{0}(z,t) = \mathbf{e}_{l} E_{0} e^{-i\omega_{l}p} \Big\{ \Theta(p) e^{-\gamma_{l}p/2} \\ + \big[ 1 - \Theta(p) \big] e^{\gamma_{l}p/2} \Big\} + \text{c.c.}$$
(1)

Здесь  $E_0$  — вещественная амплитуда, p = t - vz/c,  $\mathbf{e}_l = (\mathbf{e}_x \pm i\mathbf{e}_y)/\sqrt{2}$  — единичные векторы круговой поляризации,  $\mathbf{e}_x$  и  $\mathbf{e}_y$  — вещественные орты,  $\Theta(p)$  функция Хевисайда,  $1/\gamma_l$  определяет ширину импульса, c — скорость света в вакууме, v — показатель преломления, который предполагается одинаковым для барьеров и квантовой ямы (приближение однородной среды). Фурье-образ функции (1) имеет вид

$$\mathbf{E}_{0}(z,\omega) = \exp(ikz) \left[ \mathbf{e}_{l} E_{0}(\omega) + \mathbf{e}_{l}^{*} E_{0}(-\omega) \right],$$
$$E_{0}(\omega) = \frac{E_{0} \gamma_{l}}{\left[ (\omega - \omega_{l})^{2} + (\gamma_{l}/2)^{2} \right]}, \quad k = \frac{\nu \omega}{c}. \tag{2}$$

Электрическое поле в области  $z \leq 0$  состоит из суммы полей возбуждающего и отраженного импульсов. Его Фурье-образ удобно представить в виде

$$\mathbf{E}^{l}(z, \omega) = \mathbf{E}_{\mathbf{0}}(z, \omega) + \Delta \mathbf{E}^{l}(z, \omega).$$

Здесь  $\Delta \mathbf{E}^{l}(z, \omega)$  — электрическое поле отраженного импульса, оно равно

$$\Delta \mathbf{E}^{l}(z,\omega) = e_{l} \Delta E^{l}(z,\omega) + e_{l}^{*} \Delta E^{l}(z,-\omega).$$
(3)

В области  $z \ge d$  распространяется только прошедший квантовую яму импульс, поэтому его поле имеет вид

$$\mathbf{E}^{r}(z,\omega) = e_{l}E^{r}(z,\omega) + e_{l}^{*}E^{r}(z,-\omega).$$
(4)

Далее предполагается, что импульс, поглощаясь в квантовой яме, вызывает прямые межзонные переходы и соответственно появление тока, в барьерах же поглощение отсутствует. Поэтому для комплексных амплитуд  $\Delta E^{l}(z, \omega)$  и  $E^{r}(z, \omega)$  в барьерах для  $z \leq 0$  и  $z \geq d$  получаем уравнение

$$\frac{d^2E}{dz^2} + k^2 E = 0.$$
 (5)

Уравнение для поля внутри квантовой ямы ( $0 \le z \le d$ ) имеет вид

$$\frac{d^2E}{dz^2} + k^2 E = -\frac{4\pi i\omega}{c^2} J(z,\omega), \qquad (6)$$

где  $J(z, \omega)$  есть усредненный по основному состоянию системы Фурье-образ плотности тока, который наводится плоской монохроматической волной с частотой  $\omega$ . В случае двух возбужденных уровней  $J(z, \omega)$  выражается формулой

$$J(z,\omega) = \frac{i\nu c}{4\pi} \sum_{j=1}^{2} \frac{\gamma_{rj} \Phi_j(z)}{\tilde{\omega}_j} \int_0^d dz' \Phi_j(z') E(z',\omega), \quad (7)$$
$$\tilde{\omega}_j = \omega - \omega_j + i\gamma_j/2. \quad (8)$$

Здесь  $\gamma_j$  — обратное нерадиационное время жизни уровней дублета,  $\gamma_{rj}$  — обратное радиационное время уровней дублета в случае узких квантовых ям, когда пространственной дисперсией электромагнитных волн можно пренебречь.

