Динамика решетки и фазовый переход из кубической в тетрагональную фазу в кристалле LaMnO₃ в модели поляризуемых ионов

© В.И. Зиненко, М.С. Павловский

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия

E-mail: zvi@iph.krasn.ru

(Поступила в Редакцию 21 декабря 2006 г.)

Приводятся результаты неэмпирического расчета статических и динамических свойств кристалла LaMnO₃ со структурой перовскита в кубической, ромбоэдрической и ромбической фазах. Расчет проведен в рамках микроскопической модели ионного кристалла, учитывающей деформируемость и поляризуемость ионов. В спектре колебаний решетки в кубической фазе найдены нестабильные моды колебаний, причем эти моды занимают фазовое пространство во всей зоне Бриллюэна. Собственные векторы наиболее нестабильной моды в граничной точке R зоны Бриллюэна связаны со смещениями ионов кислорода и соответствуют "повороту" октаэдра MnO₆. Конденсация одной, двух и трех компонент этой моды приводит к тетрагональному, ромбическому и ромбоэдрическому искажениям структуры. Для описания структурного фазового перехода в приближении локальной моды рассматривается удвоенная ячейка перовскита, в которой октаэдр MnO₆ выделяется явно. Определены параметры модельного гамильтониана. Методом Монте-Карло исследованы статистические свойства. Вычисленная температура фазового перехода из кубической фазы (9800 K) значительно превышает температуру плавления данного кристалла. В экспериментально наблюдаемых ромбических и ромбоэдрических фазах вычисленные частоты длинноволновых колебаний решетки находятся в удовлетворительном согласии с опытными данными.

Работа поддержана грантом РФФИ (№ 06-02-16091) и грантом Президента РФ "Ведущие научные школы" (НШ-4137.2006.2).

PACS: 63.20.Dj, 64.60.-i, 64.70.Kb

1. Введение

Манганиты со структурой перовскита с общей формулой $R_{1-x}A_x$ MnO₃ (R — редкоземельный элемент, A =Ca, Sr, Ba, Pb) характеризуются интересными физическими свойствами и изучаются уже несколько десятков лет.

Фазовые диаграммы и физические свойства твердых растворов в некоторых соединениях кардинально меняются при изменении концентрации компонент раствора [1–6]. Например, $La_{1-x}Ca_xMnO_3$ при концентрациях $0.2 \le x \le 0.48$ испытывает переход металл–диэлектрик, а при других концентрацих остается диэлектриком [7]. Кроме того, в зависимости от состава, как чистые соединения, так и их твердые растворы испытывают разнообразные структурные фазовые переходы, и физические свойства существенным образом зависят от искажений кристаллической решетки [8–12]. Было выдвинуто предположение, что важную роль в формировании необычных свойств манганитов играют колебания кристаллической решетки и информация о фононном спектре этих соединений важна для понимания их свойств.

Кристаллическая структура родоначальника этого класса соединений — LaMnO₃ — зависит от условий синтеза, и в стехиометрическом составе вещество кристаллизуется в орторомбической структуре с пространственной группой *Рпта* и с четырьмя молекулами (Z = 4) в элементарной ячейке [8,9]. Эта структура

является искаженной формой идеальной структуры перовскита, где искажения главным образом связаны со смещениями ионов кислорода, приводящими к "поворотам" октаэдров MnO_6 . Ромбоэдрическая фаза кристалла LaMnO₃ с пространственной группой $R \,\bar{3}c \, (Z=2)$ наблюдается в разных работах при температурах выше $300 \, \text{K} \, [9,13] \, \text{и} \, 800 \, \text{K} \, [10]$; она также является искаженной формой идеальной структуры перовскита и искажения связаны с "поворотом" октаэдров MnO_6 . Кубическая фаза в LaMnO₃ наблюдалась выше $1200 \, \text{K} \, \text{B} \, \text{работе} \, [10]$. По данным других структурных исследований, кубическая фаза со структурой перовскита не наблюдается вплоть до температуры плавления [11]. Фононные спектры LaMnO₃ исследованы как в орторомбической, так и в ромбоэдрической фазах.

ИК- и раман-активные фононы в орторомбической фазе LaMnO₃ были изучены в работах [14,15]. Там же приведены результаты расчета предельных частот колебаний решетки в рамках оболочечной модели с эмпирическими подгоночными параметрами. Измеренные частоты колебаний вместе с результатами такого же расчета в ромбоэдрической фазе LaMnO₃ приведены в работе [13]. Расчет фононного спектра LaMnO₃ в той же оболочечной модели и с учетом ян-теллеровского вклада в динамическую матрицу в идеальной структуре перовскита проведен в работе [16], где получено наличие мнимых частот колебаний в окрестности симметричных точек R и M зоны Бриллюэна.

