Кристаллическое поле тетрагональных центров иона Yb³⁺ в интерметаллиде YbRh₂Si₂

© А.М. Леушин, В.А. Иваньшин, И.Н. Куркин

Казанский государственный университет, 420008 Казань, Россия

E-mail: Vladimir.lvanshin@ksu.ru

(Поступила в Редакцию 27 ноября 2006 г.)

Приведена интерпретация спектров электронного парамагнитного резонанса и неупругого нейтронного рассеяния в кристаллах тяжелофермионного интерметаллического соединения $YbRh_2Si_2$. Из экспериментальных схем уровней энергии определены феноменологические потенциалы кристаллического электрического поля тетрагональных центров иона Yb^{3+} , а также параметр гамильтониана спин-орбитального взаимодействия электронов. Сопоставление результатов, полученных из данных измерений этими методами, а также с помощью мессбауэровской спектроскопии, показывает, что наиболее вероятным основным состоянием этого иона в $YbRh_2Si_2$ является состояние Γ_{to}^- .

Работа проводилась при финансовой поддержке проекта Министерства образования и науки РФ РНП.2.1.1.7348 и гранта РФФИ № 06-02-17481.

PACS: 71.27.+a, 75.20.Hr, 76.30.-v

1. Введение

Интерметаллические соединения на основе Се или Yb привлекают внимание исследователей благодаря целому ряду нетривиальных свойств, обусловленных сильными электронными корреляциями: образованию тяжелых фермионов, нестандартному переходу в сверхпроводящую фазу, существенному отклонению от Ферми-жидкостного поведения. Значительная часть усилий в последние два десятилетия была сконцентрирована на изучении систем вида CeT₂X₂ (Т — переходный металл, X = Si или Ge), кристаллизующихся в решетке типа ThCr₂Si₂. Нестабильность *f*-электронной оболочки церия позволяет достаточно легко достичь перехода из магнитного в немагнитное состояние при изменении химического состава или приложенного давления. Однако до сих пор очень мало известно о физических свойствах соединений этого же гомологического ряда на основе иттербия (при этом T = Ru, Os, Rh, Pd, Ag, Ir). Так, только недавно появились первые публикации о таких веществах, как YbIr₂Si₂ [1] и YbRu₂Ge₂ [2]. Интенсивные исследования тяжелофермионного (ТФ) металла YbRh₂Si₂, ведущиеся в 2000 г. (см. работы [3-5] и ссылки в них), хотя и показали, что это соединение обладает уникальными свойствами и является одним из самых перспективных для изучения квантовых фазовых переходов, пока не позволили объяснить все аномалии его поведения. Например, противоречивыми являются сведения о кристаллическом электрическом поле (КЭП) и штарковской структуре уровней иона Yb³⁺ в этом интерметаллиде. Информация такого рода может быть крайне важной для понимания физических свойств f-электронных ТФ-соединений, в которых основное состояние ионов церия или иттербия, как правило, определяется влиянием нескольких микроскопических взаимодействий, примерно равных по величине (эффекта Кондо, КЭП, межатомных взаимодействий), а также процессов гибридизации локализованных 4f-электронов с электронами проводимости [6,7]. В некоторых ТФ-сверхпроводниках на основе церия весьма вероятна взаимосвязь между положением штарковских подуровней основного состояния иона Ce³⁺ и температурой перехода в сверхпроводящее состояние [7,8], а также возможностью установления неферми-жидкостного поведения [9].

В данной работе мы представляем структуру расщепления штарковских подуровней и набор параметров КЭП иона Yb³⁺ в YbRh₂Si₂, полученные в результате анализа данных экспериментов по неупругому нейтронному рассеянию (HHP) и электронному парамагнитному резонансу (ЭПР).