В частности, дублетом может быть магнетополяронное состояние [19]. В этом случае

$$\gamma_{rj} = \gamma_r Q_j, \quad \gamma_r = \frac{2e^2}{\hbar c v} \frac{p_{cv}^2}{\hbar \omega_e m_0} \frac{|e|H}{m_0 c}$$

 $m_0$  — масса свободного электрона, H — магнитное поле, e — заряд электрона,  $p_{cv}$  — матричный элемент импульса, соответствующий круговой поляризации,  $p_{cv}^2 = |p_{cvx}|^2 + |p_{cvy}|^2$ . Множитель

$$Q_{j} = \left[1 \pm \hbar(\Omega_{c} - \omega_{LO}) / \sqrt{\hbar^{2}(\Omega_{c} - \omega_{LO})^{2} + (\Delta E_{\text{pol}})^{2}}\right] / 2$$

определяет изменение радиационного времени жизни при отклонении магнитного поля от резонансного значения, при котором выполняется условие  $\Omega_c = \omega_{LO}$ .  $\Delta E_{\rm pol}$  есть поляронное расщепление,  $\Omega_c$  и  $\omega_{LO}$  циклотронная частота и частота оптического фонона соответственно. В резонансе  $Q_i = 1/2$  и  $\gamma_{r1} = \gamma_{r2}$ .

При выводе  $J(z, \omega)$  предполагалось, что сила Лоренца, определяемая внешним магнитным полем, велика по сравнению с кулоновской и обменной силами в электронно-дырочной паре. В этом случае переменные *z* (вдоль магнитного поля) и  $\mathbf{r}_{\perp}$  (в плоскости квантовой ямы) в волновой функции электронно-дырочной пары разделяются. В квантовой яме на основе арсенида галлия для магнитного поля, соответствующего образованию магнетополярона, это условие выполняется [9]. Если, кроме того, энергия размерного квантования превышает кулоновскую и обменную энергии, то электронно-дырочную пару можно считать свободной и в приближении эффективной массы и бесконечно высоких барьеров волновая функция, описывающая зависимость от координаты z, принимает простой вид

$$\Phi_{i}(z) = (2/d)\sin(\pi m_{c}z/d)\sin(\pi m_{v}z/d), \quad 0 \le z \le d \quad (9)$$

и  $\Phi_j(z) = 0$  в барьерах. Здесь  $m_c(m_v)$  — квантовые числа размерного квантования электрона (дырки).

Приближение (9) не всегда выполняется в реальных системах, однако учет кулоновского и обменного взаимодействия приведет только к изменению функции  $\Phi_j(z)$ , что, как показано в [20] для случая моно-хроматического облучения, не вызовет качественного изменения оптических характеристик.

Индексы j = 1 и 2 у  $\Phi_j(z)$  соответствуют парам квантовых чисел размерного квантования при прямом межзонном переходе. Индексу j = 1 соответствует  $m_{c(v)}^{(1)}$ , индексу  $j = 2 - m_{c(v)}^{(2)}$ . Квантовые числа Ландау n сохраняются при межзонном переходе. В правую часть уравнения (7) входит полное электрическое поле E, что связано с отказом от теории возмущений по константе связи  $e^2/\hbar c$ .

Дальнейший расчет проводится в предположении равенства квантовых чисел  $m_{cv}^{(1)} = m_{cv}^{(2)}$ . Тогда

$$\Phi_1(z) = \Phi_2(z) = \Phi(z)$$

и входящая в правую часть уравнения (7) плотность тока принимает вид

$$J(z,\omega) = \frac{i\nu c}{4\pi} \left( \frac{\gamma_{r1}}{\omega - \omega_1 + i\gamma_1} + \frac{\gamma_{r2}}{\omega - \omega_2 + i\gamma_2} \right) \Phi(z)$$
$$\times \int_0^d dz' \, \Phi(z') \, E(z'). \tag{10}$$

С учетом указанных упрощений для амплитуд полей в представлении Фурье  $\Delta E^{l}(z, \omega)$  и  $E^{r}(z, \omega)$  получаем, как показано в [9,19,20], выражения

$$\Delta E^{l}(z,\omega) = -iE_{0}(\omega)(-1)^{m_{c}+m_{v}} \exp\left[-ik(z-d)\right]\mathcal{N},$$
$$E^{r}(z,\omega) = E_{0}(\omega) \exp(ikz)(1-i\mathcal{N}), \qquad (11)$$

