Упругое рассеяние света полупроводниковыми квантовыми точками произвольной формы

© И.Г. Ланг, Л.И. Коровин, С.Т. Павлов*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия * Физический институт им. П.Н. Лебедева Российской академии наук, 117924 Москва, Россия

E-mail: korovin@mail.ioffe.ru, pavlov@sci.lebedev.ru

(Поступила в Редакцию 16 ноября 2006 г.)

С помощью квантовой теории возмущений теоретически исследовано рассеяние света без изменения частоты на размерно-квантованных объектах пониженной размерности. Вычислено дифференциальное сечение резонансного рассеяния на любых экситонах в любых квантовых точках (КТ). В случае длин световых волн, намного превышающих размер КТ, поляризация и угловое распределение рассеянного света не зависят от формы, размеров и конфигурации КТ. Величина полного сечения в этом случае не зависит от размеров КТ. Если радиационное затухание экситона превосходит нерадиационное, в резонансе полное сечение рассеяния порядка квадрата длины световой волны. Для любых экситонов в любых КТ вычислены величины радиационных затуханий, обусловленных дальнодействующим обменным взаимодействием электронов и дырок.

PACS: 78.67.Hc, 78.35.+c

1. Введение

Измерение упругого рассеяния света размерно-квантованными полупроводниковыми объектами пониженной размерности — квантовыми ямами (КЯ), квантовыми проволоками (КП) и квантовыми точками (КТ) простой и удобный метод исследования экситонных возбуждений в этих объектах.

Если энергетические уровни экситонов дискретны, то рассеяние резонансно усиливается при совпадении частоты ω_l возбуждающего света с энергией экситона ω_0 . Ширина резонансного пика определяется затуханием Г экситона. То же относится и к поглощению света объектами пониженной размерности.

В работе [1] впервые была обнаружена роль так называемого радиационного затухания γ_r экситонов в процессах отражения света от КЯ. Было показано, что затухание Γ состоит из двух частей, т.е. $\Gamma = \gamma_r + \gamma$, где $\gamma_r(\gamma)$ — радиационное (нерадиационное) затухание экситона. В [2] эта же концепция была распространена на поглощение света КЯ (см. также обзор [3]). Впервые отражение света от структур с КЯ, КП и КТ было рассмотрено в [4].

Теоретически исследовать рассеяние света полупроводниковыми объектами пониженной размерности можно двумя способами. Первый из них назовем полуклассическим, поскольку он сводится к вычислению классических электрических полей, тогда как описание системы электронов в полупроводниковых объектах — квантовое (достаточно упомянуть, что рождению электроннодырочных пар (ЭДП) соответствуют недиагональные матричные элементы \mathbf{p}_{cv} квазиимпульса). Полуклассический способ описан в [5]. Он состоит в вычислении средних по основному состоянию кристалла плотностей тока и заряда, наведенных возбуждающим электрическим полем и решении уравнений Максвелла как внутри, так и вне объекта с последующим использованием граничных условий для электрических и магнитных полей на границах объекта. Рассеяние с изменением частоты — например, комбинационное — обусловлено флуктуациями плотностей тока и заряда. Подчеркнем, что вычисление плотностей тока и заряда производится с учетом нерадиационных затуханий у экситонов [5], что позволяет в дальнейшем вычислить не только рассеяние, но и поглощение света полупроводниковыми объектами (при $\gamma = 0$ поглощение света отсутствует). Полуклассический способ при вычислении коэффициентов отражения и поглощения монохроматического света КЯ был использован в [4] и [6-8]. В [9] тот же способ применен к вычислению электрических полей, возникающих при резонансном рассеянии света на экситоне $\Gamma_6 \times \Gamma_7$ в сферической КТ, состоящей из кубического кристалла класса T_d (например, GaAs) и огражденной бесконечно высоким прямоугольным потенциальным барьером.

Второй способ исследования рассеяния света КЯ, КП и КТ — квантовый, описанный в настоящей работе. Электрическое поле квантуется и используется квантовая теория возмущений. Нами проверено, что в применении к КЯ оба способа дают одинаковые результаты для безразмерного коэффициента отражения света, если рассматривать взаимодействие света с электронами в низшем порядке, что допустимо при условии $\gamma_r \ll \gamma$.

Безусловно, полуклассический способ имеет ряд преимуществ перед квантовым. Во-первых, он позволяет точно учесть взаимодействие света с электронами, т.е. все процессы переизлучения и перепоглощения света. Точное описание достигается, если в выражении для средних плотностей тока и заряда подставить истинные значения электрических полей. Тогда автоматически получаем, что резонансные вклады экситонов в безразмерные коэффициенты отражения и поглощения света в КЯ и сечения рассеяния в случае КП и КТ содержат множители вида $[(\omega_l - \tilde{\omega}_0)^2 + \Gamma^2/4]^{-1}$, где $\tilde{\omega}_0 = \omega_0 + \Delta \omega$ — перенормированная энергия экситона [6,8,9].

Во-вторых, полуклассический способ позволяет в принципе точно вычислить поглощение света объектами пониженной размерности. Для случая КЯ эта задача решена в [6–8], в [9] положено $\gamma = 0$, и поглощение света квантовой точкой в результате отсутствует.

