Изучение магнитосопротивления гранулярного ВТСП YBa₂Cu₃O_{7-δ} в слабых магнитных полях: ориентационная зависимость магнитосопротивления

© В.В. Деревянко, Т.В. Сухарева, В.А. Финкель

Национальный научный центр "Харьковский физико-технический институт" Национальной академии наук Украины, 61108 Харьков, Украина

E-mail: finkel@kipt.kharkov.ua

(Поступила в Редакцию 23 января 2007 г.)

Изучена зависимость магнитосопротивления керамических образцов ВТСП $YBa_2Cu_3O_{\sim 6.5}$ при температуре T = 77.3 К в магнитных полях напряженностью до ~ 500 Ое в зависимости от взаимной ориентации векторов тока I и внешнего магнитного поля H_{ext} . Установлено, что с учетом размагничивающего фактора Dэффективная величина поля полного проникновения вихрей Джозефсона в слабые связи H_{c2J}^{eff} не зависит от взаимной ориентации векторов I и H_{ext} . Величина нижнего критического магнитного поля H_{c1A}^{eff} , связанного с началом проникновения вихрей Абрикосова в сверхпроводящие гранулы, заметно растет при увеличении угла между векторами I и H_{ext} . Наиболее сильную зависимость от взаимной ориентации векторов I и H_{ext} обнаруживают критическое поле фазового перехода первого рода брэгговское стекло–вихревое стекло H_{BG-VG}^{eff} и скачок магнитосопротивления при BG–VG-фазовом переходе.

PACS: 74.72.Bk, 74.25.Fy, 74.25.Ha

1. Введение

Проведенное нами ранее [1] исследование поперечного (вектор напряженности электрического поля E (или вектор тока I) перпендикулярен вектору напряженности магнитного поля H, I \perp H) и продольного (I || H) магнитосопротивления $\left(\frac{\Delta\rho}{\rho}\right)$ керамических (гранулярных) образцов ВТСП YBa₂Cu₃O_{7- δ} в слабых внешних магнитных полях ($T = 77.3 \text{ K} < T_c$, $0 \leq H_{\text{ext}} \leq \sim 500 \text{ Oe}$) позволило обнаружить и точно интерпретировать ряд эффектов в поведении полевых зависимостей магнитосопротивления $\left[\frac{\Delta\rho}{\rho}(H)\right]$, связанных с проникновением магнитного поля в сверхпроводящие гранулы и джозефсоновские слабые связи, с протеканием фазового перехода вихревой материи "по магнитного потока. К этим эффектам относятся следующие.

1) Появление отличного от нуля магнитосопротивления в поле полного проникновения вихрей Джозефсона в слабые связи ВТСП $H \ge H_{c2J}$.

2) Появление точек перегиба на кривых $\frac{\Delta \rho}{\rho}(H)$, связанное с началом проникновения вихрей Абрикосова в сверхпроводящие гранулы в поле $H = H_{c1A}$.

3) Появление скачков магнитосопротивления $\frac{\Delta \rho_{\text{јчтр}}}{\rho}$, обусловленных протеканием фазового перехода первого рода по магнитному полю между относительно упорядоченной фазой "брэгговское стекло" и сильно разупорядоченной фазой "вихревое стекло" [2] в поле $H = H_{\text{BG-VG}}$.

4) Появление максимумов на зависимостях $\frac{\Delta \rho}{\rho}(H)$ при $H > H_{\rm BG-VG}$, связанное с уменьшением силы пиннинга в результате образования фазы вихревого стекла.

Было обнаружено, что величина критического поля H_{c2J} очень сильно зависит от приведенной величины силы транспортного тока I/I_c , где I_c — значение транспортного тока, при котором появляется отличное от нуля сопротивление образца ВТСП при H = 0, и менее существенно от взаимной ориентации векторов І и **H** ($I \perp H$ или $I \parallel H$). Величины критических полей H_{c1A} и H_{BG-VG} слабо зависят как от силы транспортного тока, так и от взаимной ориентации векторов I и H. Величина же скачка магнитосопротивления $\Delta \rho_{\text{jump}}/\rho$ при $H = H_{BG-VG}$ существенно зависит от приведенной силы транспортного тока I/I_c и от взаимной ориентации векторов I и H, а при некотором значении I/I_c этот скачок исчезает и линия фазовых переходов первого рода брэгговское стекло-вихревое стекло (BG-VG-фазовый переход), очевидно, заканчивается в критической точке на плоскости $\frac{I}{I_{e}}-H$.