где  $E_0(\omega)$  приведено в (3). Частотная зависимость здесь определяется функцией

$$\mathcal{N} = \frac{\varepsilon(\gamma_{r1}\tilde{\omega}_2 + \gamma_{r2}\tilde{\omega}_1)/2}{\tilde{\omega}_1\tilde{\omega}_2 + i\varepsilon(\gamma_{r1}\tilde{\omega}_2 + \gamma_{r2}\tilde{\omega}_1)/2}.$$
 (12)

В функцию  $\mathcal{N}$  входит величина

$$\varepsilon = \varepsilon' + i\varepsilon'',\tag{13}$$

которая определяет влияние пространственной дисперсии на радиационное уширение ( $\varepsilon' \gamma_r$ ) и сдвиг ( $\varepsilon'' \gamma_r$ ) уровней дублета.  $\varepsilon'$  и  $\varepsilon''$  равны [9,20]

$$\varepsilon' = \operatorname{Re} \varepsilon = 2\mathscr{B}^2 \big[ 1 - (-1)^{m_c + m_v} \cos k d \big], \qquad (14)$$

 $\varepsilon'' = \operatorname{Im} \varepsilon = 2\mathscr{B} \left( \frac{(1 + \delta_{m_c, m_v})(m_c + m_v)^2 + (m_c - m_v)^2}{8m_c m_v} \right)$ 

$$-(-1)^{m_c+m_v} \mathscr{B} \sin kd - \frac{(2+\delta_{m_c,m_v})(kd)^2}{8\pi^2 m_c m_v} \bigg), \quad (15)$$

$$\mathscr{B} = \frac{4\pi^2 m_c m_v kd}{\left[\pi^2 (m_c + m_v)^2 - (kd)^2\right] \left[(kd)^2 - \pi^2 (m_c - m_v)^2\right]}$$

(если  $kd \to 0$ , то  $\varepsilon \to 1$  ( $m_c = m_v$ , разрешенный переход), и  $\varepsilon \to 0$  ( $m_c \neq m_v$ , запрещенный переход)).

## 2. Временная зависимость электрического поля отраженного и прошедшего импульсов

Переход к временному представлению осуществляется по стандартным формулам

$$\Delta E^{l}(z,t) = \Delta E^{l}(s) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\omega \, e^{-i\omega s} \Delta E^{l}(z,\omega),$$
$$s = t + \nu z/c, \qquad (16)$$

$$E^{r}(z,t) = E^{r}(p) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\omega \, e^{-i\omega p} E^{r}(z,\omega),$$
$$p = t - \nu z/c. \tag{17}$$

Векторы поля  $\Delta \mathbf{E}^{l}(s)$  и  $\mathbf{E}^{r}(p)$  имеют вид

$$\Delta \mathbf{E}^{l}(s) = e_{l} \Delta E^{l}(s) + \text{c.c.} \quad \mathbf{E}^{r}(p) = e_{l} E^{r}(p) + \text{c.c.} \quad (18)$$

Из формул (11), (12) видно, что знаменатель в подынтегральных функциях (16) и (17) одинаков. Его удобно преобразовать к виду

$$\tilde{\omega}_1 \tilde{\omega}_2 + i(\varepsilon/2)(\gamma_{r_1} \tilde{\omega}_2 + \gamma_{r_2} \tilde{\omega}_1) = (\omega - \Omega_1)(\omega - \Omega_2), \quad (19)$$

где Ω<sub>1</sub> и Ω<sub>2</sub> определяют полюсы подынтегральной функции в комплексной плоскости ω. Они равны

$$\Omega_{1,2} = \frac{1}{2} \Biggl\{ \omega_1 + \omega_2 - \frac{i}{2} (\gamma_1 + \gamma_2) - \frac{i\varepsilon}{2} (\gamma_{r1} + \gamma_{r2}) \\ \pm \sqrt{ \frac{[\omega_1 - \omega_2 - (i/2)(\gamma_1 - \gamma_2) - (i\varepsilon/2)(\gamma_{r1} - \gamma_{r2})]^2 - \varepsilon^2 \gamma_{r1} \gamma_{r2}}_{-(i\varepsilon/2)(\gamma_{r1} - \gamma_{r2})]^2 - \varepsilon^2 \gamma_{r1} \gamma_{r2}} \Biggr\}.$$
(20)

Таким образом, в подынтегральных функциях (16) и (17) имеются четыре полюса:  $\omega = \omega_l \pm i \gamma_l / 2$  и  $\omega = \Omega_{1,2}$ . Полюс  $\omega = \omega_l + i \gamma_l / 2$  расположен в верхней полуплоскости, остальные полюсы — в нижней.