В-третьих, полуклассический способ позволяет с легкостью перейти от монохроматического облучения к импульсному и установить связь между формой прошедшего импульса и энергетической структурой КЯ [10–14].

Наконец, в-четвертых, полуклассический способ позволяет учесть разность диэлектрических проницаемостей объектов пониженной размерности и окружающей среды [6,9,12].

Однако квантовый способ имеет одно неоспоримое преимущество — он гораздо проще, особенно в случае КП и КТ, что демонстрируется в настоящей работе.

2. Квантовая теория

Вычислим вероятность поглощения кванта возбуждающего света и испускания кванта рассеянного света. Согласно квантовой теории возмущений,

$$W_i = \frac{2\pi}{\hbar} \sum_f |M_{fi}|^2 \delta(E_f - E_i), \qquad (1)$$

где $E_i(E_f)$ — энергия начального (конечного) состояния,

$$M_{fi} = \sum_{m} \frac{\langle f | V | m \rangle \langle m | V | i \rangle}{E_i - E_m + i \delta \hbar} \tag{2}$$

— составной матричный элемент, E_m — энергия промежуточного состояния, $\delta \to +0$.

Взаимодействие системы зарядов с электрическим полем запишем в виде

$$V = -\int d^3 r \,\mathbf{d}(\mathbf{r}) \,\mathbf{E}(\mathbf{r}),\tag{3}$$

где введена величина плотности поляризации

$$\mathbf{d}(\mathbf{r}) = \sum_{i} \mathbf{r}_{i} \rho_{i}(\mathbf{r}), \quad \rho_{i}(\mathbf{r}) = e\delta(\mathbf{r} - \mathbf{r}_{i}). \tag{4}$$

Поле $E(\mathbf{r})$ запишем в представлении вторичного квантования ([15], стр. 579)

$$\mathbf{E}(\mathbf{r}) = i \left(\frac{2\pi\hbar}{V_0}\right)^{1/2} \frac{1}{\nu} \sum_{\mathbf{k},\mu} \omega_k^{1/2} \left(c_{\mu\mathbf{k}} \mathbf{e}_{\mu\mathbf{k}} e^{i\mathbf{k}\mathbf{r}} - c_{\mu\mathbf{k}}^+ \mathbf{e}_{\mu\mathbf{k}}^* e^{-i\mathbf{k}\mathbf{r}} \right),$$
(5)

где V_0 — нормировочный объем; $\omega_k = ck/v$ — частота; **k** — волновой вектор; $v = \sqrt{\varepsilon}$ — показатель преломления, который считаем одинаковым внутри объекта и вне его; $\mathbf{e}_{\mu\mathbf{k}}$ — вектор поляризации; μ — индекс поляризации; $c_{\mu\mathbf{k}}^+(c_{\mu\mathbf{k}})$ — оператор рождения (уничтожения) фотона. В (5) использовано приближение $u_{\mu\mathbf{k}} = c/\nu$, где $u_{\mu\mathbf{k}}$ — групповая скорость света. Поле (5) нормировано так, что энергия в объеме V_0 равна $\Sigma_{\mathbf{k},\mu}\hbar\omega_k(N_{\mu\mathbf{k}}+1/2)$.

Для полупроводниковых объектов в приближении эффективной массы [5]

$$\mathbf{d}(\mathbf{r}) = \mathbf{d}^{nd}(\mathbf{r}) = \sum_{\eta} \left[\mathbf{d}_{cv\eta} F_{\eta}^{*}(\mathbf{r}) a_{\eta}^{+} + \mathbf{d}_{cv\eta}^{*} F_{\eta}(\mathbf{r}) a_{\eta} \right], \quad (6)$$

где верхний индекс *nd* означает недиагональную часть оператора (имеющую отличные от нуля только недиагональные матричные элементы), $a_{\eta}^{+}(a_{\eta})$ — оператор рождения (уничтожения) экситона с набором индексов η , $F_{\eta}(\mathbf{r})$ — волновая функция экситона ("огибающая" волновой функции) при $\mathbf{r}_e = \mathbf{r}_h = \mathbf{r}$, $\mathbf{r}_e(\mathbf{r}_h)$ — радиусвектор электрона (дырки), $\mathbf{d}_{cv\eta} = -ie\mathbf{p}_{cv\eta}/(m_0\omega_g)$, m_0 — масса свободного электрона, $\hbar\omega_g$ — ширина запрещенной зоны, $\mathbf{p}_{cv\eta}$ — межзонный матричный элемент квазиимпульса. Подставив (5) и (6) в (3), получаем $V = V_1 + V_2 + \text{h.c., где}$

$$V_{1} = -\frac{e}{m_{0}\omega_{g}\nu} \left(\frac{2\pi\hbar}{V_{0}}\right)^{1/2} \sum_{\eta} \sum_{\mathbf{k},\mu} a_{\eta}^{+}c_{\mu\mathbf{k}}\omega_{k}^{1/2}(\mathbf{p}_{c\nu\eta}\mathbf{e}_{\mu\mathbf{k}})P_{\eta}^{*}(\mathbf{k}),$$

$$V_{2} = \frac{e}{m_{0}\omega_{g}\nu} \left(\frac{2\pi\hbar}{V_{0}}\right)^{1/2} \sum_{\eta} \sum_{\mathbf{k},\mu} a_{\eta}^{+}c_{\mu\mathbf{k}}^{+}\omega_{k}^{1/2}(\mathbf{p}_{c\nu\eta}\mathbf{e}_{\mu\mathbf{k}}^{*})P_{\eta}^{*}(-\mathbf{k}),$$
(7)

$$P_{\eta}(\mathbf{k}) = \int d^3 r e^{-i\mathbf{k}\mathbf{r}} F_{\eta}(\mathbf{r}).$$
(8)

