Влияние вторичных электронов на выход электронно-стимулированной десорбции нейтральных атомов в зависимости от локализации остовных возбуждений в подложке

© В.Н. Агеев, Ю.К. Кузнецов, Н.Д. Потехина

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

E-mail: adslab@ms.ioffe.rssi.ru

(Поступила в Редакцию 27 ноября 2006 г.)

Выполнен сравнительный анализ изменения выхода электронно-стимулированной десорбции (ЭСД) нейтральных частиц из слоев атомов щелочных металлов и Ва, нанесенных на поверхность металла, покрытого пленкой кислорода (O/W, O/Mo) или германия (Ge/W), в зависимости от энергии E пучка облучающих электронов. Выход q(E) атомов сравнивается с сечениями ионизации тех остовных уровней, потенциалы ионизации которых совпадают с порогами выхода ЭСД атомов. Обсуждаются три типа зависимостей q(E)и выявляется роль вторичных электронов, образованных в подложке при ее облучении электронами, в каждом типе зависимости выхода ЭСД от E. Анализ проводится на основе экспериментальных работ авторов, выполненных в последние годы, начиная с 1991 г. Показано, что тип зависимости q(E) определяется как местом локализации атома, возбуждаемого электронным пучком, так и степенью локализованности остовного возбуждения, приводящего к ЭСД.

Работа выполнена при поддержке Федерального агентства по науке и инновациям (госконтракт № 02.434.11.2027).

PACS: 68.43.Rs, 68.47.De, 79.20.La

1. При изучении электронно-стимулированной десорбции (ЭСД) некоторых атомов (Li, Cs, Ba) из адсорбированных слоев на поверхности окисленного вольфрама в работах [1–4] были получены два типа зависимостей выхода нейтральных частиц от энергии бомбардирующих электронов $E: q^{I}(E)$ и $q^{II}(E)$ (рис. 1). Обе зависимости имеют свои пороги начала десорбции, резкий подъем выхода до максимума E_m , затем плато и спад с ростом E. Но характер спада разный для зависимостей типов I и II: очень медленный для $q^{I}(E)$ вплоть до E = 300 eVи более резкий для кривых $q^{II}(E)$, начинающийся при E > 100 eV.

Кривые выхода типа I с порогом $E_c = 25 \text{ eV}$ были получены при ЭСД атомов Li, Cs, Na, K [1–4] с поверхности окисленного вольфрама при T = 300 и 77 K и отсутствовали при ЭСД атомов Ва [3,4].

Выход ЭСД типа II наблюдался только при низкой температуре T = 77 К для Li, Cs, Ba и исчезал при небольшом нагреве (T > 120 K). В этом случае отмечены разные пороги появления нейтральных частиц $E_c = 55$ eV (Li), 25 eV (Cs), 25 и 90 eV (Ba) и исчезновение их выхода с ростом покрытия θ при $\theta_{\text{Li}} > 0.875$; $\theta_{\text{Cs}} > 0.3$; $\theta_{\text{Ba}} > 0.1$. При этом выход ЭСД нейтральных частиц типа II из адслоя Li наблюдался при его адсорбции только на толстом слое окисла, а из слоев Cs и Ba — независимо от степени окисления вольфрама.

Распределения десорбированных нейтральных частиц по их кинетическим энергиям также различны для каналов ЭСД типов I и II. При T = 300 K, когда наблюдались зависимости выхода нейтральных частиц от E только типа I $q^{I}(E)$, энергораспределения (ЭР) десорбированных атомов Li и Cs представляли собой колоколообразные кривые с одним максимумом. При низкой температуре, T = 77 K, ЭР атомов Li и Cs состояли из двух пиков, отличающихся положением максимумов и полушириной [1,2,4]. Один из пиков ЭР нейтральных частиц был связан с зависимостью от энергии выхода ЭСД типа I $q^{I}(E)$, а второй — с зависимостью $q^{II}(E)$.

Анализ полученных результатов привел нас в работах [1–4] к выводу о наличии двух каналов ЭСД нейтральных частиц из слоев адатомов на поверхности окисленного вольфрама, отличающихся электронными процессами при ЭСД.

ЭСД типа I мы связывали, следуя модели, предложенной в работе [5], с ионизацией остовного электрона 2s в атоме кислорода, так как порог появления ЭСД нейтральных частиц $E_c = 25 \, \text{eV}$ близок к энергии уровня 2s O ($E_{2sO} = 28.5 \,\text{eV}$ [6]), а ЭСД типа II с ионизацией остовных уровней самих адатомов, находящихся или в физадсорбированном состоянии (Li, Ba), или в хемосорбированном, но энергетически менее выгодном неравновесном состоянии адсорбции (Cs, Ba в положении bridge). Разный характер спада q(E) с ростом энергии электронов в этих каналах ЭСД (рис. 1) объяснялся в работах [1-4] разным участием вторичных электронов в ионизации остовных уровней кислорода подложки и адатомов. Предполагалось, что при большой энергии бомбардирующих электронов возникает много вторичных электронов, способных добавочно ионизовать кислорода подложки, замедляя спад $q^{I}(E)$ при больших $E > E_{\rm m}$, но не участвующих в ионизации адатомов в канале II ЭСД из-за большей удаленности адатомов от поверхности по сравнению с кислородом подложки.

Рис. 1. Нормированные зависимости выхода ЭСД атомов Li с поверхности окисленного W по каналам I и II ЭСД от энергии *E* электронного пучка. $I - q^{I}(E)$ при T = 300 K, $2 - q^{II}(E)$ при T = 77 K.

В настоящей работе этот вопрос изучен более детально. Рассмотрим все физические процессы, приводящие к ЭСД нейтральных частиц, и обсудим влияние вторичных электронов на их протекание в обоих каналах ЭСД.