Как в наших [1], так и практически во всех предшествующих исследованиях (см., например, [3–7]) ограничивались изучением продольного и поперечного магнитосопротивления ВТСП $YBa_2Cu_3O_{7-\delta}$. В этой связи необходимо отметить, что изучение угловых зависимостей электрофизических свойств (вольтамперных характеристик, электросопротивления и т.п.; см., например, [8,9]) внесло существенный вклад в развитие низкополевой электродинамики ВТСП, свидетельствуя, в частности, в пользу модели самоорганизованного критического состояния в гранулярных сверхпроводниках [10].

Наблюдаемые в эксперименте заметные отличия в ходе зависимостей $\frac{\Delta \rho}{\rho}(H)$ при $\mathbf{I} \perp \mathbf{H}$ и $\mathbf{I} \parallel \mathbf{H}$ могут быть обусловлены рядом факторов: 1) существенными различиями величин полей размагничивания при разной геометрии эксперимента (хорошо известно, что количе-

ственный учет этих полей для керамических ВТСП возможен лишь в простейших случаях; см., например, [11]); 2) наличием кристаллографической текстуры гранулярных образцов и заметными различиями в размерах гранул вдоль и поперек этих образцов; 3) различной ориентацией вектора напряженности внешнего магнитного поля \mathbf{H}_{ext} относительно межзеренных контактов — джозефсоновских слабых связей [3,12,13] — и/или различиями в критических параметрах самих слабых связей [13,14] и т.п.

Следует полагать, что построение полной картины угловой зависимости магнитосопротивления гранулярных образцов ВТСП YBa₂Cu₃O_{7- δ} позволит внести вклад в установление природы как самого эффекта появления магнитосопротивления ВТСП в слабых магнитных полях, так и природы фазовых переходов в YBa₂Cu₃O_{7- δ} по магнитному полю. Экспериментальное изучение зависимости магнитосопротивления гранулярных образцов ВТСП YBa₂Cu₃O_{7- δ} от взаимной ориентации векторов I и **H**, т. е. эволюции кривых $\frac{\Delta \rho}{\rho}$ (*H*) и угловых зависимостей значений критических полей H_{c2J} , H_{c1A} и H_{BG-VG} , а также скачка магнитосопротивления при BG–VG-фазовом переходе $\left(\frac{\Delta \rho_{jump}}{\rho}\right)$ при изменении угла φ между векторами I и **H** и является целью настоящей работы.

Программа исследований, реализованная в настоящей работе, включала измерение магнитосопротивления керамических образцов ВТСП $YBa_2Cu_3O_{7-\delta}$ при постоянной температуре T = 77.3 К во внешних магнитных полях напряженностью до $H_{\text{ext}} \sim 500$ Ос при различных углах φ между направлениями протекания электрического тока I и внешним магнитным полем \mathbf{H}_{ext} .

2. Образцы и методика эксперимента

Объектами исследования служили образцы ВТСП состава YBa₂Cu₃O_{~6.95}, синтезированные по стандартной керамической технологии (см., например, [15]). Размеры исследуемых образцов составляли ~ $3 \times 2 \times 20$ mm. Низкоомные токовые и потенциальные серебряные контакты наносили при помощи проводящего клея на основе серебра. Для аттестации образцов использовали методы рентгеноструктурного анализа, резистивных и магнитных измерений критической температуры перехода в сверхпроводящее состояние T_c , измерений критических токов I_c (T = 77.3 K, H = 0).

Исследуемые образцы были практически однофазными. Рентгенографически наблюдалась слабая кристаллографическая текстура, близкая к текстуре базисной плоскости (001) орторомбической решетки, формирующаяся, как известно [16], на стадии одноосного прессования порошков, предшествующей заключительной операции синтеза — спеканию в окислительной атмосфере. Для всех образцов температура середины сверхпроводящего перехода $T_c^{\frac{1}{2}}$ составляла 92.6 К [1,17], ширина перехода $\Delta T_c = 0.4$ К, удельное электросопротивление

 $ho_{273\,{
m K}}\sim 4000\,\mu\Omega\cdot{
m cm},$ величина критической плотности тока $j_c\sim 40\,{
m A/cm}^2~(H=0).$

