Влияние давления на электронную структуру купратов в режиме сильных электронных корреляций

© В.А. Гавричков, С.Г. Овчинников, Г.В. Ульм

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия

E-mail: gav@iph.krasn.ru

(Поступила в Редакцию 22 августа 2006 г.)

Исследуются эффекты давления в электронной структуре CuO₂ слоя для купратов *n*- и *p*-типов. Для расчета был использован обобщенный метод сильной связи, учитывающий влияние сильных электронных корреляций на электронную структуру купратов. Результаты исследования свидетельствуют о наличии нетривиальной зависимости от давления самой природы квазичастичных состояний на потолке валентной зоны в купратах *p*-типа. С ростом давления дырочные состояния в этих материалах уже не являются синглетными состояниями Жайга–Райса, а приобретают комбинированный синглетно-триплетный характер.

Работа выполнена при финансовой поддержке РФФИ (грант № 06-02-16100), а также в рамках программы Президиума РАН "Квантовая макрофизика" и комплексного интеграционного проекта СОРАН № 3.4.

PACS: 74.62.Fj, 74.72.-h

1. Введение

Известно, что давление оказывает сильное влияние на свойства высокотемпературных сверхпроводников (ВТСП), в особенности на T_c [1,2]. Этот эффект давления значительно превосходит аналогичный для обычных металлических сверхпроводников. Суть самого эффекта состоит в том, что температура перехода в сверхпроводящее состояние Т_с сильно зависит от степени допирования. Примечательно, что если приложить давление к слабодопированному образцу, который имеет без давления $T_c = T_{ci}$, меньшее, чем T_{cm} (максимально достижимая температура при оптимальном допировании), то температура сверхпроводящего перехода может превзойти T_{cm}. Например, сверхпроводник Tl-2223 имеет *T_{cm}* = 125 К при атмосферном давлении. Внешнее давление не оказывает значительного влияния на этот параметр. В то же время давление, приложенное к слабодопированному образцу с $T_c = T_{ci} = 116$ K, повышает этот параметр до $T_c = T_{cp} = 132$ K, что превосходит T_{cm} . Сам эффект не является универсальным для купратов. Например, зависимость T_c от давления для соединения $Nd_{1.85}Ce_{0.15}CuO_{4-x}$, которое тоже содержит слой CuO₂, очень слабая.

Приложение давления вызывает изменения электронной структуры ВТСП-материалов. Косвенным свидетельством в пользу нетривиальных последствий приложения давления к купратам служат также результаты фотоэмиссионных исследований $Bi_2Sr_2Ca_{1-x}Y_xCu_2O_{8+\delta}$ (0.92 < x < 0.55) диэлектрика [3], где эффекты "химического" давления при замещении Ga на Y проявляются в неожиданно сильном изменении формы дисперсионной зависимости на самом потолке валентной зоны. Целью данной работы является теоретическое исследование эффектов давления в электронной структуре CuO₂ слоя материалов n- и p-типа. Рассматриваются соединения Nd₂CuO₄ (NCO) и La₂CuO₄ (LCO). Для учета эффектов сильных электронных корреляций (СЭК) в электронной структуре этих соединений расчет делается в рамках обобщенного метода сильной связи (GTB-метода) [4,5].

2. Электронная структура

Сама схема расчета электронной структуры для NCO и LCO подробно изложена в [4,5], поэтому здесь коснемся лишь ее ключевых моментов. На рис. 1 представлены элементарные ячейки NCO и LCO. Будем рассматривать давление вдоль оси c кристалла, т.е. точечная группа кислородного октаэдра D_{4h} остается неизменной. Гидростатическое давление и равномерное давление в плоскости, перпендикулярной оси c, в наших расчетах ни к каким интересным эффектам не приводят. Учет давления производится путем введения соответствующего

Рис. 1. *а* — элементарная ячейка Nd₂CuO₄, *b* — элементарная ячейка La₂CuO₄.