2. В соответствии с принятой в [1-5] моделью в канале ЭСД типа I после ионизации уровня 2s О происходит внутриатомный Оже-процесс L_1VV , в котором один из 2р-электронов кислорода, образующих валентную зону подложки, нейтрализует 2s О дырку, а другой вылетает из зоны, захватывается адатомом, находящимся на поверхности в ионном состоянии, и нейтрализует его. При этом электронная оболочка адатома щелочного металла (ЩМ) разбухает, а ион кислорода под ним теряет два электрона и, наоборот, сжимается. Адатом ЩМ смещается к поверхности под действием ион-дипольного притяжения. Если заряд кислорода восстанавливается за счет подложки быстрее, чем происходит реионизация адатома, то между их оболочками возникает отталкивание и адатом слетает в виде нейтральной частицы. Тогда выход ЭСД нейтральных частиц по каналу I ЭСД из адслоев ШМ на поверхности окисленного вольфрама записывается в виде [7]

$$q^{I}(E) = J_{0}/i_{e} = N_{A}Q^{2sO}(E)w_{0}P_{0} = N_{A}Q^{I}(E) \text{ (at/el)}, (1)$$

где J_0 , i_e — потоки слетающих нейтральных частиц и падающих электронов соответственно; N_A — концентрация адатомов; Q^{2sO} — вероятность образования и Ожераспада вакансии 2s O; w_0 — вероятность Оже-нейтрализации; P_0 — вероятность того, что нейтральная частица покинет поверхность без реионизации; Q^1 — сечение ЭСД нейтральных частиц по каналу I. Величина P_0 зависит от соотношения скоростей реионизации $R_i(x)$ нейтральной частицы и релаксации заряда на кислороде за счет подложки. В работах [4–8] показано, что

$$P_0 = 1/(R_i \tau + 1), \tag{2}$$

где τ — время релаксации заряда на атоме кислорода, определяемое временем жизни ионизованного кисло-

рода после Оже-процесса; $R_i = R(x_i)$ — вероятность реионизации в точке x_i , из которой нейтральная частица начинает движение к поверхности. Из (1) и (2) имеем

$$q^{\rm I}(E) = N_A Q^{2sO}(E) w_0 / (R_i \tau + 1).$$
(3)

В этой формуле от энергии E падающего электрона явно зависит только входящее в $Q^{2sO}(E)$ сечение ионизации уровня 2s кислорода $\sigma_{2sO}(E)$, а процессы Оженейтрализации и реионизации адатома, а также релаксация заряда в подложке предполагаются не зависящими от E и определяются распределением электронной плотности в подложке и адатоме. Тогда зависимость выхода ЭСД нейтральных частиц от энергии первичного электрона $q^{I}(E)$ должна определяться зависимостью сечения ионизации уровня 2s O от $E - \sigma_{2sO}(E)$. Так обстоит дело без учета вторичных электронов.

Вторичные электроны, возникающие под действием облучения поверхности электронным пучком с энергией Е, можно разделить на те, которые вылетают с поверхности в вакуум, и те, которые оказываются в зоне проводимости внутри твердого тела. Распределение по энергиям вылетающих из объема вторичных электронов имеет две особенности [9,10]: большой максимум вблизи $E_2 = 2 - 3 \, \text{eV}$ — истинно вторичные электроны, и значительно меньший по величине максимум, образованный из упругоотраженных и Оже-электронов с энергией Е2 вблизи энергии первичного пучка Е. Между этими максимумами находится область неупругоотраженных электронов, выход которых $\eta(E)$ для тяжелых элементов (Z > 40) монотонно увеличивается с ростом *E* до 1 keV, а затем переходит в плато $\eta = 0.4 - 0.5$ вплоть до 10³ keV. Доля упругоотраженных электронов уменьшается с ростом E и при $E > 100 \, \text{eV}$ не превышает нескольких процентов от первичного пучка. Вторичные электроны с энергией больше пороговой $E_2 > E_c$ могут участвовать в ионизации адатомов и атомов подложки. В работе [11] изучалось влияние вторичных электронов на сечение ионизации 1s атомов C, N, O, Na и было показано, что вторичные электроны увеличивают сечение ионизации адатомов на поверхности W(100) лишь в пределах 5%. Вклад вторичных электронов в фотои электронно-стимулированную десорбцию обсуждался также в работе [12], где высказано мнение, что вторичные электроны лишь усиливают действие прямого механизма, если последний чем-то подавлен, и этот вклад составляет не более 35%.

Вторичные электроны, попадающие в зону проводимости с энергией выше уровня Ферми $E_2 > E_F$, возникают в результате каскадных процессов, сопровождающих образование остовных дырок, и в результате многократного рассеяния. Эти электроны могут увеличить скорость релаксации на ионе кислорода и влиять на вероятность нейтрализации и ионизации адатома. Распределение этих электронов по энергиям зависит от плотности свободных состояний выше E_F и вероятности их заселения, т.е. от энергии *E* первичных электронов, поскольку вероятности возбуждения уровней подложки и заселения зоны проводимости зависят от энергии первичного пучка. Таким образом, все величины (τ , w_0 , R_i), определяющие вклад ЭСД нейтральных частиц в формуле (3), могут зависеть от энергии E первичного пучка за счет вторичных электронов, заселяющих зону проводимости. Для выяснения их роли в каналах I и II ЭСД нейтральных частиц из адслоев на поверхности окисленного вольфрама проведем сравнение относительного выхода ЭСД атомов Li, Cs, Ba, $q_i(E) = q_i(E)/q_i^{\max}(E)$ из работ [1–5] с приведенными сечениями ионизации $\sigma_i(E)/\sigma_i^{\max}$ участвующих в ЭСД уровней.

Сечения ионизации различных уровней в атомах вычислялись с помощью полуэмпирической формулы, полученной в работах [13,14], и параметров a_i , b_i , c_i , подобранных в [14] для всех атомов из сравнения с экспериментом или с наиболее точными теоретическими расчетами. Согласно [13,14], сечение ионизации *i*-го уровня в атоме электронами в энергией *E* может быть описано формулой

$$\sigma_{i}(E) = a_{i}n_{i}(1/P_{i}^{2})\left[\ln(E/P_{i})/(E/P_{i})\right] \\ \times \left\{1 - b_{i}\exp\left[-c_{i}(E/P_{i} - 1)\right]\right\}, \qquad (4)$$

где P_i — потенциал ионизации *i*-й электронной оболочки $(E > P_i)$, n_i — число электронов на ней, a_i , b_i , c_i подгоночные параметры, таблицы для которых приведены в [14]. Формула (4) не описывает особенностей в сечении ионизации, давая общий ход зависимости $\sigma(E)$.