Составной матричный элемент (2) разбивается на две части

$$M_{fi} = M_{fi}^1 + M_{fi}^2$$

где

$$M_{fi}^{1(2)} = \sum_{m} \frac{\langle f | V_{1(2)}^{+} | m \rangle \langle m | V_{1(2)} | i \rangle}{E_{i} - E_{m} + i \delta \hbar}.$$
 (9)

В начальном состоянии $|i\rangle$ предполагается основное состояние полупроводникового объекта и существование N_l фотонов с волновым вектором \mathbf{k}_l и поляризацией \mathbf{e}_l , причем $N_l \gg 1$. В конечном состоянии $|f\rangle$ присутствуют $N_l - 1$ фотонов возбуждающего света и один фотон рассеянного света с волновым вектором \mathbf{k}_s и поляризацией \mathbf{e}_s .

В промежуточном состоянии в случае процесса 1 присутствуют $N_l - 1$ фотонов возбуждающего света и экситон с набором индексов η , в случае процесса $2 - N_l$ фотонов возбуждающего света, один фотон рассеянного света и экситон η .

Для вероятности W_l получаем результат

$$W_{l} = \frac{(2\pi)^{3}}{V_{0}^{2}\hbar^{2}} \left(\frac{e^{2}}{m_{0}^{2}\omega_{g}^{2}}\right)^{2} \frac{N_{l}\omega_{l}\omega_{s}}{\nu^{4}} \sum_{\mathbf{k}_{s},\mu} \left|\sum_{\eta}\tilde{A}_{\eta}\right|^{2} \delta(\omega_{l}-\omega_{s}),$$
(10)

где введено обозначение

$$\tilde{A}_{\eta} = \frac{(\mathbf{p}_{cv\eta} \, \mathbf{e}_{l})(\mathbf{p}_{cv\eta} \, \mathbf{e}_{s})^{*} P_{\eta}^{*}(\mathbf{k}_{l}) P_{\eta}(\mathbf{k}_{s})}{\omega_{l} - \omega_{\eta} + i\delta} - \frac{(\mathbf{p}_{cv\eta}^{*} \, \mathbf{e}_{l})(\mathbf{p}_{cv\eta}^{*} \, \mathbf{e}_{s})^{*} P_{\eta}(-\mathbf{k}_{l}) P_{\eta}^{*}(-\mathbf{k}_{s})}{\omega_{l} + \omega_{\eta} + i\delta}.$$
(11)

Суммирование в правой части (10) проводится по волновым векторам \mathbf{k}_s и поляризациям μ рассеянного излучения.

Будем рассматривать резонансное рассеяние, когда энергии $\hbar\omega_l$ и $\hbar\omega_\eta$ немного превышают ширину запрещенной зоны. Тогда "нерезонансный" второй член в правой части (11) следует отбросить, поскольку учет его был бы превышением точности.

Переходя от суммирования по \mathbf{k}_s к интегрированию по модулю k_s и используя соотношение $\omega_s = ck_s/v$, получим

$$W_{l} = \left(\frac{e^{2}}{m_{0}^{2}\omega_{g}^{2}}\right)^{2} \frac{N_{l}\omega_{l}^{4}}{V_{0}\hbar^{2}c^{3}\nu} \sum_{\mu} \int do_{s} \left|\sum_{\eta} A_{\eta}\right|^{2}, \quad (12)$$

где A_{η} есть резонансный член в формуле (11). Выражение (12) универсально в том смысле, что применимо к любым полупроводниковым объектам пониженной размерности — КЯ, КП и КТ, в том числе в случае помещения этих объектов в постоянное магнитное поле.

3. Рассеяние света на квантовых точках

Рассмотрим рассеяние света на малом трехмерном полупроводниковом объекте, т.е. на КТ. Объект может быть любой формы (например, сферой, кубом или диском) и ограничен любыми потенциальными (параболическими или прямоугольными) барьерами любой высоты. Все особенности структуры КТ окажут влияние только на вид функции $P_{\eta}(\mathbf{k})$ для экситона с индексами η . Угловое распределение рассеянного света зависит также от структуры векторов $\mathbf{p}_{cv\eta}$, которые, вообще говоря, являются комплексными. Для кубических кристаллов (класса T_d) эти векторы различны для экситонов, содержащих тяжелые или легкие дырки или дырки из валентной зоны, отщепленной спин-орбитальным взаимодействием [16,17].

Под экситоном понимаем любое состояние ЭДП в КТ, которому соответствует дискретный уровень энергии.