параметра во внутрикластерные интегралы перескока

$$t_{pd}(P) = t_{pd}(0) - \alpha_1 P,$$
 $t_{pp}(P) = t_{pp}(0) - \alpha_2 P,$
 $t_{pd}^{ap}(P) = t_{pd}^{ap}(0) + \alpha_3 P,$ $t_{pp}^{ap}(P) = t_{pp}^{ap}(0) + \alpha_4 P,$

где t_{pd} — интеграл перескока между центральным атомом меди кислородного октаэдра и плоскостным атомом кислорода; t_{pp} — между плоскостными кислородами: t_{pd}^{ap} и t_{pp}^{ap} — соответствующие величины, относящиеся к апическому кислороду. Параметры, как то однодырочные энергии ε_{dx} , ε_{dz} , ε_{p} , интегралы перескоков t_{pd} , t_{pp} , t_{pd}^{ap} , t_{pp}^{ap} и параметры кулоновского взаимодействия, рассчитаны *ab initio* методом LDA [6]. Из общих соображений понятно, что все α одного порядка, поэтому для упрощения расчетов примем $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha = 0.0005 \text{ eV/Gpa}$ (величина α взята из [7], где она была рассчитана методом LDA для FeBO₃).

Краткое описание обобщенного метода сильной связи

В GTВ-методе гамильтониан CuO₂ слоя может быть записан в виде [8]

$$H = \sum_{i\lambda\sigma} \varepsilon_i^{\lambda} \alpha_{i\lambda\sigma}^{+} \alpha_{i\lambda\sigma}$$

+ $\sum_{i,j} \sum_{\lambda_1\lambda_2\sigma_1\sigma_2\sigma_3\sigma_4} V_{ij}^{\lambda_1\lambda_2} \alpha_{i\lambda_1\sigma_1}^{+} \alpha_{i\lambda_1\sigma_3} \alpha_{i\lambda_2\sigma_2}^{+} \alpha_{j\lambda_2\sigma_4}$
+ $\sum_{\langle i,j \rangle} \sum_{\lambda_1\lambda_2\sigma} t_{ij}^{\lambda_1\lambda_2} a_{i\lambda_1\sigma}^{+} a_{j\lambda_2\sigma}.$ (1)

Здесь $a_{i\lambda\sigma}$ есть оператор уничтожения дырки на узле *i* (медь или кислород), орбитали λ и со спином σ . Мы учитывали две орбитали меди $(d_{x^2-y^2} \text{ и } d_{z^2})$ и две $p_{x(y)}$ -, *p*_z-орбитали на каждом узле кислорода, образующие σ-связи с указанными орбиталями меди. Среди кулоновских матричных элементов можно выделить внутриатомные хаббардовские U_d (U_p) для отталкивания на одной орбитали меди (кислорода) с противоположными спинами, межорбитальные V_d (V_p) кулоновские и J_d (J_p) обменные матричные элементы, а также межатомные параметры кулоновского отталкивания V_{pd}, которые для простоты считаем одинаковыми для всех орбиталей. Последнее слагаемое в (1) описывает межатомные перескоки медь-кислород с параметрами $t_{pd}^{x^2-y^2,x(y)} \equiv t_{pd}$ и $t_{pd}^{z^2,x} = t_{pd}/\sqrt{3}$ и кислород-кислород с параметром $t_{pp}^{x,y} \equiv t_{pp}$. Из шести ионов кислорода два апических расположены по оси с в T-структуре состава LCO. Эффекты последних контролируются в расчете двумя параметрами: t'_{pd} - и t'_{pp} -интегралами перескока с меди и плоскостного кислорода на апический кислород соответственно.