На рис. 2 дано сравнение выхода ЭСД атомов Cs и Li по каналу I ЭСД с сечением ионизации уровня 2s O, вычисленным по формуле (4). Из рис. 2 видно, что в пределах точности эксперимента и формулы (4) выход $q^{I}(E)$ ЭСД атомов Li и Cs близко следует зависимости от Е сечения ионизации $\sigma_{2sO}(E)$. Отметим, однако, более быстрый подъем выхода $q^i(E)$ сразу за порогом $(E > E_c)$ и более затяжной спад $q^{I}(E)$ при $E > E_{m}$ по сравнению с сечением ионизации. При этом абсолютное значение сечений ЭСД щелочных металлов ($Q^{\rm I} \sim 6 - 8 \cdot 10^{22} \, {\rm cm}^2$ при $E = 80 \, \text{eV}$ [8]) меньше сечения ионизации уровня 2s O для свободного атома ($\sigma^{\rm max}_{2s\,{
m O}}=1.6\cdot 10^{-17}\,{
m cm}^2)$ более чем на пять порядков величины за счет вероятностей остальных процессов в механизме ЭСД нейтральных частиц (Оже-нейтрализация адсорбированного иона w_0 , релаксация заряда на кислороде τ^{-1} и реионизация нейтральных частицы R_i в формулах (1)–(3)). Существует две причины для более резкого роста выхода $q^{I}(E)$ сразу за порогом ЭСД по сравнению с сечением ионизации.

Во-первых, это возможность разрешенного перехода электрона 2s О в возбужденное состояние системы, вероятность которого гораздо больше вероятности ионизации [15] и которое быстро разрушается. Во-вторых, увеличение плотности электронов в зоне проводимости за счет вторичных электронов увеличивает скорость релаксации заряда на кислороде и уменьшает вероятность реионизации адатома, что приводит к росту

Рис. 2. Нормированные зависимости от *E* выхода атомов Li и Cs по каналу I ЭСД с поверхности О/W и сечения ионизации уровня 2s O. $1 - q_{Li}^{I}(E), 2 - q_{Cs}^{I}(E), 3 - \sigma_{2sO}(E).$

множителя $P_0 = 1/(R_i \tau + 1)$ в формуле (3) при $E > E_c$. Оба фактора делают рост $q^{I}(E)$ с ростом E вблизи порога более резким, чем рост $\sigma(E)$.

При больших энергиях электронного пучка $E > E_{\rm m}$ более медленный спад $q^{\rm I}(E)$, чем $\sigma_{2{
m sO}}(E)$, на рис. 2 объяснен в [1–4] ростом количества вторичных электронов с энергией $E \gg E_c$ и их добавочным вкладом в ионизацию 2*s*-оболочки кислорода, хотя этот вклад может быть и не очень велик.

Переход остовного электрона 2s О в возбужденное состояние возможен в случае, если в зоне проводимости вблизи уровня Ферми E_F имеется резкий пик плотности гибридного состояния (2p O + nd W). При переходе в него электрона 2s O образуется остовный экситон, впоследствии распадающийся, но обеспечивающий повышение плотности электронов в зоне проводимости. Образование остовного экситона могло бы привести к появлению острого пика вблизи порога $q^{I}(E)$ (с шириной, соответствующей ширине конечного возбужденного состояния). Такие острые пики действительно наблюдались, например, в работах [16,17], где изучалась фотостимулированная десорбция (ФСД) из слоев молекул CO, N₂, NH₃, H₂O, адсорбированных на металле, при возбуждении остовных 1s-состояний в атомах N, C, O этих молекул, а также при возбуждении 3d-остовного состояния подложки. Возможность измерения остовных пиков в этих случаях связана с большей локализацией возбужденного состояния адсорбированной молекулы, чем адатома, а также с использованием приборов высокого разрешения. Острые пики вблизи порогов ФСД и ЭСД ионов Н⁺, О⁺, F⁺ наблюдались и при возбуждении остовных уровней в окислах различных элементов в работах [18-21].

Существование гибридного состояния [2p O + 5d W] с большим пиком плотности состояний в зоне проводимости прямо или косвенно подтверждается работами [22–27]. В работе [22] рассчитан *К*-край спектра поглощения кислорода в оксидах 3*d*-переходных металлов и показано, что два первых пика на краю рентгеновского спектра (XPS) возникают от перехода в незанятое состояние [2p O + 3d (TM)] зоны проводимости с образованием остовного экситона. В работах [23,24] получены спектры потерь энергии электронов на краю *К*-поглощения 3*d*-оксидов и показано, что первые пики потерь также объясняются возникновением остовного 1*s*-экситона на кислороде. При этом оказалось, что чем больше незаполненных *d*-состояний в атоме металла, тем интенсивнее первые пики потерь [22–24].

Работа [25] посвящена расчету электронной плотности окисла WO₃, а в работах [26,27] были экспериментально получены спектры рентгеновского поглощения окислов WO₃ и MoO₃, подвергнутых ультрафиолетовому (УФ) облучению и воздействию паров H₂ и Hg. Под влиянием этих воздействий каталитически инертные окислы становятся каталитически активными [26] и меняют свой цвет [27], что приписывается изменению заряда металлических ионов на поверхности от +6 до +5 и +4, т.е. появлению ненасыщенных окислов на поверхности. При этом в УФ-спектре валентной зоны, образованной из 2p О-электронов в триоксидах, появляется добавочный пик вблизи E_F, связанный с гибридным состоянием [2p O+nd Met] и имеющий максимум $\sim 0.6\,{\rm eV}~({
m WO}_3)$ и 1.6 eV (MoO₃) ниже $E_{
m F}$. Этот пик появляется только при освещении, когда 2*p*-электрон кислорода переходит на 5d(4d)-орбиту металла, и соответствует экситонной структуре с дыркой в валентной 2*p*-зоне. Без освещения (без учета дырки 2*p* в ионе кислорода) это гибридное состояние имело бы энергию выше $E_{\rm F}$, что следует также из расчетов электронной структуры WO₃ в работе [25].