Интегрируя в комплексной плоскости  $\omega$ , получим, что функция  $\Delta E^{l}(z, t)$ , определяющая, согласно (17), вектор

Физика твердого тела, 2007, том 49, вып. 10

$$\Delta \mathbf{E}^{l}(z,t) = -iE_{0}(-1)^{m_{c}+m_{v}}e^{ikd} \\ \times \Big\{ R_{1} \big[ 1 - \Theta(s) \big] + R_{2} + R_{3} + R_{4} \big) \Theta(s) \Big\}, \quad (21)$$

где

$$\begin{split} R_{1} &= \exp(-i\omega_{l}s + \gamma_{l}s/2) \\ &\times \left(\frac{\bar{\gamma}_{r1}/2}{\omega_{l} - \Omega_{1} + i\gamma_{l}/2} + \frac{\bar{\gamma}_{r2}/2}{\omega_{l} - \Omega_{2} + i\gamma_{l}/2}\right), \\ R_{2} &= \exp(-i\omega_{l} - \gamma_{l}s/2) \\ &\times \left(\frac{\bar{\gamma}_{r1}/2}{\omega_{l} - \Omega_{1} - i\gamma_{l}/2} + \frac{\bar{\gamma}_{r2}/2}{\omega_{l} - \Omega_{2} - i\gamma_{l}/2}\right), \\ R_{3} &= -\exp(-i\Omega_{1}s)(\bar{\gamma}_{r1}/2) \\ &\times \left(\frac{1}{\omega_{l} - \Omega_{1} - i\gamma_{l}/2} - \frac{1}{\omega_{l} - \Omega_{1} + i\gamma_{l}/2}\right), \\ R_{4} &= -\exp(-i\Omega_{2}s)(\bar{\gamma}_{r2}/2) \\ &\times \left(\frac{1}{\omega_{l} - \Omega_{2} - i\gamma_{l}/2} - \frac{1}{\omega_{l} - \Omega_{2} + i\gamma_{l}/2}\right). \end{split}$$
(22) есь

Здесь

$$\bar{\gamma}_{r1} = \varepsilon' \gamma_{r1} + \Delta \gamma, \qquad \bar{\gamma}_{r2} = \varepsilon' \gamma_{r2} - \Delta \gamma,$$

$$\Delta \gamma = \frac{\varepsilon' \gamma_{r1} (\Omega_2 - \omega_2 + i\gamma_2/2) + \varepsilon' \gamma_{r2} (\Omega_1 - \omega_1 + i\gamma_{r1}/2)}{\Omega_1 - \Omega_2}.$$
(23)

Функция  $E^{r}(z, t)$ , соответствующая прошедшему квантовую яму импульсу, представляется в виде

$$E^{r}(z,t) = E_{0} \Big\{ T_{1} \big[ 1 - \Theta(p) \big] \\ + (T_{2} + T_{3} + T_{4}) \Theta(p) \Big\} \Big/ (\Omega_{1} - \Omega_{2}), \quad (24)$$

где

$$\begin{split} T_1 &= \exp(-i\omega_l p + \gamma_l p/2) M(\omega_l + i\gamma_l/2) \\ &\times \left(\frac{1}{\omega_l - \Omega_1 + i\gamma_l/2} - \frac{1}{\omega_l - \Omega_2 + i\gamma_l/2}\right), \\ T_2 &= \exp(-i\omega_l p - \gamma_l p/2) M(\omega_l - i\gamma_l/2) \\ &\times \left(\frac{1}{\omega_l - \Omega_1 - i\gamma_l/2} - \frac{1}{\omega_l - \Omega_2 - i\gamma_l/2}\right), \\ T_3 &= -\exp(-i\Omega_1 p) M(\Omega_1) \\ &\times \left(\frac{1}{\omega_l - \Omega_1 - i\gamma_l/2} - \frac{1}{\omega_l - \Omega_1 + i\gamma_l/2}\right), \\ T_4 &= \exp(-i\Omega_2 p) M(\Omega_2) \\ &\times \left(\frac{1}{\omega_l - \Omega_2 - i\gamma_l/2} - \frac{1}{\omega_l - \Omega_2 + i\gamma_l/2}\right). \end{split}$$