Все измерения в настоящей работе проводились при постоянном значении плотности тока $\frac{j}{j_c} \sim 0.1.^1$ Суть экспериментов заключалась в проведении пре-

Суть экспериментов заключалась в проведении прецизионных измерений магнитосопротивления керамических образцов ВТСП $YBa_2Cu_3O_{\sim6.95}$ в зависимости от величины и направления внешнего магнитного поля \mathbf{H}_{ext} относительно осей образца (ток I пропускания вдоль "длинной" *Z*-оси). Исследуемые образцы ВТСП $YBa_2Cu_3O_{\sim6.95}$ поворачивали относительно оси *Y* от оси *Z* к оси *X* лабораторной системы координат на угол φ ($0 \le \varphi \le 90$ deg, шаг изменения угла $\varphi \Delta \varphi = 10$ deg). С помощью поворотного устройства [18–20] угол φ между векторами I и \mathbf{H}_{ext} можно было задавать с точностью $\delta \varphi \sim 2$ deg.

Для снятия V—H-характеристик при I = const на базе ЭВМ типа IBM PC/AT 386 была разработана специальная установка [18], состоящая из блока управления током источника магнитного поля (соленоида) I_{sol} и блока управления измерительным (транспортным) током I_{meas} , протекающим через образец. Наполненный жидким азотом сосуд Дьюара с расположенным в нем поворотным устройством — держателем образца помещался в соленоид.

Все измерения производились в автоматическом режиме [1,17–20]: при постоянных значениях величин транспортного тока I_{meas} и угла φ ток через соленоид I_{sol} плавно увеличивался до определенной величины, соответствующей заданному значению максимальной напряженности магнитного поля H_{max} . Полученная информация в виде зависимостей $\rho(H)$ при $I, \varphi = \text{const}$ записывалась в память ЭВМ. Погрешность в измерениях относительного магнитосопротивления $\frac{\delta \rho}{\rho}(H)$ не превышала 10^{-2} %. Затем ток I_{meas} выключался, образец отогревался до $T > T_c$, задавалось следующее значение угла φ и цикл измерений повторялся.

3. Результаты исследования

Некоторые результаты измерений зависимости магнитосопротивления $\Delta \rho / \rho_{273 \,\mathrm{K}}$ типичного образца керамического ВТСП состава YBa₂Cu₃O_{~6.95} при различных значениях угла φ между векторами I и H_{ext} от величины приложенного магнитного поля H_{ext} представлены на рис. 1, a.² На рисунке представлены только данные, полученные при повышении напряженности магнитного поля в диапазоне $0 \leq H_{\mathrm{ext}} \leq H_{\mathrm{ext}}^{\mathrm{max}}$. Гистерезисные эффекты в

¹ При таком значении $\frac{j}{j_c}$ реализуются все фазовые переходы в H_{c2J}, H_{c1A} и $H_{\rm BG-VG}$ и обнаруживаются максимумы на зависимостях $\frac{\Delta \rho}{\rho}$ (*H*) [1].

² На рис. 1 представлена лишь часть полученных кривых $\frac{\Delta \rho}{\rho_{273 \, \mathrm{K}}} (H_{\mathrm{ext}})$, каждая серия измерений включает получение десяти подобных кривых.

магнитосопротивлении YBa₂Cu₃O_{~6.95}, наблюдающиеся нами при понижении напряженности магнитного поля, требуют отдельного рассмотрения.

Как видно, назависимо от величины угла между векторами I и \mathbf{H}_{ext} все кривые $\frac{\Delta \rho}{\rho_{273 \, \text{K}}} (H_{\text{ext}})$ носят сходный характер.

1) При низких значениях напряженности приложенного магнитного поля ($H_{\text{ext}} < H_{c2J}$) магнитосопротивление отсутствует.

2) В диапазоне $H_{c2J} > H_{ext} > H_{BG-VG}$ на всех кривых $\frac{\Delta \rho}{\rho_{273 \, \mathrm{K}}} (H_{ext})$ наблюдаются слабо выраженные точки перегиба.

3) При $H_{\rm ext} = H_{\rm BG-VG} \sim 200$ Ое имеют место скачки магнитосопротивления.

4) При $H_{\text{ext}} > H_{\text{BG-VG}}$ Ое на всех кривых наблюдаются максимумы магнитосопротивления, положение которых на оси H_{ext} незначительно смещается в область низких магнитных полей при увеличении угла φ .