В случае КТ естественно ввести понятие сечения рассеяния. Согласно (12), поток рассеянной энергии в интервал *do_s* телесного угла в единицу времени равен

$$\hbar\omega_l dW_l = \left(\frac{e^2}{m_0^2 \omega_g^2}\right)^2 \frac{N_l \omega_l^5}{V_0 \hbar c^3 \nu} \sum_{\mu} \left|\sum_{\eta} A_{\eta}\right|^2 do_s.$$
(13)

Поток энергии возбуждающего света на единицу площади в единицу времени равен

$$S_l = \frac{N_l \hbar \omega_l}{V_0} \frac{c}{\nu}.$$
 (14)

Разделив (13) на (14), получаем дифференциальное сечение рассеяния

$$d\sigma = \left(\frac{e^2}{\hbar c}\right)^2 \frac{\omega_l^4}{c^2 \omega_g^4 m_0^4} \sum_{\mu} \left|\sum_{\eta} A_{\eta}\right|^2 do_s.$$
(15)

Выражение (15) описывает угловую зависимость и (без суммы по μ) поляризацию рассеянного излучения. Если частота ω_l близка к энергии ω_η одного из состояний, наблюдается резонансное усиление рассеяния.

Если экситонное состояние вырождено (см. раздел 6), т. е. некоторой совокупности индексов η соответствует одна и та же энергия $\omega_{\eta} = \omega_0$ и функция $P_{\eta}(\mathbf{k}) = P(\mathbf{k})$ и от индекса η зависят только векторы $\mathbf{p}_{cv\eta}$, вклад этого состояния в сечение рассеяния равен

$$\frac{d\sigma_0}{do_s} = \sum_{\mu} \frac{d\sigma_{\mu}}{do_s},\tag{16}$$

$$\frac{d\sigma_{\mu}}{do_{s}} = \left(\frac{e^{2}}{\hbar c}\right)^{2} \frac{\omega_{l}^{4}}{c^{2}\omega_{g}^{4}m_{0}^{4}} \left|\Xi_{\mu}(\mathbf{e}_{l},\mathbf{e}_{s})\right|^{2} \frac{\left|P(\mathbf{k}_{l})\right|^{2}\left|P(\mathbf{k}_{s})\right|^{2}}{\left[(\omega_{l}-\omega_{0})^{2}+\delta^{2}\right]},\tag{17}$$

где

$$\Xi_{\mu}(\mathbf{e}_{l},\mathbf{e}_{s}) = \sum_{\eta} (\mathbf{p}_{cv\eta} \, \mathbf{e}_{l}) (\mathbf{p}_{cv\eta} \, \mathbf{e}_{s})^{*}. \tag{18}$$

Обозначим через *R* размер квантовой точки. Точка не должна быть обязательно сферической, она может иметь любую форму, тогда *R* — наибольший из линейных размеров.

Рассмотрим случай, когда длина световой волны много больше размера R, т.е. $kR \ll 1$. Тогда величина $P(\mathbf{k}_l) \simeq P(0) = \int d^3 r F_{\eta}(\mathbf{r})$ не зависит от волнового вектора \mathbf{k} , и резонансный вклад в сечение описывается формулой (17), в которой следует произвести замену $|P(\mathbf{k}_l)|^2 |P(\mathbf{k}_s)|^2 \simeq |P(0)|^4$.

Можно сделать следующие выводы. При $kR \ll 1$ поляризация и угловое распределение рассеянного света определяются только множителем $|\Xi_{\mu}(\mathbf{e}_{l}, \mathbf{e}_{s})|^{2}$, содержащим векторы $\mathbf{p}_{cv\eta}$, т.е. не зависит ни от формы КТ, ни от волновой функции экситона. Величина сечения не зависит от размеров КТ. Разумеется, что от формы и размеров КТ зависит положение уровня E_{n} .

4. Радиационное затухание экситонов

Хорошо известно (см., например, [1-8]), что при условии $\nu = \nu_1$ точный учет взаимодействия электронов с электромагнитным полем, а также учет нерадиационных затуханий γ_n экситонов приводят к тому, что в (11) множитель $(\omega_l - \omega_\eta + i\delta)^{-1}$ заменяется на $(\omega_l - \tilde{\omega}_\eta + i(\gamma_{r\eta} + \gamma_\eta)/2)^{-1}$, где $\gamma_{r\eta}$ — радиационное затухание, $\hbar \tilde{\omega}_\eta$ — перенормированная энергия экситона. Вычисление радиационного затухания производится по формуле (1). Матричный элемент $M_{fi} = \langle f | V | i \rangle$ соответствует прямому переходу из начального состояния, в котором присутствует экситон η и нет фотонов, в конечное состояние, в котором возбуждения в кристалле отсутствуют, но рожден фотон с волновым вектором **k** и поляризацией μ . Используя формулы (3)–(6), получаем

$$\gamma_{r\eta} = \frac{4\pi^2}{\hbar} \frac{e^2}{m_0^2 \omega_g^2 \nu^2 V_0} \sum_{\mathbf{k},\mu} \omega_k \left| \mathbf{p}_{c\nu\eta} \, \mathbf{e}_{\mu\mathbf{k}} \right|^2 \left| P_{\eta}(\mathbf{k}) \right|^2 \delta(\omega_{\eta} - \omega_k).$$
(19)