В GTB зонная структура квазичастиц с учетом эффектов СЭК рассчитывается в два этапа. На первом решетка слоя CuO₂ разбивается на множество элементарных ячеек, гамильтониан внутри ячейки точно диагонализуется. Вместе с выбором CuO₆-кластера в качестве элементарной ячейки решалась дополнительная задача о построении b_{1g} - и a_{1g} -симметричных функций Ваннье на исходных кислородных орбиталях [4]. Полученные в результате диагонализации гамильтониана ячейки H_0 многоэлектронные молекулярные орбитали $|n, p\rangle$ (где n = 0, 1, 2, ... — число дырок в ячейке, p обозначает совокупность остальных орбитальных и спиновых индексов), использовались для построения операторов Хаббарда данной ячейки $X^m = |n + 1, p\rangle \langle n, q|$ и одноэлектронных операторов $a_{f\lambda\sigma} = \sum_m \gamma_{\lambda\sigma}(m)X_{f\sigma}^m$. Здесь зонный индекс квазичастиц m нумерует одноэлектронные возбуждения их начального состояния $|n, q\rangle$ в конеч-

В GTВ-методе дисперсионные соотношения и спектральная плотность могут быть записаны в виде [8]

$$\left| (E - \Omega_m^G) \delta_{mn} / F_{\sigma}^G(m) - 2 \sum_{\lambda \lambda'} \gamma_{\lambda \sigma}^*(m) T_{\lambda \lambda'}^{PG}(\mathbf{k}) \gamma_{\lambda' \sigma}(n) \right\| = 0,$$
(2)

$$A_{\sigma}(\mathbf{k}, E) = \left(-\frac{1}{\pi}\right) \sum_{\lambda} \operatorname{Im}(G_{\mathbf{k},\sigma}^{\lambda\lambda})$$
$$= \left(-\frac{1}{\pi}\right) \sum_{\lambda mn} \gamma_{\lambda\sigma}(m) \gamma_{\lambda\sigma}^{+}(n) \operatorname{Im}\left(D_{\mathbf{k}\sigma}^{mn}(AA) + D_{\mathbf{k}\sigma}^{mn}(BB)\right),$$
(3)

где

Hoe $|n+1, p\rangle$.

$$G_{\mathbf{k}\sigma}^{\lambda\lambda'} = \left\langle \left\langle a_{\mathbf{k}\lambda\sigma} | a_{\mathbf{k}\lambda'\sigma}^+ \right\rangle \right\rangle_E = \sum_{mn} \gamma_{\lambda\sigma}(m) \gamma_{\lambda'\sigma}^+(n) D_{\mathbf{k}\sigma}^{nm}, \quad (4)$$

$$\hat{D}_{\mathbf{k}\sigma} = \begin{pmatrix} \hat{D}_{\mathbf{k}\sigma}(AA) & \hat{D}_{\mathbf{k}\sigma}(AB) \\ \hat{D}_{\mathbf{k}\sigma}(BA) & \hat{D}_{\mathbf{k}\sigma}(BB) \end{pmatrix},$$
$$D_{\mathbf{k}\sigma}^{mn}(AB) = \left\langle \left\langle X_{\mathbf{k}\sigma}^{m} | Y_{\mathbf{k}\sigma}^{n} \right\rangle \right\rangle_{E}, \tag{5}$$

индексы *P* и *G* пробегают по подрешеткам *A* и *B* антиферромагнитного (АФМ) состояния. Уравнения (2) и (3) были получены в АФМ-фазе [4] с помощью уравнений движения на функции Грина (5) в приближении Хаббарда для межъячеечных перескоков. Элементы матрицы "сильной связи"

$$T_{\lambda\lambda'}^{AA}(\mathbf{k}) = T_{\lambda\lambda'}^{BB}(\mathbf{k}) = \frac{2}{N} \sum_{\mathbf{R}_1} T_{\lambda\lambda'}^{AA}(\mathbf{R}_1) \exp(i\mathbf{k}\mathbf{R}_1),$$

$$T^{AB}_{\lambda\lambda'}(\mathbf{k}) = T^{BA}_{\lambda\lambda'}(\mathbf{k}) = \frac{2}{N} \sum_{\mathbf{R}_2} T^{AB}_{\lambda\lambda'}(\mathbf{R}_2) \exp(i\mathbf{k}\mathbf{R}_2)$$