Очевидно, что для сравнительного анализа зависимостей магнитосопротивления от магнитного поля, полученных при различных значениях угла между векторами I и \mathbf{H}_{ext} , необходимо произвести учет размагничивающего фактора D, т. е. рассматривать напряженности не только приложенных (внешних) магнитных полей \mathbf{H}_{ext} (H_{ext}), но и эффективных полей H_{eff} , действующих на образец ВТСП. Как известно [8,21], для сверхпроводника, находящегося в мейсснеровском состоянии,

$$H_{\rm eff} = \frac{H_{\rm ext}}{1 - D_i},\tag{1}$$

где D_i — компоненты тензора размагничивающих коэффициентов.

Для трехосного эллипсоида с "длинной" осью Z — тела, близкого по форме к используемым образцам (прямоугольным параллелепипедам размерами $x \times y \times z$, см. выше), — значения компонент тензора размагничивающих коэффициентов могут быть представлены в виде [22]

$$D_{x} = \frac{y}{x+y} - \frac{1}{2} \frac{xy}{z^{2}} \ln\left(\frac{4z}{x+y}\right) + \frac{xy(3x+y)}{4z^{2}(x+y)},$$

$$D_{y} = \frac{x}{x+y} - \frac{1}{2} \frac{xy}{z^{2}} \ln\left(\frac{4z}{x+y}\right) + \frac{xy(x+3y)}{4z^{2}(x+y)}, \quad (2)$$

$$D_{z} = \frac{xy}{z^{2}} \left[\ln\left(\frac{4z}{x+y}\right) - 1\right].$$

Для образца, повернутого относительно оси Y от оси Z к оси X лабораторной системы координат на угол φ (см. выше), величина D_{φ} составляет [23]

$$D_{\varphi} = D_X \cos^2 \varphi + D_Z \sin^2 \varphi. \tag{3}$$

На рис. 1, b полевые зависимости магнитосопротивления образца ВТСП $YBa_2Cu_3O_{\sim 6.95}$ при различных значениях угла φ между векторами I и H представ-

Рис. 1. Зависимости $\frac{\Delta \rho}{\rho_{273 \text{ K}}} (H_{\text{ext}}) (a)$ и $\frac{\Delta \rho}{\rho_{273 \text{ K}}} (H_{\text{eff}}) (b)$ для образца ВТСП YBa₂Cu₃O_{~6.95} при различных значениях угла φ между векторами I и H_{ext}. Числа около кривых соответствуют значениям угла φ .

Рис. 2. Угловая зависимость эффективных критических полей H_{c2J}^{eff} , H_{c1A}^{eff} и H_{BG-VG}^{eff} образцов ВТСП YBa₂Cu₃O_{~6.95}. Светлыми и темными символами показаны данные для двух различных образцов.

лены в координатах $H_{\rm eff} - \frac{\Delta \rho}{\rho_{273 \, \rm K}}$. Наблюдаемая картина качественно отличается от полученной в "стандартных" координатах $H_{\rm ext} - \frac{\Delta \rho}{\rho_{273 \, \rm K}}$.

Прежде всего обращает на себя внимание следующее немаловажное обстоятельство: при $H_{\rm eff} < H_{\rm BG-VG}^{\rm eff}$ полевые зависимости магнитосопротивления очень близки (независимо от величины угла φ между векторами **I** и $\mathbf{H}_{\rm ext}$).³ Наблюдается существенная зависимость эффективных значений критических полей BG–VG-фазового перехода ($H_{\rm BG-VG}^{\rm eff}$) и скачков магнитосопротивления $\Delta \rho_{\rm jump} / \rho_{273 \,\rm K}$ при $H_{\rm eff} = H_{\rm BG-VG}^{\rm eff}$, а также положения точек перегиба при $H_{c2J}^{\rm eff} > H_{\rm eff}$ на кривых $\frac{\Delta \rho}{\rho_{273 \,\rm K}}$ ($H_{\rm eff}$), связанных с началом проникновения вихрей

³ В известной степени это обстоятельство, очевидно, свидетельствует в пользу корректности учета размагничивающего фактора.

Абрикосова в сверхпроводящие гранулы [1] в поле H_{c1A} , от угла φ .

На основании данных, приведенных на рис. 1, *b*, могут быть восстановлены угловые зависимости эффективных значений критических полей H_{c2J} , H_{c1A} и H_{BG-VG} (рис. 2), т.е. по существу построена фазовая $\varphi-H_{eff}$ -диаграмма ВТСП-керамики YBa₂Cu₃O_{~6.95} при T = 77.3 K.