Заменив суммирование по **k** интегрированием, получаем результат

$$\gamma_{r\eta} = \frac{e^2 \omega_{\eta}^3 \nu}{2\pi \hbar m_0^2 \omega_g^2 c^3} \sum_{\mu} \int do_{\mathbf{k}_{\eta}} |\mathbf{p}_{c\nu\eta} \, \mathbf{e}_{\mu \mathbf{k}_{\eta}}|^2 |P_{\eta}(\mathbf{k}_{\eta})|^2,$$
(20)

где \mathbf{k}_{η} — вектор, модуль которого равен $k_{\eta} = \omega_{\eta} v/c$. Формула (20) применима к любым экситонам в КЯ, КП или КТ при произвольных величинах параметра $k_{\eta}R$, где R ширина КЯ, диаметр КП или КТ. Для КТ при условии $k_{\eta}R \ll 1$ получаем

$$\gamma_{r\eta} = \frac{e^2 \omega_{\eta}^3 v \left| \boldsymbol{P}_{\eta}(0) \right|^2}{2\pi \hbar m_0^2 \omega_g^2 c^3} \sum_{\mu} \int d\boldsymbol{o}_{\mathbf{k}_{\eta}} \left| \mathbf{p}_{cv\eta} \, \mathbf{e}_{\mu \mathbf{k}_{\eta}} \right|^2, \tag{21}$$

откуда следует, что радиационное затухание экситона не зависит от размеров КТ.

5. Оценка величины сечения рассеяния в резонансе

С учетом поправки к энергии экситона, а также радиационных и нерадиационных затуханий с помощью (16) и (17) получаем формулу для сечения рассеяния света любой КТ вблизи резонанса $\omega_l = \tilde{\omega}_0$:

$$\sigma_{0} = \left(\frac{e^{2}}{\hbar c}\right)^{2} \frac{\omega_{l}^{4}}{\omega_{g}^{4} m_{0}^{4} c^{2}} \left|P(\mathbf{k}_{l})\right|^{2} \left[(\omega_{l} - \tilde{\omega}_{0})^{2} + (\gamma_{r} + \gamma)^{2}/4\right]^{-1} \times \int do_{s} \left|P(\mathbf{k}_{s})\right|^{2} \sum_{\mu} \left|\Xi(\mathbf{e}_{l}, \mathbf{e}_{s})\right|^{2}.$$
(22)

Для оценки величины радиационного затухания используем (20). Предположим, что $\gamma \ll \gamma_r$. Тогда

$$\sigma_0(\omega_l = \tilde{\omega}_0) = \frac{c^2 x}{\omega_l^2 v^2} = k_l^{-2} x,$$
(23)

где $x \simeq 1$. Из (23) следует, что в том случае, когда радиационное затухание экситона превышает нерадиационное, что может выполняться в совершенных объектах, сечение рассеяния без изменения частоты в резонансе порядка квадрата длины волны падающего света. Этот результат справедлив как при условии $k_l R \ll 1$, так и в случае $k_l R \ge 1$ для любых КТ, в которых существуют экситонные уровни энергии.

6. Пример. Экситоны $\Gamma_6 \times \Gamma_7$ в кубических кристаллах класса T_d

В качестве примера рассмотрим экситон, образованный электроном из дважды вырожденной зоны проводимости Γ_6 и дыркой из дважды вырожденной валентной зоны Γ_7 , отщепленной спин-орбитальным взаимодействием. Такой экситон рассмотрен в работе [9], с результатами которой будем сопоставлять наши результаты.

Согласно обозначениям из [17], волновые функции электронов имеют структуру

$$\Psi_{e1} = iS \uparrow, \qquad \Psi_{e1} = iS \downarrow, \tag{24}$$

а волновые функции дырок

$$\Psi_{h1} = \frac{1}{\sqrt{3}} \left(X - iY \right) \uparrow -\frac{1}{\sqrt{3}} Z \downarrow,$$

$$\Psi_{h2} = \frac{1}{\sqrt{3}} \left(X + iY \right) \downarrow +\frac{1}{\sqrt{3}} Z \uparrow.$$
 (25)

Комбинируя функции (24) и (25) попарно, получаем четырежды вырожденное экситонное состояние, для которого векторы \mathbf{p}_{cv} равны

$$\mathbf{p}_{cv1} = \frac{p_{cv}}{\sqrt{3}} (\mathbf{e}_x - i\mathbf{e}_y),$$

$$\mathbf{p}_{cv2} = \frac{p_{cv}}{\sqrt{3}} (\mathbf{e}_x + i\mathbf{e}_y),$$

$$\mathbf{p}_{cv3} = \frac{p_{cv}}{\sqrt{3}} \mathbf{e}_z,$$

$$\mathbf{p}_{cv4} = -\frac{p_{cv}}{\sqrt{3}} \mathbf{e}_z,$$
(26)

где введен скаляр $p_{cv} = i \langle S | \hat{p}_x | X \rangle$; \mathbf{e}_x , \mathbf{e}_y , \mathbf{e}_z — орты вдоль кристаллографических осей.