Куби фа	ческая аза	(1	Ромбоэд в прямоугольно	рическая фаза й системе коод	цринат)	Ромбическая фаза			
Атом	Z^{din}	Атом	Z_{xx}^{din}	$Z_{yy}^{\rm din}$	$Z_{zz}^{ m din}$	Атом	Z_{xx}^{din}	Z_{yy}^{din}	$Z_{zz}^{ m din}$
La	3.92	La	3.63	4.05	4.05	La	3.86	3.78	4.13
Mn	3.48	Mn	3.22	3.32	3.51	Mn	3.33	3.46	3.52
O_{\parallel}	-2.73	0	-2.76	-2.41	-2.10	O1	-2.23	-2.70	-2.54
$\mathbf{O}_{\perp}^{''}$	-2.33					02	-2.48	-2.27	-2.56
ε_{∞}	3.21		$\varepsilon_{\infty}^{xx} = 2.90$	$\varepsilon_{\infty}^{yy} = 3.09$	$\varepsilon_{\infty}^{zz} = 3.09$		$\varepsilon_{\infty}^{xx} = 3.03$	$\varepsilon_{\infty}^{yy} = 3.04$	$\varepsilon_{\infty}^{zz} = 3.00$

Таблица 1. Динамические заряды ионов и диэлектрическая проницаемость кристалла LaMnO₃ в кубической, ромбоэдрической и ромбической фазах

Таблица 2. Модули упругости (10¹² din/cm²) кристалла LaMnO₃ в кубической и ромбической фазах

Кубическая фаза		Ромбическая фаза		Ромбическая фаза		
(настоящий расчет)		(настоящий расчет)		(экспериментальные данные [22])		
C ₁₁ C ₁₂ C ₄₄	2.80 0.80 0.82	$C_{11} \\ C_{22} \\ C_{33} \\ C_{12} \\ C_{13} \\ C_{23} \\ C_{44} \\ C_{55} \\ C_{66}$	2.45 2.60 3.12 1.03 0.87 1.01 0.99 0.84 1.00	C ₁₁ C ₁₂	3.05 1.08	

Целью данной работы является неэмпирический расчет в рамках модели ионного кристалла с поляризуемыми ионами равновесного объема, полного спектра колебаний решетки и высокочастотной диэлектрической проницаемости в кристалле LaMnO₃ в нестабильных кубической и тетрагональной фазах и в стабильных орторомбической и ромбоэдрической фазах, а также вычисление температуры неустойчивости кубической фазы методом эффективного гамильтониана в приближении локальной моды.

В разделе 2 приведены результаты расчета частот нормальных колебаний решетки, динамических зарядов Борна, упругих модулей и высокочастотной диэлектрической проницаемости для LaMnO₃ в структуре идеального провскита.

В разделе 3 определены параметры эффективного гамильтониана, описывающего структурный фазовый переход, связанный с неустойчивостью кубической структуры по отношению к моде колебаний, собственный вектор которой соответствует "повороту" октаэдра MnO₆, и приведены результаты расчета методом Монте-Карло (MK) температуры фазового перехода и температурных зависимостей параметра порядка и теплоемкости.

В разделе 4 приведены результаты расчета частот колебаний, упругих модулей и диэлектрической проницаемости в ромбоэдрической и орторомбической фазах кристалла LaMnO₃ и проведено сравнение с экспериментальными данными и с результатами других расчетов.

Динамика решетки LaMnO₃ в кубической фазе

Для вычисления равновесного объема, частот колебаний, динамических зарядов Борна, модулей упругости и высокочастотной диэлектрической проницаемости мы используем модель ионного кристалла, в которой учитываются деформируемость, дипольная и квадрупольная поляризуемость ионов [17,18]. Модель и процедура расчета подробно описаны в обзоре [19], а также в работах [20,21].

Рис. 1. Структура кристалла LaMnO₃ в кубической фазе с пространственной группой симметрии *Pm*3*m*.

Рис. 2. Фононный спектр кристалла LaMnO₃ в кубической фазе, мнимые частоты представлены отрицательными значениями.