Входящая в  $T_j$  функция M имеет структуру

$$M(\omega) = (\omega - \omega_1 + i\gamma_1/2)(\omega - \omega_2 + i\gamma_2/2) - (\varepsilon''/2)$$

$$\times \left[\gamma_{r1}(\omega - \omega_2 + i\gamma_2/2) + \gamma_{r2}(\omega - \omega_1 + i\gamma_1/2)\right].$$
(25)

Если в  $\mathbf{E}^{r}(z, t)$  выделить поле возбуждающего импульса  $\mathbf{E}^{0}(z, t)$ , определенного в (2), т. е. считать, что

$$\mathbf{E}^{r}(z,t) = \mathbf{E}^{0}(z,t) + \Delta \mathbf{E}^{r}(z,t), \qquad (26)$$

то  $\Delta \mathbf{E}^{r}(z, t)$  будет отличаться от  $\Delta \mathbf{E}^{l}(z, t)$  только заменой переменной  $s = t + \nu z/c$  на  $p = t - \nu z/c$  и отсутствием множителя  $(-1)^{m_{c}+m_{v}} \exp(ikd)$ .

Таким образом, учет пространственной дисперсии приводит к перенормировке радиационных уширений  $\gamma_{ri}$ . В числителях формул (21) перенормировка заключается в умножении  $\gamma_{ri}$  на вещественный множитель  $\varepsilon'$ , т.е. приводит к уменьшению величины  $\gamma_{ri}$  (графики функций  $\varepsilon'$  и  $\varepsilon''$  приведены в (9)). В знаменателях же  $\gamma_{ri}$ умножается на комплексную функцию  $\varepsilon$ , что означает появление наряду с изменением радиационного уширения сдвига резонансных частот. Формулы (21)–(23) в предельном случае kd = 0 совпадают с полученными в (14).

## Отражение, пропускание и поглощение возбуждающего импульса

Поток энергии  $\mathbf{S}(p)$ , соответствующий электрическому полю возбуждающего электромагнитного импульса, равен

$$\mathbf{S}(p) = (\mathbf{e}_z/4\pi)(c/\nu) \left(\mathbf{E}^0(z,t)\right)^2 = \mathbf{e}_z S_0 \mathscr{P}(p), \qquad (27)$$

где  $S_0 = c E_0^2 / (2\pi \nu)$ , **е**<sub>z</sub> — единичный вектор в направлении распространения импульса. Безразмерная функция

$$\mathcal{P}(p) = \left(\mathbf{E}^{0}(z,t)\right)^{2} / S_{0}$$
  
=  $\Theta(p) \exp(-\gamma_{l}p) + [1 - \Theta(p)] \exp(\gamma_{l}p)$  (28)

определяет пространственную и временную зависимости энергии возбуждающего импульса. Прошедший квантовую яму поток имеет вид

$$\mathbf{S}^{r} = (\mathbf{e}_{z}/4\pi)(c/\nu) \left(\mathbf{E}^{r}(z,t)\right)^{2} = \mathbf{e}_{z} S_{0} \mathscr{F}(p), \qquad (29)$$

отраженный поток энергии

$$\mathbf{S}^{l} = -(\mathbf{e}_{z}/4\pi)(c/\nu)\left(\mathbf{E}^{l}(z,t)\right)^{2} = -\mathbf{e}_{z}S_{0}\mathcal{R}(s).$$
(30)

Безразмерные функции  $\mathscr{T}(p)$  и  $\mathscr{R}(s)$  соответствуют долям прошедшего и отраженного потоков энергии возбуждающего импульса. Безразмерное поглощение определяется как

$$\mathscr{A}(p) = \mathscr{P}(p) - \mathscr{R}(p) - \mathscr{T}(p)$$
(31)

(поскольку для отражения  $z \leq 0$ , в  $\mathscr{R}$  переменная s = t - |z|/c).