Будем рассматривать круговую поляризацию возбуждающего и рассеянного света, т.е. положим

$$\mathbf{e}_{l}^{\pm} = \frac{1}{\sqrt{2}} \left(\mathbf{e}_{xl} \pm i \mathbf{e}_{yl} \right), \quad \mathbf{e}_{s}^{\pm} = \frac{1}{\sqrt{2}} \left(\mathbf{e}_{xs} \pm i \mathbf{e}_{ys} \right), \quad (27)$$

где орты \mathbf{e}_{xl} и \mathbf{e}_{yl} перпендикулярны оси z_l вдоль вектора \mathbf{k}_l , орты \mathbf{e}_{xs} и \mathbf{e}_{ys} перпендикулярны оси z_s вдоль вектора \mathbf{k}_s .

Направление вектора \mathbf{k}_l относительно кристаллографических осей считаем произвольным. Оно описывается углами ϑ_l, φ_l , где ϑ_l — угол между выбранной нами кристаллографической осью *z* и вектором \mathbf{k}_l . Аналогично направление вектора \mathbf{k}_s описывается углами ϑ_s, φ_s . Прямое вычисление величины $\Xi(\mathbf{e}_l, \mathbf{e}_s)$, определенной в (22), приводит к результатам

$$\begin{split} \Xi(\mathbf{e}_{l}^{+}, \mathbf{e}_{s}^{+}) &= \Xi^{*}(\mathbf{e}_{l}^{-}, \mathbf{e}_{s}^{-}) \\ &= \frac{p_{cv}^{2}}{3} \Big\{ (1 + \cos \vartheta_{l} \cos \vartheta_{s}) \cos(\varphi_{s} - \varphi_{l}) \\ &+ \sin \vartheta_{l} \sin \vartheta_{s} + i (\cos \vartheta_{l} - \cos \vartheta_{s}) \sin((\varphi_{s} - \varphi_{l}) \Big\}, \end{split}$$
(28)
$$\Xi(\mathbf{e}_{l}^{+}, \mathbf{e}_{s}^{-}) &= \Xi^{*}(\mathbf{e}_{l}^{-}, \mathbf{e}_{s}^{+}) \end{split}$$

$$= \frac{p_{cv}^2}{3} \Big\{ (1 - \cos \vartheta_l \cos \vartheta_s) \cos(\varphi_s - \varphi_l) \\ -\sin \vartheta_l \sin \vartheta_s + i (\cos \vartheta_l - \cos \vartheta_s) \sin((\varphi_s - \varphi_l)) \Big\}.$$
(29)

Возводя (28) и (29) по модулю в квадрат, получаем

$$\left|\Xi(\mathbf{e}_{l}^{+},\mathbf{e}_{s}^{+})\right|^{2} = \left|\Xi(\mathbf{e}_{l}^{-},\mathbf{e}_{s}^{-})\right|^{2} = \frac{p_{cv}^{4}}{9} \left(1 + \cos\theta\right)^{2}, \quad (30)$$

$$\left|\Xi(\mathbf{e}_{l}^{+},\mathbf{e}_{s}^{-})\right|^{2} = \left|\Xi(\mathbf{e}_{l}^{-},\mathbf{e}_{s}^{+})\right|^{2} = \frac{p_{cv}^{4}}{9}\left(1-\cos\theta\right)^{2},$$
 (31)

где θ — угол между векторами \mathbf{k}_l и \mathbf{k}_s . Заметим, что при распространении света вдоль кристаллографической оси *z*, т.е. \mathbf{k}_l вдоль оси *z*, при поляризации \mathbf{e}_l^+ — возбуждается только экситон с $\eta = 1$ с $\mathbf{p}_{cv1} = (p_{cv}/\sqrt{3})(\mathbf{e}_x - i\mathbf{e}_y)$, а при поляризации \mathbf{e}_l^- возбуждается только экситон с $\eta = 2$ с $\mathbf{p}_{cv2} = (p_{cv}/\sqrt{3})$ × ($\mathbf{e}_x + i\mathbf{e}_y$). Однако при произвольном направлении света относительно кристаллографических осей возбуждаются все четыре экситона. Подставляя (30) и (31) в (17), получаем следующие результаты для дифференциальных сечений рассеяния

$$\frac{d\sigma^{++}}{do_s} = \frac{d\sigma^{--}}{do_s} = \Sigma_0 \frac{(1+\cos\theta)^2}{9}, \qquad (32)$$

$$\frac{d\sigma^{+-}}{do_s} = \frac{d\sigma^{-+}}{do_s} = \Sigma_0 \frac{(1-\cos\theta)^2}{9},$$
(33)

где верхний индекс ++ означает поляризацию падающего (рассеянного) света $\mathbf{e}_l^+(\mathbf{e}_s^+)$ и т.д.,

$$\Sigma_0 = \left(\frac{e^2}{\hbar c}\right)^2 \frac{\omega_l^4 p_{cv}^4}{\omega_g^4 m_0^4 c^2} \frac{\left|P(\mathbf{k}_l)\right|^2 \left|P(\mathbf{k}_s)\right|^2}{\left((\omega_l - \omega_0)^2 + \delta^2\right)}.$$
 (34)

Суммируя по поляризациям рассеянного света, получаем

$$\frac{d\sigma^+}{do_s} = \frac{d\sigma^-}{do_s} = \frac{2}{9} \Sigma_0 \left(1 + \cos^2\theta\right),\tag{35}$$