Структура LaMnO₃ в кубической фазе с пространственной группой Рт3т показана на рис. 1. Равновесное значение параметра решетки (a_0) определялось из минимума в зависимости полной энергии кристалла от объема и составило 3.87 Å. Были вычислены значения высокочастотной диэлектрической проницаемости и динамических зарядов ионов (табл. 1), а также модулей упругости (табл. 2) рассматриваемого кристалла. Следует отметить отличие в величинах динамических зарядов ионов в данном соединении и в кислородосодрежащих сегнетоэлектриках со структурой перовскита. В последних заряд катиона в центре октаэдра и компонента динамического заряда кислорода вдоль связи В-О существенно превышают номинальный заряд иона, в то время как в данном соединении это превышение незначительное.

Вычисленные дисперсионные кривые частот колебаний решетки LaMnO₃ в кубической фазе показаны на рис. 2. Как видно из рис. 2, в спектре колебаний решетки имеются мнимые частоты, что свидетельствует о структурной нестабильности кубической фазы в этом материале. Следует подчеркнуть, что нестабильные моды занимают все фазовое пространство в зоне Бриллюэна и абсолютные значения наиболее нестабильных мод в симметричных точках R (мода R_{25}) и M (мода M_3) зоны Бриллюэна сравнимы по величине. Полученный здесь спектр колебаний решетки в кубической фазе отличается от спектра колебаний, приведенного в работе [16], где, как уже отмечалось, нестабильные моды имеются только в окрестности симметричных точек R и M. Трехкратно вырожденная мода R_{25} имеет собственные векторы, в которых смещаются только ионы кислорода

$$O1y = -O2z,$$
$$O1x = -O3z,$$
$$O2x = -O3y.$$

В невырожденной моде M_3 также смещаются только ионы кислорода

$$O2x = -O3y.$$

3. Структурный фазовый переход

Как уже отмечалось, наиболее нестабильными модами в LaMnO₃ являются моды R_{25} и M_3 , принадлежащие граничным точкам зоны Бриллюэна, и фазовый переход, связанный с конденсацией этих мод, сопровождается увеличением объема элементарной ячейки. В структуре перовскита октаэдры ВО₆ имеют общие вершины, и для явного выделения октаэдра MnO₆ будем рассматривать соединение с удвоенной химической формулой $La_2Mn_2O_6$ с пространственной группой $Fm\bar{3}m$ и с одной молекулой в элементарной ячейке, как это показано на рис. 3 (структура эльпасолита). При этом формально различим два иона марганца, изменив расстояния между ионами марганца и кислорода на сколь угодно малую величину Δ : Mn1 – O = $a_0/2(1 - \Delta)$, $Mn2 - O = a_0/2(1 + \Delta)$, где a_0 — параметр решетки структуры перовскита. Точечная симметрия при этом сохраняется, теряется только трансляционная симметрия структуры перовскита. При данном выборе удвоенной элементарной ячейки центр и граничная точка R зоны Бриллюэна простой кубической решетки структуры перовскита переходят в центр зоны гранецентрированной решетки, а граничные точки М и Х простой решетки переходят в граничную точку Х гранецентрированной решетки. Трехкратно вырожденная мода R₂₅ в граничной точке R структуры перовскита становится трехкратно вырожденной модой T_{1g} в центре зоны с собственными векторами

$$-O1y = O2y = O5z = -O6z,$$

$$-O1x = O2x = -O3z = -O4z,$$

$$-O3y = O4y = -O5x = O6x,$$

и эти смещения ионов кислорода соответствуют "повороту" октаэдра $Mn1O_6$. Фазовый переход в тетрагональную фазу связан с конденсацией одной компоненты трехкратно вырожденной моды T_{1g} центра зоны Бриллюэна.

Рис. 3. Структура кристалла с удвоенной химической формулой La₂Mn₂O₆ и пространственной группой симметрии $Fm\overline{3}m$ (структура эльпасолита).

ξi	La1	La2	01	O2	O3	04	05	O6	Mn1	Mn2
ξx	000	000	$0\frac{1}{2}0$	$0 - \frac{1}{2}0$	$00\frac{1}{2}$	$00 - \frac{1}{2}$	000	000	000	000
ξy	000	000	$\frac{1}{2}$ 00	$-\frac{1}{2}00$	000	000	$00 - \frac{1}{2}$	$00\frac{1}{2}$	000	000
ξz	000	000	000	000	$-\frac{1}{2}$ 00	$\frac{1}{2}$ 00	$0\frac{1}{2}0$	$0 - \frac{1}{2} 0$	000	000

Таблица 3. Собственные векторы трехкратно вырожденной моды колебаний T_{1g}

Конденсация мягкой моды в граничной точке X также приводит к тетрагональному искажению структуры, но с удвоением объема элементарной ячейки ГЦК-решетки. При $\Delta = 0$ можно выбрать объемоцентрированную тетрагональную ячейку с двумя молекулами.