4. Обсуждение результатов

Из приведенных выше данных следует, что для керамического образца ВТСП $YBa_2Cu_3O_{\sim 6.95}$ в ходе зависимостей величин эффективных критических полей H_{c2J}^{eff} , H_{c1A}^{eff} и H_{BG-VG}^{eff} , а также в положении максимумов на кривых зависимости $\frac{\Delta \rho}{\rho_{273 \text{ K}}}$ (H_{eff}) при $H > H_{BG-VG}$ от угла φ между векторами I и \mathbf{H}_{ext} [1] наблюдаются следующие закономерности.

1) В пределах точности измерений эффективная величина поля полного проникновения вихрей Джозефсона в слабые связи ВТСП YBa₂Cu₃O_{~6.95} не зависит от взаимной ориентации векторов I и \mathbf{H}_{ext} ($H_{c2J}^{\text{eff}} = 36.6 \pm 0.6$ Oe).

2) Эффективная величина нижнего критического поля H_{c1A}^{eff} , связанного с началом проникновения вихрей Абрикосова в сверхпроводящие гранулы, заметно растет при увеличении угла между векторами I и H_{ext}, хотя диапазон изменений значений полей H_{c1A}^{eff} довольно узок. Обнаруженная в работе угловая зависимость $H_{c1A}^{\text{eff}}(\varphi)$ качественно близка к зависимости $H_{c1A}^{\text{eff}}(\varphi)$, полученной на подобных керамических образцах ВТСП УВа₂Cu₃O_{~6.95} на основании экспериментов по измерениям критических токов [20].

3) Наиболее сильный рост при увеличении угла φ между векторами I и \mathbf{H}_{ext} обнаруживает эффективное критическое магнитное поле фазового перехода первого рода брэгговское стекло–вихревое стекло H_{BG-VG}^{eff} .

4) Положение максимума на кривых $\frac{\Delta \rho}{\rho_{273 \, \rm K}} (H_{\rm eff})$ заметно сдвигается в область высоких значений полей $H_{\rm eff}$ при увеличении угла между векторами I и $\mathbf{H}_{\rm ext}$ (обратим внимание на то, что без учета размагничивающего фактора этот максимум смещается в область низких полей при увеличении угла φ ; см. выше).

Установлено также, что величина скачка магнитосопротивления при BG–VG-фазовом переходе заметно растет как при увеличении угла между векторами I и H_{ext}, так и при росте $H_{\rm eff}$ (рис. 3). Из проекций пространственной кривой $\frac{\Delta \rho_{\rm jump}}{\rho_{273\,\rm K}} (\varphi, H_{\rm BG-VG}^{\rm eff})$ на плоскости $\varphi - \frac{\Delta \rho_{\rm jump}}{\rho_{273\,\rm K}}$ и $H_{\rm BG-VG}^{\rm eff} - \frac{\Delta \rho_{\rm jump}}{\rho_{273\,\rm K}}$ видно, что зависимость скачка магнитосопротивления от эффективного поля BG–VG-фазового перехода носит монотонный характер, а на кривой $\frac{\Delta \rho_{\rm jump}}{\rho_{273\,\rm K}} (\varphi)$ явно наблюдается точка перегиба. Довольно неожиданным результатом настоящей рабо-

ты оказалось отсутствие в пределах точности измерений

Рис. 3. Зависимость скачка магнитосопротивления $\Delta \rho_{\text{jump}} / \rho_{273 \text{ K}}$ образцов ВТСП YBa₂Cu₃O_{~6.95} в критическом поле $H_{\text{BG-VG}}^{\text{eff}}$ от угла φ между векторами I и \mathbf{H}_{ext} и эффективной величины поля $H_{\text{BG-VG}}^{\text{eff}}$. Светлыми и темными символами показаны данные для двух различных образцов.

 $(\delta H_{c2J}^{\text{eff}} \sim 1-2 \text{ Oe})$ сколько-нибудь заметной зависимости величины поля полного проникновения вихрей Джозефсона в слабые связи H_{c2J}^{eff} от ориентации внешнего магнитного поля, т.е. от угла между векторами I и \mathbf{H}_{ext} . То обстоятельство, что величина H_{c2J}^{eff} = const, казалось бы, может быть обусловлено отсутствием сильной текстуры в исследуемых образцах, что, однако, не согласуется с появлением ряда упомянутых выше достаточно сильных ориентационных эффектов.