Все эти результаты подтверждают возможность возбуждения 2s O электрона в разрешенное гибридное состояние (2p O+5d W) в процессе ЭСД нейтральных частиц с окисленной поверхности W и таким образом объясняют более резкий рост сечения Оже-возбуждения $Q^{2sO}(E)$ вблизи порога в формуле (3) по сравнению с сечением ионизации $\sigma_{2sO}(E)$.

Более крутой подъем с ростом E и более медленный спад выхода ЭСД атомов Cs (кривая 3 на рис. 2), чем выхода атомов Li (кривая 2 на рис. 2), можно объяснить более острым пиком плотности состояний, образующимся в зоне проводимости при адсорбщии Cs, чем при адсорбщии Li [28]. Разница между $q_{\rm Cs}^{\rm I}(E)$ и $q_{\rm Li}^{\rm I}(E)$ служит косвенным подтверждением предложенной выше интерпретации отличия $q^{\rm I}(E)$ от $\sigma_{2sO}(E)$ за счет возбуждения 2s O.

3. Что касается канала II ЭСД нейтральных частиц, то, как уже отмечалось выше, его существование обусловлено присутствием адатомов, находящихся в физадсорбированном (Li, Ba) или неравновесном хемосорбированном (Cs, Ba) состояниях, и ионизацией их остовных уровней (1s Li; 5s и 5p Ba; 4d Ba; 5s Cs), положение которых совпадает с порогами по каналу II ЭСД.

Можно было бы ожидать, как и в случае $q^{I}(E)$, что ход $q^{II}(E)$ почти повторяет зависимость сечений ионизации $\sigma_i(E)$ соответствующих остовных уровней адатомов. Однако оказалось, что это не так. На

Рис. 3. Нормированные зависимости выхода атомов Cs (1) и Ba (2) по каналу II ЭСД с порогом 25 eV при T = 77 K [4] с поверхности О/W и сечений ионизации уровней 5s Cs (3) и 5p Ba (4) от E.

рис. З нанесены вычисленные по формуле (4) сечения ионизации уровней 5s Cs и 5s Ba с параметрами из работы [14] и выход $q^{\mathrm{II}}(E)$ для атомов Cs и Ва. Видно, что в отличие от ЭСД по каналу I с ионизацией 2s О уровня подложки, здесь при ионизации 5s Cs или Ва зависимость $q^{II}(E)$ отличается от $\sigma_i(E)$ более резким спадом при $E > E_{\rm m}$, в то время как спад $q^{I}(E)$ при $E > E_{m}$ (рис. 2), наоборот, был более плавным, чем сечение ионизации 2s O. Это означает, что быстрые первичные электроны с $E > E_{\rm m}$ уменьшают вероятность процессов, происходящих в канале II ЭСД нейтральных частиц после ионизации остовного состояния адатома, в то время как при ионизации кислорода подложки быстрые электроны ускоряли эти процессы. С чем это может быть связано?

Рассмотрим сценарий ЭСД нейтральных частиц по каналу II. Образовавшийся в результате облучения электронами ион ЩМ или Ва с дыркой на остовном уровне, двигаясь под действием сил изображения к поверхности, нейтрализуется в результате межатомного Оже-процесса с переходом одного 2рО электрона в остовную дырку и вылетом второго 2рО электрона. Для десорбции образованной нейтральной частицы ЩМ необходима, как и в канале I, релаксация положительного заряда на кислороде, приводящая к расталкиванию электронных оболочек кислорода и ЩМ. Однако при $E > E_{\rm m}$ быстрые электроны — как первичный e_1 , так и выбираемый из адатома e₂ — имеют малый угол рассеяния [15] и продолжают движение в сторону подложки, частично смещая электроны подложки от поверхности. Это может уменьшить плотность электронов вблизи адиона, необходимую как для его Оже-нейтрализации, так и для релаксации заряда на кислороде. Этот эффект тем сильнее, чем больше энергия Е первичного электрона. В результате выход нейтральных частиц по каналу II ЭСД спадает с ростом $E > E_m$ сильнее, чем вероятность ионизации адатома (рис. 3).

Атом	Ο	Ge	W			Мо		Li	Cs		Ba		
nl	$2s^2$	$3d^{10}$	$5s^2$	$5p^{6}$	$4f^{14}$	$4s^2$	$4p^6$	$1s^{2}$	$5s^2$	$5p^6$	$4d^{10}$	$5s^2$	$5p^{6}$
E	28.5	32	80	41	36	68	42	64.4	25	17.2	98.4	31	22.8
30	0.25	_	-	_	_	_	—	-	1.9	17.0	_	—	5.5
40	1.45	0.17	_	_	0.04	_	_	_	3.76	21.2	_	1.64	9.7
50	2.15	0.42	_	1.28	0.18	_	1.10	_	4.43	24.0	-	2.47	10.2
70	2.86	0.87	_	2.90	0.46	0.05	2.67	_	4.71	25.0	-	3.0	13.9
80	3.00	1.05	_	3.37	0.59	0.24	3.14	0.11	4.65	24.0	_	3.06	14.2
100	3.13	1.35	0.21	3.95	0.80	0.45	3.72	0.24	4.44	23.4	-	3.02	14.1
200	2.70	2.10	0.46	4.40	1.37	0.63	4.12	0.52	3.33	17.1	0.14	2.40	11.3
300	2.20	2.20	0.44	3.80	1.60	0.58	3.66	0.56	2.65	13.3	0.23	1.95	9.0

Сечения ионизации nl-оболочек атомов $\sigma_{nl}(E)$, вычисленные по формуле (4), в единицах $10^{-17} \, {\rm cm}^2$

Примечание. Е (столбец) — энергия налетающего электрона в eV, Е (строка) — энергия связи nl-оболочки в eV [6].