Для описания фазового перехода, связанного с конденсацией моды T_{1g} (или X_3), используем приближение локальной моды, в котором учитываем только степени свободы, связанные с этой модой. Локальная мода имеет вид

$$S_{\alpha} = \frac{1}{a_0} \sum_k \xi_{\alpha k} v_k^{\rm O},$$

где $v_k^{\rm O}$ — амплитуда смещений ионов ксилорода, ξ_k — собственный вектор моды T_{1g} (табл. 3).

Микроскопический модельный гамильтониан, описывающий систему трехкомпонентных локальных мод (псевдовекторов), размещенных в узлах ГЦК-решетки, включает ангармонические слагаемые одноузельного потенциала и парные взаимодействия между локальными модами в разных узлах решетки

$$H = \sum_{i} \left(H_i^{anh} + H_i^{ss} \right), \tag{1}$$

$$\begin{split} H_i^{anh} &= A\left\{S_{i\alpha}^2\right\} + B\left\{S_{i\alpha}^4\right\} + C\left\{S_{i\alpha}^2S_{i\beta}^2\right\},\\ H_i^{ss} &= a_k\left\{S(\mathbf{r})S(\mathbf{r}')\right\} + b_k\left\{S(\mathbf{r})S(\mathbf{r}')\right\}, \end{split}$$

где константы a_1, a_2, a_3 описывают взаимодействия в первой координационной сфере, а константы b_1, b_2 взаимодействия между вторыми соседями. Явный вид H_i^{ss} с учетом трансформационных свойств локальной моды и симметрии решетки описан в работе [21]. Параметры гамильтониана (1) определялись из расчета полной энергии низкосимметричных фаз с однородными и неоднородными искажениями по свобственным векторам локальной моды. Параметры одноузельного ангармонического потенциала находились из зависимостей полной энергии кристалла от амплитуды одной, двух и трех компонент однородных смещений в локальной моде. Эти зависимости показаны на рис. 4. Параметры парных взаимодействий находились из разностей полных энергий неискаженной и искаженных фаз при амплитуде $S/2a_0 = 0.09$

$$\begin{cases} 4a_1 + 8a_2 + 2b_1 + 4b_2 + A = E_1 - E_0 = -3.07 \text{ (eV)}, \\ 4a_1 - 8a_2 + 2b_1 + 4b_2 + A = E_2 - E_0 = -3.22 \text{ (eV)}, \\ 4a_1 - 2b_1 + 4b_2 + A = E_3 - E_0 = -1.86 \text{ (eV)}, \\ -24a_3 - 6b_1 - 12b_2 + 3A = E_4 - E_0 = -0.35 \text{ (eV)}, \\ -4a_1 + 2b_1 + 4b_2 + A = E_5 - E_0 = 4.27 \text{ (eV)}, \\ +2b_1 + 4b_2 + A = E_6 - E_0 = 0.57 \text{ (eV)}, \end{cases}$$

где E_0 — энергия неискаженной кубической фазы, E_1 энергия фазы с искажением, связанным с конденсацией одной компоненты локальной моды в центре зоны Бриллюэна ГЦК-решетки; Е2 и Е3 — энергии искаженных фаз, связанных с конденсацией одной компоненты локальной моды в граничной точке $X = 2\pi/2a_0(1, 0, 0)$ и в точке $\Lambda = \pi/2a_0(1, 0, 0)$ зоны соответственно; E_4 энергия искаженной фазы, связанной с конденсацией трех компонент локальной моды в граничной точке $L = \pi/2a_0(1, 1, 1)$ зоны; E_5 — энергия искаженной фазы, связанной с "поворотом" октаэдра вокруг оси [100], но с удвоением элементальной ячейки вдоль направления [001]; наконец, Е₆ есть энергия фазы с учетверенным объемом ячейки, в которой один октаэдр "повернут" вокруг оси [100], а три других октаэдра "повернуты" вокруг этой же оси в противоположном направлении.

Рис. 4. Зависимость полной энергии кристалла от одной (1), двух (2) и трех (3) компонент однородных смещений в локальной моде.