$$\gamma_{r1} = \gamma_{r2} = \gamma_r, \qquad \gamma_1 = \gamma_2 = \gamma. \tag{32}$$

Из формул (21) и (24) следует, что резонансными частотами являются  $\omega_l = \operatorname{Re} \Omega_1$  и  $\omega_l = \operatorname{Re} \Omega_2$ . Расчет проводился для

$$\omega_l = \operatorname{Re} \Omega_1 = \Omega_{\operatorname{res}}.$$
(33)

Если от частоты  $\omega_l$  перейти к

$$\Omega = \omega_l - \omega_1, \tag{34}$$

то резонансная частота

$$\Omega_{\rm res} = \frac{1}{2} \left[ -\Delta \omega + \varepsilon' \gamma_r + \operatorname{Re} \sqrt{(\Delta \omega)^2 - \varepsilon^2 \gamma_r^2} \right]$$
(35)

и зависит от трех параметров:  $\Delta \omega = \omega_1 - \omega_2$ ,  $\gamma_r$  и kd, так как от kd зависит комплексная функция  $\varepsilon$  (см (15)).

Функции  $\mathcal{R}$ ,  $\mathcal{F}$ ,  $\mathcal{A}$  и  $\mathcal{P}$  являются однородными функциями обратных времен жизни и частот  $\omega_1, \omega_2, \omega_l$ . Поэтому выбор единиц измерения здесь произволен. Для определенности все эти величины выражены в eV. На рисунках показана временная зависимость оптических характеристик квантовой ямы при различных значениях параметра kd. Кривые, соответствующие kd = 0, получены в [14]. При расчете полагалось, что  $\Delta \omega = 0.065$  eV, что соответствует магнетополяронному состоянию в квантовой яме на основе арсенида галлия при ширине ямы d = 300 Å [17,19,21].

## 4. Обсуждение результатов

Рис. 1 соответствует длинному (широкому по сравнению с  $\Delta \omega$ ) возбуждающему импульсу и малому радиационному уширению ( $\gamma_r \ll \gamma, \gamma_l$ ). В этом случае доминирует пропускание  $\mathscr{T}$ , которое по форме кривой мало отличается от  $\mathscr{P}$  и слабо зависит от kd. Зависимость от пространственной дисперсии заметна на кривых  $\mathscr{R}$ и  $\mathscr{A}$ . Так, например, отражение  $\mathscr{R}$  при kd = 3 в два раза меньше, чем при kd = 0. Однако величина  $\mathscr{R}$  здесь составляет доли процента.

Рис. 2 относится к возбуждающему импульсу средней продолжительности, когда  $\gamma_l \simeq \Delta \omega$  и  $\gamma_r \ll \gamma \ll \gamma_l$ . Характерным здесь является появление генерации (отрицательного поглощения) после прохождения импульса и осцилляции  $\mathcal{R}$ ,  $\mathcal{A}$  и  $\mathcal{T}$ . Генерация объясняется тем, что при таком импульсе возбуждения электронная система не успевает излучить энергию за время прохождения импульса квантовой ямы, а осцилляции вызваны биениями, частота которых при условии  $\omega_l = \text{Re }\Omega_1$  равна

$$\operatorname{Re}\left(\omega_{1}-\Omega_{2}\right)=\operatorname{Re}\sqrt{(\omega_{1}-\omega_{2})^{2}-(\varepsilon'+i\varepsilon'')^{2}\gamma_{r}^{2}}.$$
 (36)

Заметное влияние пространственной дисперсии имеет место в отражении  $\mathcal{R}$  как во время прохождения импульса, так и после его прохождения. На пропускание  $\mathcal{T}$ 



**Рис. 1.** Временна́я зависимость отражения  $\mathcal{R}$ , пропускания  $\mathcal{T}$ , поглощения  $\mathcal{A}$  и возбуждающего импульса  $\mathcal{P}$  для трех значений параметра kd в случае длинного возбуждающего импульса ( $\gamma_l \ll \Delta \omega$ ) и  $\gamma_r \ll \gamma, \gamma_l$ .  $\Delta \omega = 6.65 \cdot 10^{-3} \, \text{eV}$ ,  $\omega_l = \text{Re} \, \Omega_1 = \Omega_{\text{res}}$ .