2. Обзор экспериментальных данных

Интерметаллид YbRh₂Si₂ относится к классу веществ, для которых описание металлической фазы в соответствии с положениями теории Ферми-жидкости Ландау оказывается некорректным. В этом интерметаллиде, первом из концентрированных ТФ-соединений с Кондо-решеткой, при температурах ниже температуры Кондо (температуры спиновых флуктуаций, $T_{\rm K} \approx 17 \, {\rm K}$) [10] был обнаружен анизотропный сигнал ЭПР, приписанный локализованным магнитным моментам ионов Yb³⁺ и обусловленный, по всей вероятности, режимом "узкого электронного горла" [11-13]. Значения эффективных g-факторов при температуре $T = 5 \,\mathrm{K}$ составили $g_{\perp} = 3.561$ и $g_{\parallel} \cong 0.17$ [12]. Основная электронная конфигурация свободного иона Yb³⁺ (4f¹³) эквивалентна одной 4f-дырке на незаполненной оболочке и имеет только один терм ${}^{2}F$, который в резуль-

тате спин-орбитального взаимодействия расщепляется на два мультиплета — основной ²F_{7/2} и возбужденный ${}^2F_{5/2}$ — с интервалом порядка $10\,000\,\mathrm{cm}^{-1}$ между ними. В свою очередь тетрагональное КЭП расщепляет основной мультиплет ${}^2F_{7/2}$ в кристалле YbRh₂Si₂ на четыре крамерсовых дублета, причем основным является одно из двух возможных состояний (Г_{t6}⁻⁽¹⁾ или $\Gamma_{r7}^{-(1)}$) [14]. Для ТФ-Кондо-решеток характерно наличие весьма широких ("размытых") штарковских уровней энергии в результате взаимодействия локализованных f-моментов с электронами проводимости и флуктуаций валентности церия или иттербия [8,15]. Недавние исследования порошков YbRh₂Si₂ методом HHP при температуре 1.5 К подтвердили этот факт и показали, что первый возбужденный дублет Yb3+ разрешен как очень слабое плечо (с максимумом вблизи 17 meV) по сравнению со спектром от двух других дублетов с более высокими энергиями 25 и 43 meV [16]. Заметим также, что в работе [3] при измерении температурной зависимости теплоемкости YbRh₂Si₂ был обнаружен "горб" с максимумом в области 60 К, что соответствует энергии первого возбужденного состояния иона Yb³⁺ $\Delta \simeq 160 \,\mathrm{K} \equiv 13.8 \,\mathrm{meV}$. Изучение температурной зависимости ширины линии ЭПР и эффективного *g*-фактора в монокристаллах YbRh₂Si₂ указало на вероятное расположение первого возбужденного штарковского подуровня иона Yb³⁺ в пределах от 10 до 15.7 meV [11,17]. Наконец, примерно такому же положению первого возбужденного крамерсова дублета иона Yb³⁺ соответствует максимум в температурной зависимости сопротивления, который наблюдался в YbRh₂Si₂ при T = 135 K [18].

Все эти экспериментальные результаты дают нам достаточно сведений, чтобы попытаться найти параметры КЭП, действующего на ион Yb³⁺. При этом были приняты во внимание возможные расхождения для позиции первого возбужденного штарковского подуровня, характерные для случая достаточно широких энергетических подуровней при использовании таких различных методов измерения, как ЭПР и ННР [19]. Отметим, что первая попытка [20] смоделировать структуру штарковских подуровней иона Yb³⁺ в YbRh₂Si₂, хотя и учла анизотропию эффективного ЭПР *g*-фактора, проигнорировала все иные экспериментальные результаты.

3. Интерпретация спектров ЭПР и ННР

Для определения параметров феноменологического потенциала КЭП и волновых функций электронных состояний иона Yb³⁺ в YbRh₂Si₂ нами была составлена матрица гамильтониана

$$H = B_2^0 V_2^0 + B_4^0 V_4^0 + B_4^4 V_4^4 + B_6^0 V_6^0 + B_6^4 V_6^4, \qquad (1)$$

которая описывает взаимодействие иона Yb^{3+} с КЭП тетрагональной симметрии (группа D_{4h}). Здесь B_k^q — параметры кристаллического поля, V_k^q — стандартные

гармонические полиномы Стивенса [21], в которых декартовы координаты 4f-электронов отнесены к кристаллографическим тетрагональным осям кристалла и ось z совмещена с осью симметрии тетрагонального центра. Для объяснения экспериментальных значений уровней энергии проводилась диагонализация матрицы гамильтониана Н, составленной на состояниях основного мультиплета ${}^2F_{7/2}$ иона Yb³⁺, после чего были рассчитаны теоретические уровни энергии и волновые функции. Волновые функции основного крамерсова дублета были использованы для вычисления g-факторов спин-гамильтониана β HgS', где $|\mathbf{H}|$ — напряженность магнитного поля, а S' — оператор эффективного спина S' = 1/2 иона Yb³⁺. Затем пять теоретических величин (три энергетических уровня и два g-фактора) с помощью метода наименьших квадратов сопоставлялись с соответствующими экспериментальными величинами для определения наилучших значений параметров B_{k}^{q} .