Есть все основания полагать, что, несмотря на разнообразие типов слабых связей в ВТСП $YBa_2Cu_3O_{7-\delta}$ (см., например, [13,24,25]), лишь один из них образует протяженные джозефсоновские контакты [26], которые и оказывают определяющее влияние на процесс протекания электрического тока в сверхпроводящей среде. Такое предположение, очевидно, согласуется с основными представлениями низкополевой электродинамики гранулярных ВТСП [8,10] и означает, что безразмерный параметр

$$V = \frac{8\pi^2 j_c a^3}{\Phi_0},$$
 (4)

где j_c — плотность критического тока, a — расстояние между джозефсоновскими контактами (т. е. характерный размер сверхпроводящих гранул в ВТСП), Φ_0 — квант потока магнитного поля ($\Phi_0 = 2 \cdot 10^{-7} \,\mathrm{G} \cdot \mathrm{cm}^2 = 2 \cdot 10^{-15} \,\mathrm{Wb}$), принимает значение $V \ll 1,^4$ которому и соответствует случай большого джозефсоновского контакта без пиннинга. Заметим сразу же, что отсутствие пиннинга на слабых связях в случае керамических образцов ВТСП YBa₂Cu₃O_{7- δ} было установлено нами экспериментально [17].

⁴ Низкие значения j_c и характерные значения размеров гранул (~ $1-5\,\mu$ m) обеспечивают выполнение неравенства $V \ll 1$.

Полученная в настоящей работе угловая зависимость критических полей H_{c1A}^{eff} (рис. 2) удовлетворительно описывается уравнением теории Гинзбурга—Ландау для первого (нижнего) критического поля слоистых сверх-проводников [27]

$$H_{c1A}(\gamma) = \frac{H_{c1A}^{c}}{\sqrt{\cos^{2}(\gamma) + \frac{m_{c}}{m_{ab}} \sin^{2}(\gamma)}},$$
 (5)

где γ — угол между вектором **I** и главной осью (**c**) орторомбической кристаллической решетки сверхпроводника YBa₂Cu₃O_{~6.95} (имеется в виду эффективное [20] (усредненное) значение этого угла — $\bar{\gamma}$), H_{c1A}^c — величина нижнего критического поля сверхпроводящих гранул вдоль главной оси c, m_c и m_{ab} — компоненты тензора эффективных масс электрона в анизотропной теории Гинзбурга–Ландау вдоль главной оси (**c**) и в перпендикулярном ей направлении (в плоскости **ab**).

Значения параметров уравнения (5) $H_{c1A}^c = 148.5 \pm 4.3 \text{ Oe}, \quad \bar{\gamma} = 81.6 \pm 6.2 \text{ deg}, \quad m_c/m_{ab} =$ $= 1.6 \pm 0.1$ — адекватно описывают текстуру (главная ось с орторомбической решетки образует конус относительно нормали к поверхности ху с углом раствора, равным $\frac{\pi}{2} - \gamma$) и электромагнитные свойства керамического образца ВТСП УВа₂Си₃О_{~6.95}, однако величины H_{c1A}^c и $\frac{m_c}{m_{ab}}$ заметно отличаются от результатов прямых измерений на монокристаллах [16] и результатов определения H_{c1A}^c и $\frac{m_c}{m_{ab}}$ на керамических образцах по угловым зависимостям критического тока *j*_c [20]. Очевидно, что эти расхождения могут быть обусловлены как довольно низкой точностью определения положения точек перегиба на кривых $\frac{\Delta \rho}{\rho_{273\,\mathrm{K}}}$ (H_{eff}), так и систематическим сдвигом этих точек в сторону минимальных значений критических полей H^{ab}_{c1A} [1].

Заметное повышение эффективного критического магнитного поля BG–VG-фазового перехода H_{BG-VG}^{eff} и наличие сопутствующего повышению H_{BG-VG}^{eff} эффекта роста скачка магнитосопротивления $\frac{\Delta \rho_{\text{јитр}}}{\rho_{273 \text{ K}}}$ при увеличении угла между векторами I и H_{ext} отражают, очевидно, особенности поведения критического тока при переходе из фазы брэгговское стекло в фазу вихревое стекло [28]: рост критического тока в базисной плоскости **ab** (I_c^{ab}) и скачкообразное уменьшение критического тока вдоль главной оси **c** (I_c^c) . Таким образом, наличие даже относительно слабой текстуры в керамических образцах ВТСП YBa₂Cu₃O_{~6.95} приводит к появлению достаточно сильных эффектов, связанных с различной ориентацией внешнего магнитного поля относительно кристаллических осей гранул.