Одноузельные						
Α	21.29					
В	$2.30 \cdot 10^3$					
С	$5.36 \cdot 10^3$					
M	ежузельные					
a_1	-28.82					
a_2	0.29					
a_3	15.42					

-9.88

-14.41

 b_1

 b_2

Таблица 4. Коэффициенты модельного гамильтониана (eV)

Вычисленные значения параметров гамильтониана представлены в табл. 4. Мы не смогли найти уравнение, в котором бы разделились параметры b_2 и А в системе (2), и положили $b_2 = 0.5a_1$. При меньших значениях константы b_2 константа A оказывается меньше нуля, т.е. одноузельный ангармонический потенциал становится многоминимумным. Следует обратить внимание на малое по абсолютной величине значение константы а2, которая определяется из разности энергий искаженных фаз, связанных с однородным и неоднородным "поворотами" октаэдра Mn1O₆ вокруг одной из кристаллографических осей кубической фазы. Эти искажения соответствуют конденсации либо одной компоненты моды R₂₅ (однородный "поворот" октаэдра в структуре эльпасолита), либо конденсации моды М₃. Энергии этих искаженных фаз (при $\Delta = 0$ с симметрией I4/mcm или *P4/mbm* соответственно) практически совпадают.

Статистическая механика рассматриваемой системы с модельным гамильтонианом (1) исследована методом МК. Использовалась стандартная процедура метода МК [23], и расчет проведен для ГЦК-решетки с размерами $10 \times 10 \times 10$ и $20 \times 20 \times 20$ с периодическими граничными условиями. Старт процедуры МК проводился как с высоких, так и с низких температур при различных начальных конфигурациях (как полностью разупорядоченной с S = 0 на всех узлах решетки, так и полностью упорядоченных с $S_x = 0.09 \cdot 2a_0, S_y = S_z = 0$ и $S_x = S_y = S_z = 0.052 \cdot 2a_0$). Температура фазового перехода оценивалась из пика в температурной зависимости теплоемкости. При старте с высоких температур вне зависимости от начальной конфигурации при температуре 9800 К фазовым переходом второго рода возникает одна компонента параметра порядка в фазу с тетрагональной симметрией, и эта фаза остается при всех температурах ниже температуры перехода. При старте с низких температур поведение системы зависит от начальной конфигурации, задаваемой на первом шаге процедуры, а именно: при начальной конфигурации с $S_x = 0.09 \cdot 2a_0, S_y = S_z = 0$ система испытывает один фазовый переход второго рода из полностью упорядоченной тетрагональной фазы в полностью разупорядоченную фазу при температуре 9800 К, как видно из графиков температурной зависимости параметра порядка (рис. 5) и теплоемкости (рис. 6), а при начальной

Рис. 5. Температурная зависимость параметра порядка по МКданным (при старте МК-процедуры с низких температур и начальной конфигурации $S_x = 0.09 \cdot 2a_0$, $S_y = S_z = 0$).

Рис. 6. Температурная зависимость теплоемкости по МКданным.

Рис. 7. Температурная зависимость параметра порядка по МКданным (при старте МК-процедуры с низких температур и начальной конфигурации $S_x = S_y = S_z = 0.052 \cdot 2a_0$).

конфигурации с $S_x = S_y = S_z = 0.052 \cdot 2a_0$ (фаза с ромбоэдрической симметрией R3c с двумя молекулами в ячейке) в системе наблюдается последовательность двух фазовых переходов первого рода: ромбоэдрическая фаза $(\langle S_x \rangle = \langle S_y \rangle = \langle S_z \rangle \neq 0) \rightarrow (4000 \text{ K})$ ромбическая фаза $(\langle S_x \rangle = \langle S_y \rangle \neq 0, \langle S_z \rangle = 0,$ симметрия *Ітат* с двумя молекулами в ячейке) — (6100 K), тетрагональная фаза $(\langle S_x \rangle \neq 0, \langle S_y \rangle = \langle S_z \rangle = 0$ симметрия I4/mcm) и фазовый переход второго рода при 9800 К из тетрагональной в кубическую фазу ($\langle S_x \rangle = \langle S_y \rangle = \langle S_z \rangle = 0$), как это видно из рис. 7. Следует подчеркнуть, что все полученные в данном расчете температуры фазовых переходов значительно превышают температуру плавления данного соединения и, следовательно, ромбическая (Imam), тетрагональная и кубическая фазы являются прафазами для наблюдаемой экспериментально орторомбической фазы с пространственной группой Рпта и с четырьмя молекулами в элементарной ячейке.