В ходе этих вычислений был принят во внимание тот факт, что ион Yb^{3+} в решетке кристалла $YbRh_2Si_2$ окружают восемь ближайших атомов кремния и следующие за ними восемь атомов родия, причем все они располагаются в вершинах кубов, деформированных вдоль тетрагональной оси кристалла [15]. Поэтому в первом варианте вычислений мы предположили, что основным крамерсовым дублетом является дублет $\Gamma_{r7}^{-(1)}$, так как именно такой дублет оказывается нижним, когда основной мультиплет иона Yb³⁺ расщепляется в поле, создаваемом лигандами, расположенными в вершинах правильного куба (именно это происходит в диэлектрических кристаллах). Найдя с этими предположениями параметры потенциала кристаллического поля, который в точности описывает штарковскую структуру основного мультиплета, мы обнаружили, что при этом для g-факторов нижнего дублета получаются величины, не очень хорошо согласующиеся с экспериментальными значениями (теоретическое значение $g_{\perp}(\Gamma_{t7}^{-(1)})$ на 0.233 отличалось от экспериментального). О полученных результатах можно судить по данным в табл. 1. В этой таблице в столбцах "Вариант А" приведены экспериментальные и вычисленные значения энергии штарковских уровней и эффективных g-факторов нижнего крамерсова дублета $\Gamma_{t7}^{-(1)}$. Сами же параметры кристаллического поля, для которых получены вычисленные значения, даны в строке "Вариант А" табл. 2.

Однако затем мы обратили внимание на то, что полученные экспериментально значения *g*-факторов дают среднее значение $\langle g \rangle = (g_{\parallel} + 2g_{\perp})/3 = 2.43$, которое, скорее, соответствует предположению, что нижним крамерсовым дублетом должен быть дублет Γ_{t6}^- , генеалогически происходящий из кубического дублета Γ_6^- (группа O_h), для которого это значение по крайней мере в диэлектриках равно 2.66 [22]. Для дублета Γ_{t7}^- , соответствующего кубическому дублету Γ_7^- , значение среднего *g*-фактора обычно составляет 3.43. В связи с этим мы выполнили второй вариант вычислений,

	Свойства симметрии и g-фактор уровней энергии	Положение уровня		Свойства симметрии	Положение уровня	
J		Эксперимент	Расчет	и <i>g-</i> фактор уровней энергии	Эксперимент	Расчет
	Вариан	т А	Вариант В			
5/2	$\Gamma_{t7}^{-(4)}$			$\Gamma_{t7}^{-(4)}$		1298
	$\Gamma_{t6}^{-(3)}$			$\Gamma_{t7}^{-(3)}$		1277
	$\Gamma_{t7}^{-(3)}$			$\Gamma_{t6}^{-(3)}$		1268
7/2	$\Gamma_{t6}^{-(2)}$	43 [16]	43	$\Gamma_{t6}^{-(2)}$	43 [16]	43
	$\Gamma_{t7}^{-(2)}$	25 [16]	25	$\Gamma_{t7}^{-(2)}$	25 [16]	25
	$\Gamma_{t6}^{-(1)}$	17 [16]	17	$\Gamma_{t7}^{-(1)}$	17 [16]	17
	$\Gamma_{t7}^{-(1)}$	0	0	$\Gamma_{t6}^{-(1)}$	0	0
	$g_{\parallel}(\Gamma_{t7}^{-(1)})$	0.17 [12]	-0.169	$g_{\parallel}(\Gamma_{t6}^{-(1)})$	0.17 [12]	-0.169
	$g_{\perp}(\Gamma_{t7}^{-(1)})$	3.561 [12]	-3.794	$g_{\perp}(\Gamma_{t6}^{-(1)})$	3.561 [12]	-3.916