где верхний индекс +(-) означает поляризацию возбуждающего света $\mathbf{e}_l^+(\mathbf{e}_l^-)$. Наконец, полное сечение рассеяния $\sigma^+ = \sigma^-$ получается в результате интегрирования по углам, определяющим направление вектора \mathbf{k}_s . Множитель $|P(\mathbf{k}_l)|^2$ может обусловить зависимость сечения рассеяния (дифференциального и полного) от направления распространения света, например, если КТ представляет собою диск. В частном случае, когда величина $P(\mathbf{k})$ зависит только от модуля k, т.е.

$$P(k_l) = P(\mathbf{k}_s) = \mathscr{P}(\mathbf{k}_l R), \qquad (36)$$

величина Σ_0 не зависит от направления векторов \mathbf{k}_l и \mathbf{k}_s . Но и в этом случае, как следует из (34) и (35), рассеяние не является изотропным. При условии (36) интегрирование по углам, определяющим направление вектора \mathbf{k}_s , легко выполняется, и для полного сечения получаем результат

$$\sigma^{+} = \sigma^{-} = \frac{32\pi}{27} \left(\frac{e^{2}}{\hbar c}\right)^{2} \frac{\omega_{l}^{4} p_{cv}^{4}}{\omega_{g}^{4} m_{0}^{4} c^{2}} \frac{\left|\mathscr{P}(k_{l} R)\right|^{4}}{\left((\omega_{l} - \omega_{0})^{2} + \delta^{2}\right)}.$$
 (37)

Например, используя "огибающую" волновой функции (см., например, [9])

$$F(\mathbf{r}) = \frac{1}{2\pi R} \frac{\sin^2(\pi r/R)}{r^2} \theta(R-r), \qquad (38)$$

получаем

$$\mathscr{P}(kR) = \frac{2}{kR} \int_{0}^{\pi} dx \, \sin\left(\frac{kRx}{\pi}\right) \frac{\sin^{2}x}{x}, \quad \mathscr{P}(0) = 1.$$
(39)

При условии $k_l R \ll 1$ в выражениях (34) и (37) полагаем $P(\mathbf{k}) \simeq P(0)$ и получаем результаты, применимые в случае малых КТ любой формы, размеров и конфигурации к рассеянию на экситонах в кубических кристаллах класса T_d , в состав которых (экситонов) входит дырка из отщепленной валентной зоны. В случае тяжелых или легких дырок в составе экситонов получаются другие результаты, обусловленные другой структурой векторов $\mathbf{p}_{cv\eta}$. При условии $k_l R \ge 1$ может быть существенно, что мы не учитываем разности диэлектрических проницаемостей внутри и вне КТ.

Вычислим радиационное затухание для экситонов с векторами $\mathbf{p}_{cv\eta}$ из (26). В выражение (21) входит множитель $S_{\eta\mu} = |\mathbf{p}_{cv\eta} \, \mathbf{e}_{\mu \mathbf{k}}|^2$. Используя (26), получаем следующие результаты

$$S_{1+} = S_{2-} = \frac{p_{cv}^2}{6} (1 + \cos \vartheta)^2,$$

$$S_{1-} = S_{2+} = \frac{p_{cv}^2}{6} (1 - \cos \vartheta)^2,$$

$$S_{3+} = S_{3-} = S_{4+} = S_{4-} = \frac{p_{cv}^2}{6} \sin^2 \vartheta,$$
 (40)

где индексы от 1 до 4 соответствуют экситонным состояниям (26), индексы + или – описывают круговые поляризации $\mathbf{e}_{\mathbf{k}}^{\pm} = \frac{1}{\sqrt{2}} (\mathbf{e}_{x'} \pm i \mathbf{e}_{y'})$, если вектор **k** направлен вдоль оси z', ϑ — угол между осью z

кристалла и направлением **k**. Суммируя величины $S_{\eta\mu}$ по поляризациям, получаем

$$S_1 = S_2 = \frac{p_{cv}^2}{3} (1 + \cos^2 \vartheta),$$

$$S_3 = S_4 = \frac{p_{cv}^2}{3} \sin^2 \vartheta,$$
(41)

где $S_{\eta} = \Sigma_{\mu} |\mathbf{p}_{cv\eta} \, \mathbf{e}_{\mu \mathbf{k}}|^2$. Подставляя (41) в (21), получаем

$$\gamma_{r1} = \gamma_{r2} = \frac{e^2 \omega_\eta^3 p_{cv}^2 v}{6\pi \hbar m_0^2 \omega_g^2 c^2} \int do_{\mathbf{k}} (1 + \cos^2 \vartheta) |P(\mathbf{k})|^2,$$

$$\gamma_{r3} = \gamma_{r4} = \gamma_{r1}/2, \quad k = \omega_0 v/c.$$
(42)

В случае (36), интегрируя по углам, определяющим направление **k**, получаем

$$\gamma_{r1} = \gamma_{r2} = \frac{8}{9} \frac{e^2 \omega_\eta^3 p_{cv}^2 \nu}{\hbar m_0^2 \omega_\pi^2 c^3} \left| \mathscr{P}(kR) \right|^2, \tag{43}$$

$$\gamma_{r3} = \gamma_{r4} = \gamma_{r1}/2.$$
 (44)

В случае $kR \ll 1$ для радиационных затуханий экситонов $\Gamma_6 \times \Gamma_7$ в КТ любой формы, конфигурации и размеров получаем выражения (44), в которых множитель $|\mathscr{P}(kR)|^2$ заменен на $|P(0)|^2$. Результат (43) при P(0) = 1 совпадает с формулой (6) из [9], если в последней положить $\varepsilon_1 = \varepsilon_2 = \nu^2$.