В отличие от этого в канале I ЭСД как выбиваемый из 2s O оболочки электрон e_2 , так и e_1 при $E > E_m$ уходят в металл, не влияя на внутриатомный процесс в кислороде и на вероятность нейтрализации адатома.

Часть вторичных электронов с энергией больше порога ЭСД способна добавочно ионизовать 2*s*-оболочку кислорода, увеличивая выход $q^{I}(E)$ и делая его спад при $E > E_{\rm m}$, наоборот, более плавным, чем спад $\sigma_{2sO}(E)$ (рис. 2). Ионизация адатомов вторичными электронами в канале II ЭСД нейтральных частиц менее вероятна, чем ионизация кислорода на поверхности вольфрама, и не влияет на выход ЭСД.

При ионизации 1s Li или 4d Ba (рис. 4) зависимость выхода q^{II} от энергии не имеет ничего общего с ходом сечения ионизации уровней 1s Li и 4d Ba — $\sigma_i(E)$, кроме величины порога: в то время как сечения ионизации 1s Li и 4d Ba медленно растут с ростом E до своего максимума при $E_{\rm m} = 250 \, {\rm eV}$ (Li) или $E_{\rm m} = 700 \, {\rm eV}$ (Ba), выход $q^{II}(E)$ ЭСД нейтральных частиц резко увеличивается (в интервале $\sim 10 \, {\rm eV}$) до максимума сразу вблизи порога $E_{1sLi} = 55 \, {\rm eV}$ и $E_{4dBa} = 90 \, {\rm eV}$. Такой рез-

Рис. 4. Нормированные зависимости выхода ЭСД атомов Li (1) и Ba (2) с поверхности окисленного W по каналу II ЭСД и сечений ионизации уровней 1s Li (3) и 4d Ba (4), вычисленных по формуле (4), от E.

кий всплеск выхода может быть связан не с ионизацией, а с возбуждением остовного электрона выше $E_{\rm F}$ разрешенным переходом в гибридизованное состояние 2p O + (2p Li или 6p Ba) на поверхности, так как вероятность разрешенного перехода имеет резонансный характер и гораздо больше, чем вероятность ионизации вблизи порога. В работе [18] приведен рис. 4, на котором разница между резонансным возбуждением 1s O в 3d Ti и ионизацией в континуум так же отличается, как кривые 1, 2 и 3, 4 на рис. 4 настоящей работы.

Возбужденное состояние быстро распадается с уходом электрона в объем, приводя к ионизации адатома, а дальше процесс происходит в соответствии со сценарием работ [1–4]. Возбуждение электрона 5*p* Ва в гибридное состояние $(2p O + 6p Ba^0)$ зоны проводимости, согласно правилам отбора, менее вероятно, чем возбуждение 4*d* Ва, в то время как ионизация 5*p* Ва, наоборот, более вероятна, чем 4*d* Ва (см. таблицу). Поэтому выход $q_{5pBa}^{II}(E)$ ближе к зависимости $\sigma_{5pBa}(E)$ (рис. 3), чем для уровня 4*d* Ва (рис. 4), где $q_{5pBa}^{II}(E)$ определяется явно не ионизацией, а возбуждением этого состояния.

4. Приведенные выше объяснения полученных в [1–4] зависимостей $q^{I}(E)$ выхода нейтральных частиц из адслоев ЩМ на поверхности окисленного W подходят и для объяснения зависимости выхода ЭСД атомов Cs из адслоя Cs на поверхности вольфрама, покрытого слоем Ge [29] (рис. 5). В случае Cs/Ge/W(100) процесс ЭСД атомов Cs связан с возбуждением и ионизацией оболочки 3d Ge, потенциал ионизации которой (32–44 eV [6]) близок к порогу появления атомов Cs. Так как сечение ионизации 3d¹⁰ оболочки Ge почти на порядок меньше $\sigma_{2,0}$ в области энергий 40–100 eV (см. таблицу) и сравнимо с сечением ионизации 5pW, на слое Ge/W заметно увеличение выхода ЭСД атомов Cs от возбуждения 5p и 5s W вблизи 50 и 80 eV соответственно в отличие от $q^{I}(E)$ для случая Cs/O/W(100) [2,4]. Более резкий подъем $q^{I}(E)$, чем σ_{3dGe} , вблизи порога ЭСД также связан, скорее всего, с переходом 3d-электрона Ge в возбужденное состояние (4p Ge + 6p Cs) вы-

Рис. 5. Нормированные зависимости от E: 1 — выхода ЭСД атомов Cs при T = 300 K из адслоя Cs на поверхности Ge/W [29], 2 — сечения ионизации уровня 3*d* Ge по формуле (4).

ше $E_{\rm F}$ аналогично предыдущему случаю подложки из окисленного W. В работе [29] обнаружен заметный рост выхода $q^{\rm I}(E)$ атомов Cs с ростом температуры поверхности (рис. 5 в [29]) при отсутствии температурной зависимости высоты добавочных пиков вблизи 50 и 80 eV, имеющих резонансный характер. Увеличение выхода атомов в канале I ЭСД можно объяснить ростом заселенности зоны проводимости выше $E_{\rm F}$ с ростом T, что увеличивает вероятность релаксации и уменьшает вероятность реионизации, приводя к росту $q^{\rm I}(E)$ в соответствии с формулой (3). Вместе с тем интенсивность резонансных пиков при 50 и 80 eV, связанных с возбуждением остовных уровней W в гибридные состояния выше $E_{\rm F}$, не должна зависеть от T, что и наблюдается на опыте, подтверждая нашу модель процесса ЭСД атомов.