Таблица 1. Уровни энергии (meV) и *g*-факторы иона Yb³⁺ в кристалле YbRh₂Si₂

где допустили, что нижним является дублет типа Γ_{t6}^{-} . Вычисления с учетом состояний только основного мультиплета ${}^{2}F_{7/2}$ иона Yb³⁺ опять привели к точному воспроизведению уровней энергии, но описание g-факторов стало хуже. В частности, теоретическое значение g оказалось равным -0.307, а $g_{\perp} = -3.847$. Для улучшения ситуации мы предприняли еще один вариант вычислений, в котором к гамильтониану (1) добавили оператор спин-орбитального взаимодействия $\xi(SL)$, где ξ — одноэлектронный параметр спин-орбитального взаимодействия, а S и L — операторы спинового и орбитального моментов иона. Тем самым допустили возможность смешивания волновых функций основного мультиплета ${}^{2}F_{7/2}$ с состояниями возбужденного мультиплета ${}^{2}F_{5/2}$. Учет *J*-смешивания привел к существенному улучшению описания g₁₁, который, как и в варианте А, стал равным -0.169. Величина константы спинорбитального взаимодействия $\xi = 359.8 \text{ meV}$ оказалась несколько меньше, чем ее значение для свободного иона Yb^{3+} , равное 365.7 meV [23]. Это хорошо согласуется с ожидаемым ослаблением спин-орбитальной связи локализованных 4f-электронов вследствие их взаимодействия с окружающими лигандами и электронами проводимости.

Результаты второго варианта расчетов представлены в табл. 1 и 2 соответственно в столбцах и строке "Вариант *B*". Как следует из табл. 1, описание g_{\perp} в этом варианте вычислений несколько ухудшилось. Из анализа результатов видно, что в обоих вариантах вычислений не удается получить величину поперечного *g*-фактора,

Таблица 2. Параметры (meV) КЭП (B^q_k)
и ξ иона Yb^{3+} в кристалле YbRh_2Si_2

	ξ	B_{2}^{0}	B_{4}^{0}	B_4^4	B_{6}^{0}	B_{6}^{4}
Вариант А Вариант В	359.8	11.7 25.0	-7.4 1.9	77.6 46.0	-4.0 1.7	$-18.5 \\ -60.5$

точно соответствующую измеренному значению g_{\perp} , в то время как g_{\parallel} можно подобрать значительно точнее, однако точность определения его в эксперименте [12] невелика. Следует, однако, иметь в виду, что мы пытаемся интерпретировать экспериментально полученные g-факторы в предположении, что они целиком обусловлены поведением локализованных 4f-электронов. В то же время в металлах с восприимчивостью паулиевского типа g-фактор локализованного момента всегда содержит положительный сдвиг, обусловленный электронами проводимости [12], а величина этого сдвига составляет порядка 8% самой величины, что для значения g_{\perp} в нашем случае как раз и соответствует той разнице 0.3, на которую не согласуются теоретические и экспериментальные значения.

В результате исследований с помощью метода мессбауэровской спектроскопии авторы недавней работы [24] для иона иттербия в кристалле YbRh₂Si₂ дают оценку параметра кристаллического поля $B_0^2 \approx 8.11$ K, т. е. почти 22 meV в пересчете на параметр B_0^0 нашего гамильтониана (1). Этот вывод, а также измеренное в ходе ЭПР-экспериментов [12] среднее значение *g*-фактора $\langle g \rangle = 2.43$ дают возможность из рассмотренных нами двух вероятных вариантов потенциала КЭП отдать предпочтение варианту *B*, в котором $B_2^0 = 25$ meV (табл. 2), и полагать, что нижним крамерсовым дублетом является дублет Γ_{16}^- .

4. Заключение

Проведенный анализ позволил сделать вывод в пользу такого набора параметров гамильтониана КЭП для иона Yb³⁺ в интерметаллиде с тяжелыми фермионами YbRh₂Si₂, который характеризуется схемой уровней с крамерсовым дублетом Γ_{t6}^- в качестве основного состояния. Дальнейшие теоретические и экспериментальные исследования родственных ТФ-соединений на основе иттербия необходимы для получения новых сведений о влиянии флуктуаций валентности, гибридизации 4f-электронов с электронами проводимости и нефермижидкостного поведения на процессы спиновой динамики в этих системах.