4. Динамика решетки искаженных фаз LaMnO₃

4.1 Тетрагональная фаза. Рассмотрим тетрагональную фазу, связанную с искажением структуры идеального перовскита при конденсации одной компоненты моды $R_{25}(T_{1g})$. Элементарная ячейка в пространственной группе I4/m (I4/mcm при $\Delta = 0$) содержит две молеку-

Таблица 5. Значения частот колебаний ω_i при q = 0 кристаллической решетки кристалла LaMnO₃ в тетрагональной фазе

	ω_i, α_i	cm^{-1}
Симметрия	При амплитуде смещения ионов кислорода 0.05	При амплитуде смещения ионов кислорода 0.09
A_{1g}	117	345
A_{2g}	498 588	216 558
B_{1g}	481	364
B_{2g}	34 347	119 367
E_{g}	26i 222i 355	120 122 334
A_{1u}	360	360
A _{2u}	192 392 635	216 414 629
B_{1u}	225	346
E_u	101 <i>i</i> 182 292 334	60 224 255 286
	486	381

Таблица 6. Параметры элементарной ячейки и относительные координаты атомов в ромбоэдрической фазе кристалла LaMnO₃ (группы $R\bar{3}c$, гексагональная установка), в скобках указаны экспериментальные данные [9]

Параметры ячейки. Å		а	b	С
		5.4687	5.4687	13.3956
	,	(5.5285)	(5.5285)	(13.3348)
Атом	Позиция Уайкова	x	у	Z
La	6 <i>a</i>	0.0000	0.0000	0.2500
		(0.0000)	(0.0000)	(0.2500)
Mn	6 <i>d</i>	0.0000	0.0000	0.0000
		(0.0000)	(0.0000)	(0.0000)
0	18 <i>e</i>	0.4200	0.0000	0.2500
		(0.4466)	(0.0000)	(0.0000)

Таблица 7. Значения частот колебаний ω (cm⁻¹) при q = 0 кристалла LaMnO₃ в ромбоэдрической фазе

Симметрия	Расчеты динамики решетки [13]	Рама- новские спектры [13]	ИК- спектры [13]	Настоящий расчет
A_{1g}	249	236		222
A_{2g}	139 441 716			47 <i>i</i> 332 582
E_g	42 163 468 646	179 520 640		117 <i>i</i> 115 337 457
A_{1u}	320 361			305 327
$A_{2u} \ (TO/LO)$	162/216 310/465 641/645		152/192 315/441 586/655	86 <i>i</i> /168 299/372 468/576
E_u (TO/LO)	180/213 240/241 317/326 357/488 642/645			50/165 184/210 297/326 330/398 474/589

лы LaMnO₃. Вычисленные частоты колебаний решетки в тетрагональной фазе с амплитудами смещений ионов кислорода $S/2a_0 = 0.09$ и $S/2a_0 = 0.05$ при q = 0 и $q = 2\pi/2a_0(001)$ приведены в табл. 5, из которой видно, что эта фаза для LaMnO₃ также является неустойчивой. В собственных векторах "мягких" мод кроме ионов кислорода смещаются также ионы лантана. Следует отметить, что при максимальных смещениях ионов кислорода тетрагональная фаза становится устойчивой по отношению к модам колебаний в граничных точках зоны Бриллюэна. Однако когда параметр порядка S не дости-

Таблица 8. Параметры элементарной ячейки и относительные координаты атомов кристалла LaMnO₃ в ромбической фазе (с группой *Pnma*), в скобках указаны экспериментальные данные [8]

		а	b	С
Параме	стры ячейки, Å	5.422 (5.742)	7.670 (7.668)	5.422 (5.532)
Атом	Позиция Уайкова	x	у	С
La	4 <i>c</i>	0.550 (0.549)	1/4 (1/4)	0.020 (0.010)
Mn	4a	0	0	0
01	4 <i>c</i>	$\begin{array}{c} 0.000 \\ (-0.014) \end{array}$	1/4 (1/4)	$\begin{array}{c} -0.100 \\ (-0.070) \end{array}$
02	8 <i>d</i>	0.320 (0.309)	0.050 (0.039)	$0.220 \\ (0.224)$

гает насыщения, неустойчивость решетки сохраняется и по отношению к моде колебаний в точке Z зоны Бриллюэна тетрагональной структуры. Тетрагональная фаза в LaMnO₃ экспериментально не наблюдается.