5. На поверхности окисленного Мо выход ЭСД нейтральных частиц из слоя адатомов ЩМ (Li, Na, K, Cs) [30-33] существенно отличается от предыдущего случая с подложкой из окисленного W (рис. 6). Можно сказать, что здесь имеется особый тип зависимости выхода ЭСД нейтральных частиц от энергии бомбардирующих электронов, который обозначим через $q_{Mo}(E)$. При том же пороге $E_c = 25 \, \text{eV}$ вместо резкого роста $q^{I}(E)$ до максимума в интервале энергий $\Delta E \leq 20 \, \text{eV}$ выше порога в случае $q_{Mo}(E)$ наблюдается сначала медленный, а затем ускоряющийся рост выхода ЭСД без насыщения вплоть до $E \ge 500 \, \text{eV}$. При этом выход $q_{Mo}(E)$ атомов Cs вблизи порога значительно меньше, чем $q_{\rm W}^{\rm I}$ (рис. 6), и имеет добавочные максимумы при E = 40 и 70 eV, но при $E \ge 110$ eV (монослой О на Мо) и $E \ge 150 \,\mathrm{eV}$ (окисел W) выход ЭСД атомов ЩМ с поверхности окисленного Мо значительно превышает их выход с поверхности окисленного W ($q_{\rm Mo} \gg q_{\rm W}^{\rm l}$ при $E \rightarrow 500 \,\mathrm{eV}$), хотя механизм ЭСД атомов ЩМ с поверхности окисленного Мо в работах [30-33] предполагался тем же, что и в канале І ЭСД, т.е. связанным с ионизацией 2s-состояния в кислороде, за исключением добавочного возбуждения вблизи 40 и 70 eV.

Добавочные особенности ЭСД в работах [31–33] были объяснены резонансным возбуждением остовных 4*p*и 4*s*-состояний Мо в незанятые гибридные состояния (подложка–ЩМ), создающие в зоне проводимости максимумы плотности состояний. При возбуждении электрона в эти состояния образуется или остовный экситон, или "spectator electron" в зоне проводимости, увеличивающие скорость релаксации положительного заряда на кислороде, а следовательно, и выход ЭСД атомов ЩМ [31]. Отсутствие этих особенностей в случае подложки из окисленного W вызвано на порядок большей величиной выхода в этом интервале энергий ЭСД нейтральных частиц при ионизации 2*s* О оболочки на поверхности O/W, чем на поверхности O/Mo.

Рассмотрим, почему механизм ЭСД нейтральных частиц, связанный с прямым возбуждением 2s O, дает на подложке из окисленного Мо на порядок меньший выход вблизи порога $E_c \sim 25 \, \mathrm{eV}$, чем из окисленного W. Металлы W и Мо имеют одинаковую структуру (ГЦК-решетка с постоянной a = 3.14 Å (Mo) и 3.16 Å (W); расстояние между ближайшими атомами $d = 2.96 \text{ \AA}$ (Mo) и 2.73 Å (W)) и похожие распределения плотности состояний Mo(100) [34] и W(100) [35] с большими пиками плотности выше и ниже Е_F, связанными с поверхностными состояниями и резонансами, и с провалом плотности состояний вблизи Е_F в объеме [25]. Поэтому причину такого различия в выходе ЭСД нейтральных частиц из адслоев ЩМ с окисленных поверхностей W и Mo, как на рис. 6, следует искать в разной структуре плотности состояний именно O/W и O/Mo, а также в различии вероятностей возбуждения 2s О электрона, скоростей реионизации адатома и релаксации заряда на кислороде или в вероятности и механизме нейтрализации в соответствии с формулой (3). Выше была отмечена большая роль пиков плотности состояний зоны проводимости, образованных гибридными орбиталями кислорода, ме-

Рис. 6. Нормированные зависимости выхода ЭСД атомов Cs из адслоев на поверхности монослоя кислорода на W (1) и Mo (2) [24] (кривая 2 нормирована на величину $q_{Mo}^{III}(E)$ в точке пересечения с $q_{W}^{I}(E)$); коэффициентов $\gamma(E)$ вторичной эмиссии W (3) и Mo (4) [10]; коэффициентов $\eta(E)$ неупругого рассеяния электронов на W (5) и Mo (6); сечения ионизации $\sigma(E)$ уровня 2s O (7) от E.

талла и адатомов, в выходе ЭСД нейтральных частиц вблизи порога. В работах [26,27] выявлено различие в положении гибридного состояния (2p O + nd Met) для окислов вольфрама и молибдена: на окисленном W максимум этого состояния в зоне проводимости опускается до $-0.6 \,\mathrm{eV}$ ниже E_{F} в поле остовной дырки $2p\,\mathrm{O}$ (при УФ-освещении поверхности с $E = 8 \,\mathrm{eV}$), а на окисленном Mo — на $-1.6 \,\mathrm{eV}$ ниже E_{F} . Можно предположить, что до образования остовной дырки это гибридное состояние в окисле Мо тоже находилось ниже по энергии и было частично занято валентными электронами, в то время как в случае O/W это состояние может находиться выше Е_F и быть свободным. Кроме того, меньшее число свободных *d*-состояний в атоме Мо (4*d*⁵5*s*¹), чем в атоме W $(5d^46s^2)$, дает, согласно [22–24], меньшую вероятность возбуждения 2s О в гибридное состояние (2p O + 4d Mo). Поэтому вероятность возбуждения в него 2s O электрона вблизи порога в случае подложки из окисленного Мо окажется меньше, чем в случае окисленного W. Все это приводит также к меньшей заселенности зоны проводимости О/Мо после возбуждения 2s О электрона, что увеличивает вероятность реионизации адатома, время релаксации заряда на кислороде, и еще сильнее уменьшает выход ЭСД нейтральных частиц вблизи порога ($E = 25 \, \text{eV}$) для окисленного Mo(100).

Дальше от порога (E > 40 eV) выход $q_W^I(E)$ атомов ЩМ почти прекращает расти с ростом E, а после E_m начинает уменьшаться (рис. 6, кривая I), а выход $q_{Mo}(E)$ продолжает рост вплоть до E = 500 eV, и при этом $q_{Mo}(E) \gg q_W^I(E)$ (рис. 6, кривая 2). В чем причина такого резкого роста $q_{Mo}(E)$?