Очевидно, что и заметный "дрейф" максимума на кривых $\frac{\Delta \rho}{\rho_{273 \text{ K}}} (H_{\text{eff}})$ в сторону больших углов между векторами I и H_{ext}, т. е. малых углов между H_{ext} и осью магнитной анизотропии **с**, согласуется с особенностями

анизотропного поведения критического тока в фазе вихревого стекла — слабым ростом I_c^{ab} и существенным понижением I_c^c по мере роста разупорядочения под действием приложенного магнитного поля [28].

5. Заключение

В результате изучения угловой зависимости магнитосопротивления керамических образцов ВТСП $YBa_2Cu_3O_{\sim 6.95}$ удалось строго дифференцировать две группы эффектов — зависящих и не зависящих от взаимной ориентации транспортного тока I и внешнего магнитного поля H_{ext} .

Установлено, что как величина критического поля полного проникновения вихрей Джозефсона в слабые связи ВТСП H_{c2J}^{eff} , так и общий уровень магнитосопротивления $\frac{\Delta \rho}{\rho_{273 \text{ K}}}$ (H_{eff}) при $H_{\text{eff}} < H_{\text{BG-VG}}^{\text{eff}}$ практически не зависят от направления приложения внешнего магнитного поля \mathbf{H}_{ext} . Это указывает на правомерность применения к гранулярным ВТСП в диапазоне магнитных полей $H_{\text{eff}} < H_{\text{BG-VG}}^{\text{eff}}$ аппроксимации эффективной среды (EMA [29]) и использования применительно к проблеме магнитосопротивления ВТСП в слабых магнитных полях представлений теории перколяции [6,7,30–34]. Вклад изотропных эффектов в общий уровень магнитосопротивления гранулярных образцов ВТСП YBa₂Cu₃O_{~6.95} оказывается весьма значительным — более 30% даже в ситуации I || \mathbf{H}_{ext} .

Явно выраженные анизотропные эффекты наблюдаются при $H_{\rm eff} > H_{\rm BG-VG}^{\rm eff}$: угловая зависимость критического поля BG–VG-фазового перехода первого рода и скачка магнитосопротивления $\frac{\Delta \rho_{\rm jump}}{\rho_{273\,\rm K}}$, а также положение максимума на кривой $\frac{\Delta \rho}{\rho_{273\,\rm K}}$ ($H_{\rm eff}$). Характер этих эффектов согласуется с современными представлениями об эволюции вихревой структуры ВТСП в магнитном поле [28].

Очень слабые угловые эффекты в значениях $\frac{\Delta \rho}{\rho_{273\,\mathrm{K}}}$ (H_{eff}), наблюдающиеся при $H_{\mathrm{eff}} > H_{c1A}^{\mathrm{eff}}$, по-видимому, обусловлены исключительно наличием кристаллографической текстуры в гранулярных образцах ВТСП YBa₂Cu₃O_{~6.95}.

Список литературы

- B.B. Деревянко, Т.В. Сухарева, В.А. Финкель. ФТТ 46, 1740 (2003); V.V. Derevyanko, T.V. Sukhareva, V.A. Finkel. Functional Mater. 11, 710 (2004).
- [2] T. Giamarchi, P. Le Doussal. Phys. Rev. Lett. **72**, 1530 (1994); Phys. Rev. B **55**, 6577 (1997); T. Klein, I. Joumard, S. Blanchard, J. Marcus, R. Cibitt, T. Giamarchi, P. Le Doussal. Nature **413**, 404 (2001).
- [3] D. Daghero, P. Mazzetti, A. Stepanescu, P. Tura, A. Masoero. Phys. Rev. B 66, 184 514 (2002).
- [4] A. Kiliç, K. Kiliç, H. Yetiş, O. Çetin. J. Appl. Phys. 95, 1924 (2004); New J. Phys. 7, 212 (2005).