4.2. Ромбоэдрическая фаза. Ромбоэдрическая фаза связана с искажением структуры перовскита при конденсации трех компонент моды R_{25} (T_{1g}) . Элементарная ячейка в пространственной группе $R\bar{3}c$ содержит две молекулы LaMnO₃. Эта фаза наблюдается экспериментально в рассматриваемом кристалле при высоких температурах (температура перехода из орторомбической в ромбоэдрическую фазу по разным экспериментальным данным находится в широком интервале 300-800 K [9,10,13]). Вычисленные параметры элементарной ячейки и координаты атомов в ромбоэдрической фазе вместе с экспериментальными данными приведены в табл. 6. Видно, что рассчитанные значения параметров решетки в пределах 1% согласуются с эксперимен-

Таблица 9. Значения частот колебаний ω_i , (cm⁻¹) при q = 0 кристаллической решетки кристалла LaMnO₃ в ромбической фазе

Симметрия	Расчеты динамики решетки [14]	Эксперимент, рамановские спектры [14]	Настоящий расчет	Симметрия	Расчеты динамики решетки [15]	Эксперимент, ИК-спектры [15]	Настоящий расчет
$egin{array}{c} A_g & \ A_g $	81 162 246 263 326 480 582	140 198 257 284 493	32 65 160 202 268 347 456	$\begin{array}{c} A_u \\ A_u \end{array}$			67 113 218 229 290 332 432 485
B_{1g} B_{1g} B_{1g} B_{1g} B_{1g} B_{1g}	182 254 347 575 693	184	117 168 295 449 541	B_{1u}	76 194 273 318 334 419 431 495	194 438 469	41 183 209 253 308 347 375 423
B_{2g} B_{2g} B_{2g} B_{2g} B_{2g} B_{2g} B_{2g} B_{2g} B_{3	123 150 218 369 464 509 669 158 343 462 603 692	109 170 308 481 611 320	93 97 133 284 338 429 551 73 263 367 441 555	B_{1u} B_{2u} B_{2u} B_{2u} B_{2u} B_{2u} B_{2u} B_{2u} B_{2u} B_{3u} B_{3u} B_{3u} B_{3u} B_{3u} B_{3u} B_{3u}	577 191 233 283 388 412 580 625 117 233 276 294 332 401	574 247 368 416 621 287 344	603 42 166 287 276 321 442 483 61 97 193 234 241
				B_{3u} B_{3u} B_{3u} B_{3u}	401 443 521 580	384 455 510 594	288 380 437 507

тальными данными, а вычисленные значения координат ионов кислорода на 5% отличаются от экспериментальных значений [9]. Вычисленные значения динамических зарядов Борна, высокочастотной диэлектрической проницаемости LaMnO₃ в ромбоэдрической фазе приведены в табл. 1, а значения частот колебаний при *q* = 0 вместе с экспериментальными данными приведены в табл. 7. Там же показаны результаты расчета частот колебаний в рамках оболочечной модели ионного кристалла с эмпирическими подгоночными параметрами. Как видно из таблицы, результаты настоящего расчета удовлетворительно согласуются как с экспериментальными данными, так и с результатами эмпирического расчета [13]. Максимальное различие в значениях частот колебаний около 30%. Однако в настоящем расчете ромбоэдрическая фаза также оказывается неустойчивой по отношению к неполярным колебаниям кристаллической решетки.

4.3. Орторомбическая фаза. Орторомбическая фаза с пространственной группой D_{2h}^{16} и четырьмя молекулами в элементарной ячейке связана с однородным искажением ячейки эльпасолита в результате конденсации двух компонент моды T_{1g} (R_{25} в структуре перовскита) и с неоднородным искажением этой ячейки, связанным с конденсацией моды Х₃ в граничной точке зоны Бриллюэна структуры эльпасолита (или, что то же самое, моды M_3 в структуре идеального перовскита). Однако, как показывают наши расчеты, при учете только смещений ионов кислорода в орторомбической фазе в спектре колебаний решетки остаются мнимые частоты колебаний. Поскольку орторомбическая фаза есть результат последовательных, по крайней мере двух фазовых переходов из кубической в тетрагональную, а затем в ромбическую фазу, здесь ромбическая фаза была получена в результате смещений ионов по собственному вектору неустойчивой моды колебаний тетрагональной фазы, в котором наряду с ионами кислорода смещаются и ионы лантана. Выбирались такие величины смещений, при которых в спектре частот колебаний решетки в ромбической фазе отсутствовали неустойчивые моды. Вычисленные параметры элементарной ячейки и координаты атомов в ромбической фазе вместе с экспериментальными данными [8] приведены в табл. 8. Значения компонент тензоров диэлектрической проницаемости и динамических зарядов приведены в табл. 1, значения модулей упругости для ромбической фазы рассматриваемого кристалла — в табл. 2, вычисленные значения частот колебаний решетки при q = 0 вместе с экспериментальными величинами — в табл. 9. Там же показаны для сравнения результаты эмпирического расчета [14,15]. Как видно из табл. 2, 8, 9, вычисленные значения параметров ячейки, координат атомов и предельных частот колебаний находятся в удовлетворительном согласии с экспериментальными данными.