**Рис. 2.** То же, что на рис. 1, для возбуждающего импульса средней продолжительности ( $\gamma_l \simeq \Delta \omega$ ) и  $\gamma_r \ll \gamma \ll \gamma_l$ .

и поглощение *А* пространственная дисперсия влияет только после прохождения импульса квантовой ямы, когда эти величины малы.

На рис. 3 и 4 представлены оптические характеристики при  $\gamma = 0$  и длинном возбуждающем импульсе



**Рис. 3.** То же, что на рис. 1, для широкого возбуждающего импульса ( $\gamma_l \gg \Delta \omega$ ) и  $\gamma = 0$ .



**Рис. 4.** То же, что на рис. 1, для возбуждающего импульса средней продолжительности ( $\gamma_l \simeq \Delta \omega$ ) и  $\gamma = 0$ .



**Рис. 5.** То же, что на рис. 1, для четырех значений параметра kd в случае, когда величина  $\Delta \omega$  близка к  $\gamma_r$ .  $\gamma_r \gg \gamma_l \gg \gamma$ .

 $(\gamma_l \ll \Delta \omega, \text{ рис. 3})$  и импульсе средней продолжительности, когда  $\gamma_l \simeq \Delta \omega$  (рис. 4). Поскольку в этом случае реальное поглощение отсутствует, под функцией  $\mathcal{A}$ , определенной в (31), следует понимать долю энергии, запасенную квантовой ямой на данный момент времени в результате межзонных переходов (если  $\mathcal{A} > 0$ ), либо долю энергии, которая генерируется квантовой ямой во время и после прохождения импульса ( $\mathcal{A} < 0$ ). То же самое относится и к рис. 2, однако там часть запасенной энергии, которая исчезает, если  $\gamma \to 0$ , соответствует реальному поглощению.

Период осцилляций на рис. 2 и 4 не зависит от параметра kd. Причина в том, что при выбранных значениях параметров  $\Delta \omega$  и  $\gamma_r$  частота биения (36) с большой точностью равна  $\omega_1 - \omega_2$  и сравнительно небольшие изменения функций  $\varepsilon'$  и  $\varepsilon''$  практически не влияют на частоту биения.

Обращает на себя внимание рис. 5, на котором  $\Delta \omega$  очень близко к  $\gamma_r$  (6.65 · 10<sup>-3</sup> и 6.66 · 10<sup>-3</sup> eV соответственно), возбуждающий импульс в 5 раз короче, чем на рис. 3 и 4, а  $\gamma_l \gg \gamma_r \gg \gamma$ . В этом случае пространственная дисперсия сильно влияет на оптические характеристики. Отражение в интервале  $0 \le kd \le 3$  возрастает приблизительно в 8 раз, а пропускание уменьшается в 6 раз. Подобное резкое изменение объясняется зависимостью  $\bar{\gamma}_{r1}$  и  $\bar{\gamma}_{r2}$  от kd. Например, при kd = 0  $\bar{\gamma}_{r1} = -17303.9$ ,  $\bar{\gamma}_{r2} = 193066.6$ , а при kd = 3 Re  $\bar{\gamma}_{r1} = 1960.21$ , Re  $\bar{\gamma}_{r2} = 442.718$ . При этом сами функции  $\mathcal{R}$  и  $\mathcal{T} \le 1$ , так как являются результатом

вычитания больших чисел, и поэтому неудивительно, что эти разности чувствительны к изменению kd.

В [14] было установлено, что в случае kd = 0 на временной оси имеются особые точки, в которых  $\mathcal{T} = \mathcal{A} = 0$  и  $\mathcal{R} = \mathcal{P}$ , либо  $\mathcal{R} = \mathcal{A} = 0$  и  $\mathcal{T} = \mathcal{P}$  (точка полного отражения либо полного пропускания). Из приведенных рисунков видно, что особые точки на временной оси сохраняются и в случае  $kd \neq 0$ , имеет место только их небольшой сдвиг. На рис. 5 точка полного пропускания имеет место при kd = 0. Для kd = 0.5 она исчезает, а для kd = 1.5 и 3.0 появляется точка полного отражения. Если kd = 1.5, то  $\mathcal{R} = \mathcal{P}$ ,  $\mathcal{A} + \mathcal{T} = 0$ ( $\mathcal{A} < 0$ ), если же kd = 3.0, то по-прежнему  $\mathcal{R} = \mathcal{P}$ , но  $\mathcal{A} = \mathcal{T} = 0$ . Таким образом, увеличение параметра kdприводит к смене типа особой точки.