- [5] A. Kiliç, K. Kiliç, S. Senussi, K. Demir. Physica C 294, 203 (1998).
- [6] E. Mogilko, L. Burlachkov, Y.M. Strelniker, Y. Schlesinger, S. Havlin. Physica B 329–333, 150 (2003).
- [7] L. Burlachkov, E. Mogilko, Y. Schlesinger, Y.M. Strelniker, S. Havlin. Phys. Rev. B 67, 104 509 (2003).
- [8] S.L. Ginzburg, O.V. Gerashchenko, A.I. Sibilev. Supercond. Sci. Technol. 10, 395 (1997); O.V. Gerashchenko, S.L. Ginzburg. Supercond. Sci. Technol. 13, 332 (2000); О.В. Геращенко. Письма в ЖТФ 25, 8 (1999).
- [9] I. Metskhvarishvili, M. Metskhvarishvili, L. Khorbaladze, M. Elizbarashvili, Z. Miminoshvili, L. Nerkrasova. Turkish J. Phys., 29, 9 (2005).
- [10] С.Л. Гинзбург. ЖЭТФ 106, 607 (1994); S.L. Ginzburg, N.E. Savitskaya. J. Low Temp. Phys. 130, 333 (2003).
- [11] M.N. Kunchur, T.R. Askew. J. Appl. Phys. 84, 6763 (1998).
- [12] М.Ю. Куприянов, К.К. Лихарев. УФН 160, 49 (1990).
- [13] J. Halbritter. Phys. Rev. B 48, 9735 (1993).
- [14] Н.Н. Ефимова, Ю.А. Попков, М.Б. Устименкова, В.А. Финкель. ФНТ 20, 343 (1994).
- [15] V.A. Finkel', V.M. Arzhavitin, A.A. Blinkin, V.V. Derevyanko, Yu.Yu. Razdovskii. Physica C 235–240, 303 (1994).
- [16] А.С. Капчерин, И.И. Папиров, П.И. Стоев, В.В. Торяник, В.А. Финкель, В.А. Шкуропатенко, Т.И. Бухарова. СФХТ 5, 113 (1992).
- [17] В.В. Деревянко, Т.В. Сухарева, В.А. Финкель. ФТТ 48, 1374 (2006).
- [18] В.В. Торяник, В.А. Финкель, В.В. Деревянко. Физика и химия обраб. материалов 5, 55 (1995).
- [19] В.А. Финкель, В.В. Торяник. ФНТ 23, 824 (1997).
- [20] В.А. Финкель, В.В. Деревянко. ФНТ 26, 128 (2000).
- [21] Т. Ван Дузер, Ч.У. Тернер. Физические основы сверхпроводниковых устройств и цепей. Радио и связь, М. (1984). 344 с.; М. Тинкхам. Введение в сверхпроводимость. Атомиздат, М. (1980). 310 с.
- [22] J.A. Osborn. Phys. Rev. 67, 351 (1945).
- [23] U. Yaron, I. Felner, Y. Yeshurun. Phys. Rev. B 44, 12 531 (1991).
- [24] Е.З. Мейлихов. УФН 163, 27 (1993).
- [25] В.В. Немошкаленко, М.А. Васильев, А.С. Филиппов. Металлофизика 13, 3 (1991).
- [26] М.В. Белодедов, С.В. Черных. ЖТФ 73, 75 (2003).
- [27] А.В. Балацкий, Л.И. Бурлачков, Л.П. Горьков. ЖЭТФ 90, 1478 (1986).
- [28] A.D. Hermández, D. Domínguez. Phys. Rev. Lett. 92, 117 002 (2004); Physica C 408–410, 489 (2004).
- [29] R. Juretschke, R. Landauer, J.A. Swanson. J. Appl. Phys. 27, 838 (1956).
- [30] J.R. Clere, G. Giraud, J.M. Laugier, J.M. Luck. Adv. Phys. 39, 191 (1990).
- [31] C.A.M. dos Santos, A.J.S. Machado. Physica C 354, 213 (2001).
- [32] G.L. Olivera, C.A.M. dos Santos, C.Y. Shigue, A.J.S. Machado. IEEE Trans. Appl. Supercond. 12, 1272 (2002).
- [33] C.A.M. dos Santos, M.S. da Luz, B. Ferreira, A.J.S. Machado. Physica C 391, 345 (2003).
- [34] Y. Schlesinger, L. Burlachkov, E. Mogilko. Physica C 307, 291 (1998).