5. Заключение

В данной работе в рамках неэмпирического расчета вычислены атомные свойства, диэлектрическая проницаемость и частоты колебаний кристалла LaMnO₃ в кубической, тетрагональной, ромбоэдрической и орторомбической фазах. Получено, что экспериментально ненаблюдаемая в этом кристалле кубическая фаза неустойчива по отношению к модам колебаний решетки, занимающим все фазовое пространство в зоне Бриллюэна. В приближении локальной моды определены параметры модельного гамильтониана, описывающего структурный фазовый переход из кубической фазы, и методом МК вычислена температура этого перехода, которая значительно превышает температуру плавления кристалла. Вычисленные параметры элементарной ячейки, координаты ионов, упругие модули и частоты колебаний решетки в экспериментально наблюдаемых ромбоэдрической и орторомбической фазах LaMnO₃ находятся в удовлетворительном согласии с экспериментальными данными. Таким образом, можно сказать, что используемая в данной работе неэмпирическая модель ионного кристалла, учитывающая дипольную и квадрупольную поляризуемость ионов, достаточно корректно описывает структурные свойства и динамику решетки кристалла LaMnO₃.

Список литературы

- [1] Ю.А. Изюмов, Ю.Н. Скрябин. УФН 171, 121 (2001).
- [2] М.Ю. Каган, К.И. Кугель. УФН 171, 579 (2001).
- [3] В.М. Локтев, Ю.Г. Погорелов. ФНТ 26, 231 (2000).
- [4] Э.Л. Нагаев. УФН 166, 833 (1996).
- [5] M.B. Salamon, M. Jaime. Rev. Mod. Phys. 73, 583 (2001).
- [6] E.O. Wollan, W.C. Koehler. Phys. Rev. 100, 545 (1955).
- [7] A.J. Millis. Nature (London) 392, 147 (1998).
- [8] J.B.A.A. Elemans, B. Van Laar, K.R. Van Der Veen, B.O. Loopstra. J. Solid State Chem. 3, 238 (1971).
- [9] Q. Huang, A. Santoro, J.W. Lynn, R.W. Erwin, J.A. Borchers, J.L. Peng, R.L. Greene. Phys. Rev. B 55, 14987 (1997).
- [10] А.Г. Рудская, Н.Б. Кофанова, Л.Е. Пустовая, Б.С. Кульбужев, М.Ф. Куприянов. ФТТ 46, 1856 (2004).
- [11] J. Rodriguez-Carvajal, M. Hennion, F. Moussa, A.H. Moudden. Phys. Rev. B 57, R 3189 (1998).
- [12] В.С. Гавико, А.В. Королев, В.Е. Архипов, Н.Г. Бебенин, Я.М. Муковский. ФТТ 47, 1255 (2005).
- [13] M.V. Abrashev, A.P. Litvinchuk, M.N. Iliev, R.L. Meng, V.N. Popov, V.G. Ivanov. Phys. Rev. B 59, 4146 (1999).
- [14] M.N. Iliev, M.V. Abrashev, H.-G. Lee, V.N. Popov, Y.Y. Sun, C. Thomsen, R.L. Meng, C.W. Chu. Phys. Rev. B 57, 2872 (1998).
- [15] I. Fedorov, J. Lorenzana, P. Dore, G. De Marzi, P. Maselli, P. Calvani, S.-W. Cheong, S. Koval, R. Migoni. Phys. Rev. B 60, 11875 (1999).
- [16] А.Е. Никифоров, С.Э. Попов. ФТТ 43, 1093 (2001).
- [17] О.В. Иванов, Е.Г. Максимов. ЖЭТФ 108, 1841 (1995).
- [18] О.В. Иванов, Е.Г. Максимов. ЖЭТФ 114, 333 (1998).
- [19] Е.Г. Максимов, В.И. Зиненко, Н.Г. Замкова. УФН 174, 1145 (2004).
- [20] В.И. Зиненко, Н.Г. Замкова, С.Н. Софронова. ЖЭТФ 114, 1742 (1998).
- [21] В.И. Зиненко, Н.Г. Замкова. ЖЭТФ 118, 359 (2000).
- [22] K.H. Ahn, A.J. Millis. Phys. Rev. B 64, 115103 (2001).
- [23] Методы Монте-Карло в статистической физике / Под ред. К. Биндера. Мир, М. (1982). 400 с.