Вывод, который можно сделать из представленного расчета, заключается в том, что пространственная дисперсия электромагнитных волн, образующих возбуждающий импульс, заметно влияет на оптические характеристики квантовой ямы. Влияние пространственной дисперсии особенно сильно в том случае, когда  $\gamma_r \simeq \Delta \omega$ .

В заключение заметим, что полученные результаты справедливы при равенстве показателей преломления квантовой ямы и барьеров. В противном случае следует учитывать отражение от границ квантовой ямы. Однако рассмотрение этого вопроса выходит за рамки данной статьи.

### Список литературы

- L.C. Andreani, F. Tassone, F. Bassani. Solid State Commun. 77, 641 (1991).
- [2] L.C. Andreani. In: Confined electrons and phonons / Eds E. Burstein, C. Weisbuch. Plenum Press, N.Y. (1995). P. 57.
- [3] Е.Л. Ивченко. ФТТ 33, 2388 (1991).
- [4] F. Tassone, F. Bassani, L.C. Andreani. Phys. Rev. B 45, 6023 (1992).
- [5] T. Stroucken, A. Knorr, C. Anthony, P. Thomas, S.W. Koch, M. Koch, S.T. Gundiff, J. Feldman, E.O. Göbel. Phys. Rev. Lett. 74, 2391 (1996).
- [6] T. Stroucken, A. Knorr, P. Thomas, S.W. Koch. Phys. Rev. B 53, 2026 (1996).
- [7] L.C. Andreani, G. Panzarini, A.V. Kavokin, M.R. Vladimirova. Phys. Rev. B 57, 4670 (1998).
- [8] M. Hübner, T. Kuhl, S. Haas, T. Stroucken, S.W. Koch, R. Hey, K. Ploog. Solid State Commun. 105, 105 (1998).
- [9] Л.И. Коровин, И.Г. Ланг, Д.А. Контрерас-Солорио, С.Т. Павлов. ФТТ **43**, 2091 (2001); Cond-mat/0104262.
- [10] I.G. Lang, V.I. Belitsky, M. Cardona. Phys. Stat. Sol. (a) 164, 307 (1997).
- [11] I.G. Lang, V.I. Belitsky. Solid State Commun. 107, 577 (1998).
- [12] I.G. Lang, V.I. Belitsky. Phys. Lett. A 245, 329 (1998).
- [13] И.Г. Ланг, Л.И. Коровин, Д.А. Котрерас-Солорио, С.Т. Павлов. ФТТ 43, 1117 (2001); Cond-mat/0004178.
- [14] D.A. Contreras-Solorio, S.T. Pavlov, L.I. Korovin, I.G. Lang. Phys. Rev. B 62, 16 815 (2000); Cond-mat/0002229.
- [15] Л.И. Коровин, И.Г. Ланг, Д.А. Соттрерас-Солорио, С.Т. Павлов. ФТТ **42**, 2230 (2000); Cond-mat/0006364.

- [16] Л.И. Коровин, И.Г. Ланг, Д.А. Соттрерас-Солорио, С.Т. Павлов. ФТТ 44, 1681 (2002); Cond-mat/0202390.
- [17] И.Г. Ланг, Л.И. Коровин, С.Т. Павлов. ФТТ 48, 1693 (2006); Cond-mat/0403302.
- [18] И.В. Лернер, Ю.Е. Лозовик. ЖЭТФ 78, 1167 (1980).
- [19] И.Г. Ланг, Л.И. Коровин, Д.А. Контрерас-Солорио, С.Т. Павлов. ФТТ **44**, 2084 (2002); Cond-mat/0001248.
- [20] Л.И. Коровин, И.Г. Ланг, С.Т. Павлов. ФТТ 48, 2208 (2006); Cond-mat/0605650.
- [21] Л.И. Коровин, И.Г. Ланг, С.Т. Павлов. ЖЭТФ 115, 187 (1999).