Список литературы

- Z. Hossain, C. Geibel, F. Weickert, T. Radu, Y. Tokiwa, H. Jeevan, P. Gegenwart, F. Steglich. Phys. Rev. B 72, 094 411 (2005).
- [2] H. Jeevan, C. Geibel, Z. Hossain. Phys. Rev. B 73, R020407 (2006).
- [3] O. Trovarelli, C. Geibel, S. Mederle, C. Langhammer, F.M. Groshe, P. Gegenwart, M. Lang, G. Sparn, F. Steglich. Phys. Rev. Lett. 85, 626 (2000).
- [4] J. Custers, P. Gegenwart, H. Wilhelm, K. Neumeier, Y. Tokiwa, O. Trovarelli, C. Geibel, F. Steglich, C. Pépin, P. Coleman. Nature (London) 424, 524 (2003).
- [5] M.R. Norman. Phys. Rev. B 71, R220405 (2005).
- [6] И.Л. Сашин, Е.А. Горемычкин, R. Osborn. ФТТ 49, 311 (2007).
- [7] T. Hotta, K. Ueda. Phys. Rev. B 67, 104518 (2003).
- [8] A.D. Christianson, E.D. Bauer, J.M. Lawrence, P.S. Riseborough, N.O. Moreno, P.G. Pagliuso, J.L. Sarrao, J.D. Tompson, E.A. Goremychkin, F.R. Trouw, M.P. Hehlen, R.J. McQueeney. Phys. Rev. B 70, 134 505 (2004).
- [9] F.B. Anders, T. Pruschke. Phys. Rev. Lett. 96, 086 404 (2006).
- [10] V.A. Ivanshin, D.G. Zverev. Appl. Magn. Res. 27, 87 (2004).
- [11] В.А. Иваньшин, Л.К. Аминов, И.Н. Куркин, Й. Зищельшмидт, О. Штокерт, Ю. Ферстль, К Гайбель. Письма в ЖЭТФ 77, 625 (2003).
- [12] J. Sichelschmidt, V.A. Ivanshin, J. Ferstl, C. Geibel, F. Steglich. Phys. Rev. Lett. 91, 156 401 (2003).
- [13] G.I. Mironov, V.A. Ivanshin. Physica B 359-361, 47 (2005).
- [14] V.A. Ivanshin, I.N. Kurkin, A.M. Leushin, L.K. Aminov. J. Supercond. Novel Magnetism 20, 131 (2007). [on-line версия на сайте http://www.springerlink.com].
- [15] T. Jeong, W.E. Picket. J. Phys.: Cond. Matter 18, 6289 (2006).
- [16] O. Stockert, M.M. Koza, J. Ferstl, A.P. Murani, C. Geibel, F. Steglich. Physica B 378-380, 157 (2006).
- [17] В.А. Иваньшин, Л.К. Аминов, И.Н. Куркин, О. Stockert, J. Ferstl, C. Geibel. Тез. XXXIII Совещ. по физике низких температур. Екатеринбург (2003). С. 255.
- [18] G. Dionicio, H. Wilhelm, G. Sparn, J. Ferstl, C. Geibel, F. Steglich. Physica B 359-361, 50 (2005).
- [19] B.A. Young, H.J. Stapleton. Phys. Rev. 176, 176 (1968).
- [20] R.J. Radwanski, Z. Ropka. Physica B 359-361, 242 (2005).
- [21] K.W.H. Stevens. Proc. Phys. Soc. A 65, 209 (1952).
- [22] А. Абрагам, Б. Блини. Электронный парамагнитный резонанс переходных ионов. Мир, М. (1973). Т. 2. С. 333.
- [23] M. Blume, A.J. Freeman, R.E. Watson. Phys. Rev. 134, A 320 (1964).
- [24] G. Knebel, E. Hassinger, G. Lapertot, P.G. Niklowitz, J.P. Sanchez, J. Floquet. Physica B 378-380, 68 (2006).