Сечение ионизации уровня 2s O при E > 100 eV не растет, а, наоборот, уменьшается. Количество вторичных электронов, вылетающих из Mo(100) и W(100), возрастает в интервале 100–200 eV очень медленно (рис. 6), хотя и быстрее на Mo, чем на W(100) [10]. Однако для окисленных поверхностей W и Mo, на которые нанесен слой адатомов, должна существовать заметная разница пиков плотности состояний зоны проводимости и их заселенности электронами, а это существенно влияет на вероятности нейтрализации и реионизации адатомов, а также на вероятность релаксации заряда на кислороде, а значит, и на выход ЭСД нейтральных частиц вблизи порога 25 eV.

Есть данные [36,37], что адатомы Cs на поверхности Мо расположены дальше, чем на поверхности W, и среднее расстояние резонансной перезарядки адатомов на Мо больше, чем на W [38]. Может быть, это обстоятельство приводит к иному механизму нейтрализации адиона при E > 100 eV после Оже-процессов в случае окисленного Мо, чем на окисленном W, и к значительному уменьшению вероятности реионизации адатома, увеличивая его выход при больших *E*. Как неоднократно подчеркивалось выше, в увеличении выхода ЭСД атомов с поверхности окисленного металла большую роль играет заполнение зоны проводимости электронами, которое растет с ростом *E* за счет Оже-процессов при ионизации уровней металла. Однако конкуренцией Оже-процессу служит излучательная рекомбинация (флуоресценция), вероятность которой растет с ростом заряда ядра атома, а вероятность Оже-процесса падает [39]. Для атомов W (Z = 73) большую роль играет флуоресценция, что не дает при больших E роста заселенности зоны проводимости электронами с ростом E, в отличие от Мо (Z = 41), где вероятность Оже-процесса больше вероятности излучения, а значит, и плотность электронов в зоне проводимости выше, чем на W, и растет с ростом E, увеличивая $q_{Mo}(E)$ и не меняя $q_W(E)$ при $E \gg 100$ eV.

Возможно также, что дело в разной структуре поверхности окисленных W и Mo. Так, в работе [40] было показано, что на поверхности Mo слой окисла препятствует дальнейшему окислению, а на поверхности W кислород свободно проникает внутрь металла на любое расстояние. Все эти обстоятельства, возможно, и играют роль в различии выхода ЭСД атомов на подложках из окисленного Mo и W.

6. Третий тип зависимости выхода нейтральных частиц от энергии $q^{III}(E)$, полученных в работах [38,41,42] при адсорбции Eu и Sm на окисленном вольфраме, имеет чисто резонансный характер с пиками вблизи потенциалов ионизации остовных уровней (4f, 5s, 5p) W или (5s, 5p) Sm и Eu. Резонансный характер $q^{III}(E)$ объясняется в этом случае или резонансным переходом остовного электрона W в гибридное состояние системы с антисвязью W-O, в результате чего десорбируются молекулы EuO или SmO, которые детектируются как атом [41], или переходом остовного электрона РЗМ в возбужденное состояние адатома с образованием остовного экситона, уровень которого оказывается в окрестности уровня Ферми. Вторичные электроны на характер зависимости $q^{III}(E)$ не влияют, так же как рост температуры поверхности не влияет на величину добавочных максимумов в выходе атомов Cs с поверхности Ge/W [29].

7. Сравнение выхода ЭСД нейтральных частиц q(E)с сечением ионизации $\sigma(E)$ остовных уровней атомов, определяющих пороги ЭСД, возволило углубить и уточнить наши более ранние представления в работах [1-4] о влиянии вторичных электронов на зависимость выхода ЭСД атомов ЩМ и Ва из адслоев, нанесенных на поверхность окисленного W. Сравнение показало, что в канале I ЭСД, связанном с ионизацией 2s-электрона, зависимость выхода атомов от энергии электронов $q^{I}(E)$ определяется главным образом сечением ионизации $\sigma_{2sO}(E)$. Вблизи порога ЭСД выход атомов имеет более крутой подъем с ростом Е, чем сечение ионизации, вероятно за счет вклада возбуждения электрона 2s О в гибридное состояние зоны проводимости, а при больших E спад $q^{1}(E)$ с ростом E более медленный, чем сечение ионизации $\sigma(E)$, за счет участия в ионизации вторичных электронов.

В канале II ЭСД атомов $q^{II}(E)$, где пороги появления ЭСД близки к энергиям связи остовных уровней адатомов ЩМ и Ва, главный вклад в ЭСД вносят

переходы остовных электронов в возбужденные состояния адатомов с последующим переходом возбужденного электрона в зону проводимости. Здесь резкий подьем $q^{II}(E)$ вблизи порога быстро сменяется (в интервале 10-20 eV) спадом с ростом E, более резким, чем в канале I. Быстрый спад $q^{II}(E)$ при $E > E_m$ можно объяснить отталкивающим действием вторичных электронов с $E \gg E_c$ на электроны, имеющиеся в зоне проводимости, что уменьшает скорость релаксации O⁺, а следовательно, и выход ЭСД нейтральных частиц при больших E. Те же зависимости $q^{I}(E)$ и $q^{II}(E)$ получены и при адсорбции ЩМ на подложке Ge/W.

В случае адсорбции ШМ на окисленном Мо плотность состояний зоны проводимости системы, вероятно, такова, что вблизи порога ЭСД вероятность возбуждения 2s O в эти состояния очень мала, в результате чего нет резкого подъема q(E) с ростом *E* при ионизации 2s O, но проявляется вклад возбуждения 4s и 4р Мо в выход ЭСД нейтральных частиц. При больших E (> 100 eV) в отличие от W на подложке из окисленного Мо непрерывный рост выхода q(E) связан, скорее всего, с непрерывным ростом заполнения зоны проводимости вторичными электронами, возникающими при Оже-нейтрализации остовных дырок. В случае подложки из окисленного W при больших Е более вероятен процесс излучательной рекомбинации остовных дырок, не увеличивающий плотности свободных электронов, а следовательно, и выход ЭСД нейтральных частиц.