7. Выводы

С помощью квантовой теории возмущений в низшем порядке по взаимодействию света с электронами вычислено число переходов в единицу времени с поглощением кванта *l* падающего света и испусканием кванта *s* рассеянного света. Результат применим к любым полупроводниковым объектам пониженной размерности — КЯ, КП или КТ — в условиях размерного квантования (см. (12)). В случае КЯ полученное выражение позволит вычислить безразмерный коэффициент отражения света, в случае КП — сечение рассеяния на единицу длины, в случае КТ — сечение рассеяния размерности ст².

Получена формула (17) для дифференциального сечения резонансного рассеяния на любом экситоне в квантовой точке любой формы, конфигурации и размеров.

При условии $kR \ll 1$, где k — модуль волнового вектора света, R — размер КТ, поляризация и угловое распределение рассеянного света не зависят ни от формы КТ, ни от "огибающей" волновой функции экситона, а только от векторов $\mathbf{p}_{cv\eta}$, которые представляют собой недиагональные матричные элементы квазиимпульса экситонных состояний, а величина сечения рассеяния не зависит от размеров КТ.

С помощью квантовой теории возмущений получена формула (20) для радиационного затухания экситона с набором индексов η , применимая к любым экситонам в любых КЯ, КП или КТ при произвольных величинах параметра $k_{\eta}R$, где R — ширина КЯ, диаметр КП или размер КТ, $k_{\eta} = \omega_{\eta} v/c$, $\hbar \omega_{\eta}$ — энергия экситона, v коэффициент преломления, который считаем одинаковым внутри объекта и вне его.

Для КТ при условии $k_{\eta}R \ll 1$ находим, что радиационное затухание не зависит от размеров квантовой точки (см. (21)).

Оценка величины полного сечения рассеяния в точке резонанса $\omega_l = \tilde{\omega}_0$ показывает, что при условии $\gamma \ll \gamma_r$ сечение порядка $(\lambda_l/2\pi)^2 x$, где x — число.

Разобран пример экситона $\Gamma_6 \times \Gamma_7$ в кубических кристаллах T_d . Для этого экситона $x = 6\pi$.

Список литературы

- L.C. Andreani, F. Tassone, F. Bassani. Solid State Commun. 77, 641 (1991).
- [2] L.C. Andreani, G. Pansarini, A.V. Kavokin, M.R. Vladimiriva. Phys. Rev. B 57, 4670 (1998).
- [3] L.C. Andreani. Confined electrons and photons / Eds E. Burstein, C. Weisbuch. Plemun Press, N.Y. (1995).
- [4] Е.Л. Ивченко, А.В. Кавокин. ФТТ 34, 1815 (1992).
- [5] И.Г. Ланг, С.Т. Павлов, Л.И. Коровин. ФТТ 46, 1706 (2004); cond-mat/0311180.
- [6] Л.И. Коровин, И.Г. Ланг, Д.А. Контрерас-Солорио, С.Т. Павлов. ФТТ 43, 2091 (2001); cond-mat/0104262.
- [7] Л.И. Коровин, И.Г. Ланг, Д.А. Контрерас-Солорио, С.Т. Павлов. ФТТ 44, 2084 (2002); cond-mat/0001248.
- [8] И.Г. Ланг, Л.И. Коровин, С.Т. Павлов. ФТТ 48, 1693 (2006); cond-mat/0403519.
- [9] S.V. Goupalov. Phys. Rev. B 68, 125 311 (2003).
- [10] I.G. Lang, V.I. Belitsky. Phys. Lett. A 245, 329 (1998).
- [11] D.A. Contreras-Solorio, S.T. Pavlov, L.I. Korovin, I.G. Lang. Phys. Rev. B 62, 16815 (2000); cond-mat/0002229.
- [12] Л.И. Коровин, И.Г. Ланг, Д.А. Контрерас-Солорио, С.Т. Павлов. ФТТ 44, 1681 (2002); cond-mat/0203390.
- [13] И.Г. Ланг, Л.И. Коровин, Д.А. Контрерас-Солорио, С.Т. Павлов. ФТТ 42, 2230 (2000); cond-mat/0006364.
- [14] И.Г. Ланг, Л.И. Коровин, Д.А. Контрерас-Солорио, С.Т. Павлов. ФТТ 43, 1117 (2001); cond-mat/0004178.
- [15] Л.Д. Ландау, Е.М. Лифшиц. Электродинамика сплошных сред. Наука, М. (1982).
- [16] J.M. Luttinger, W. Kohn. Phys. Rev. 97, 869 (1955).
- [17] И.М. Цидильковский. Зонная структура полупроводников. Наука. М, (1978). С. 73.