Причину сильного роста $q_{Mo}(E)$ при E > 100 eV без насыщения вплоть до 500 eV, где $q_{Mo} \gg q_W^I$, однозначно выявить не удалось. Но стоит упомянуть, что также необъясненными остались найденные в работе [27] на порядок бо́льшая каталитическая активность поверхности WO₃, облученного в УФ в парах H₂ и Hg, по сравнению с MoO₃ различие в изменениях окраски поверхностей WO₃ и MoO₃ [26] в тех же условиях. Необходимы добавочные данные об электронных свойствах и процессах переноса заряда на поверхностях окисленных W(100) и Mo(100) и их изменений при адсорбции ЩМ.

Список литературы

- В.Н. Агеев, Ю.А. Кузнецов, Н.Д. Потехина. ФТТ 33, 1834 (1991).
- [2] В.Н. Агеев, Ю.А. Кузнецов, Н.Д. Потехина. ФТТ 35, 156 (1993).
- [3] В.Н. Агеев, Ю.А. Кузнецов, Н.Д. Потехина. ФТТ 36, 1444 (1994).
- [4] V.N. Ageev, Yu.A. Kuznetsov, N.D. Potekhina. Surf. Sci. 367, 113 (1994).
- [5] В.Н. Агеев, Б.В. Якшинский. ФТТ 27, 99 (1985).
- [6] А.А. Радциг, Б.М. Смирнов. Параметры атомов и атомных ионов. Энергоатомиздат, М. (1986). 343 с.
- [7] V.N. Ageev, O.P. Burmistrova, B.V. Jakshinskii. Surf. Sci. 194, 101 (1988).
- [8] В.Н. Агеев, Ю.А. Кузнецов, Н.Д. Потехина. ФТТ 39, 1491 (1997).

- [9] C.A. Harrover. Phys. Rev. 102, 340 (1956).
- [10] И.М. Бронштейн, Б.С. Фрайман. Вторичноэлектронная эмиссия. Наука, М. (1969). 407 с.
- [11] R.L. Gerlach, A.R. DuCharme. Surf. Sci. 32, 329 (1972).
- [12] D.E. Ramaker, T.E. Madey, R.L. Kurtz, H. Sample. In: Springer Series in Surf. Sci. V. 13. DIET-III / Eds R.H. Stulen, M.L. Knotek. (1987). P. 182.
- [13] W. Lotz. Z. Phys. 206, 205 (1967).
- [14] W. Lotz. Z. Phys. 232, 107 (1970).
- [15] Н. Мотт, Г.М. Месси. Теория атомных столкновений. ИЛ, М. (1951). 447 с.
- [16] P. Feulner, R. Romberg, S.P. Frigo, E. Weimar, M. Gsell, F. Ogurtzov, D. Menzel. Surf. Sci. 457, 41 (2000).
- [17] R. Romberg, S.P. Frigo, F. Ogurtzov, P. Feulner, D. Menzel. Surf. Sci. 451, 116 (2000).
- [18] D.E. Ramaker. In: Springer Series in Surf. Sci. V. 4. DIET-II / Eds W. Brenig, D. Menzel. (1984). P. 10.
- [19] M.L. Knotek, R.H. Stulen, G.M. LaBriel, V. Rehn, R.A. Rosenberg, C.C. Parks. Surf. Sci. 133, 291 (1983).
- [20] R. Kurtz, R. Stockbauer, R. Nyholm, S.A. Flodström, T. Senf. Phys. Rev. B 35, 7794 (1987).
- [21] R.H. Dauson, M.L. DenBoes. Surf. Sci. 122, 588 (1982).
- [22] F.M.F.DeGroot, M. Grion, J.C. Fuggl, C.A. Sawatsky, H. Petersen. Phys. Rev. B 40, 5715 (1989).
- [23] L.A. Grunes, D.R. Leapman, C.M. Wilker, R. Hoffman, A.B. Kunz. Phys. Rev. B 25, 7157 (1982).
- [24] H. Kurata, E. Lefevre, C. Colline, R. Brydson. Phys. Rev. B 47, 13 763 (1993).
- [25] D.M. Bullet. J. Phys. C 16, 2197 (1983).
- [26] T.N. Fleisch, G.L. Mains. J. Chem. Phys. 76, 780 (1982).
- [27] A. Katrib, V. Loqie, N. Saurel, R. Wehner, R. Hilaire, G. Maire. Surf. Sci. 377-379, 754 (1997).
- [28] E. Wimmer. J. Phys. F.: Met. Phys. 13, 2313 (1983).
- [29] В.Н. Агеев, Ю.А. Кузнецов, Н.Д. Потехина. ФТТ 47, 1715 (2005).
- [30] В.Н. Агеев, Ю.А. Кузнецов, Н.Д. Потехина. ФТТ 39, 758 (1997).
- [31] V.N. Ageev, Yu.A. Kuznetsov, T.E. Madey. Surf. Sci. 390, 146 (1997).
- [32] V.N. Ageev, Yu.A. Kuznetsov, T.E. Madey. Phys. Rev. B 56, 2248 (1998).
- [33] V.N. Ageev, Yu.A. Kuznetsov, T.E. Madey. Surf. Sci. 451, 153 (2000).
- [34] S.C. Hong, J.W. Chung. Phys. Rev. B 48, 4755 (1993).
- [35] L.F. Mattheiss, D.R. Hamann. Phys. Rev. B 29, 5372 (1984).
- [36] P. Soukiassian, R. Riwan, J. Lecante. Surf. Sci. 152/153, 529 (1985).
- [37] P. Soukiassian, E. Wimmer. Phys. Rev. B 31, 4911 (1985).
- [38] V.N. Ageev, Yu.A. Kuznetsov, T.E. Madey. J. Vac. Sci. Technol. A 19, 1481 (2001).
- [39] Анализ поверхности методами Оже- и рентгеновской фотоэлектронной спектроскопии / Под ред. Д. Бриггса, М.П. Сиха. Мир, М. (1987). С. 567.
- [40] Э.Я. Зандберг, М. Кнатько, В.И. Палеев, У.Х. Расулев. ЖТФ 54, 2383 (1984).
- [41] В.Н. Агеев, Ю.А. Кузнецов, Н.Д. Потехина. ФТТ 43, 1894 (2001)
- [42] В.Н. Агеев, Ю.А. Кузнецов, Н.Д. Потехина. ФТТ 46, 945 (2004).