на пятиорбитальном d_x, d_z, b, a, p_z — базисе выглядят следующим образом:

 $T_{\lambda\lambda'}(\mathbf{R})$

$$= \begin{pmatrix} 0 & 0 & -2t_{pd}\mu_{ij} & 0 & 0 \\ 0 & 0 & 2t_{pd}\xi_{ij}/\sqrt{3} & 2t_{pd}\lambda_{ij}/\sqrt{3} & 0 \\ -2t_{pd}\mu_{ij} & 2t_{pd}\xi_{ij}/\sqrt{3} & -2t_{pp}\nu_{ij} & 2t_{pp}\chi_{ij} & -2t'_{pp}\xi_{ij} \\ 0 & 2t_{pd}\lambda_{ij}/\sqrt{3} & 2t_{pp}\chi_{ij} & 2t_{pp}\nu_{ij} & -2t'_{pp}\lambda_{ij} \\ 0 & 0 & -2t'_{pp}\xi_{ij} & -2t'_{pp}\lambda_{ij} & 0 \end{pmatrix},$$
(6)

где коэффициенты μ_{ij} , ξ_{ij} , λ_{ij} , ν_{ij} , χ_{ij} приведены в [4]. Уравнение (2) является аналогом дисперсионного уравнения в методе сильной связи, отличаясь от него двумя моментами. Во-первых, квазичастичные энергии вычисляются в виде $\Omega_m^G = \varepsilon_{2qG} - \varepsilon_{1pG}$ — резонансов между многочастичными состояниями из разных секторов конфигурационного пространства. Во-вторых, фактор заполнения $F_{\sigma}^G(m) = \langle X_{f_G\sigma}^{pp} \rangle + \langle X_{f_G\sigma}^{qq} \rangle$ приводит к концентрационной зависимости как дисперсии, так и

Рис. 3. Зависимость энергии квазичастичных состояний в соответствующих симметричных точках зоны Бриллюэна от давления для Nd₂CuO₄. Штрихпунктирная линия — в точке $(\pi/2, \pi/2)$ зоны проводимости, сплошная — в точке $(\pi, 0)$ зоны проводимости, сплошная жирная — в точке $(\pi/2, \pi/2)$ валентной зоны, штриховая — в точке $(\pi, 0)$ валентной зоны.

Рис. 2. a — зонная структура Nd₂CuO₄ при нулевом давлении, b — зонная структура Nd₂CuO₄ при давлении 150 GPa.

Рис. 4. a — зонная структура La₂CuO₄ при нулевом давлении, b — зонная структура La₂CuO₄ при давлении 220 GPa.

Рис. 5. Зависимость энергии квазичастичных состояний в соответствующих симметричных точках зоны Бриллюэна от давления для La₂CuO₄. Штрихпунктирная линия — в точке $(\pi/2, \pi/2)$ зоны проводимости, сплошная — в точке $(\pi, 0)$ зоны проводимости, сплошная жирная — в точке $(\pi/2, \pi/2)$ валентной зоны, пунктирная — в точке (0, 0) и (π, π) валентной зоны, штриховая — в точке $(\pi, 0)$ валентной зоны.

амплитуды спектральной плотности (3). Квазичастичные состояния с различными *m* могут перекрываться и взаимодействовать, как это имеет место для сингетных A_{1g} и трипленых ${}^{3}B_{1g}$ двухдырочных состояний в купратах *p*-типа [4].

4. Результаты расчетов

На рис. 2 представлена зонная структура NCO при нулевом давлении (*a*) и при 150 GPa (*b*). При нулевом давлении результаты совпадают с полученными ранее в работе [6]. Видно, что изменения в зонной структуре NCO носят только количественный характер. На рис. 3 показаны сдвиги характерных точек в зоне Бриллюэна от давления. Диэлектрическая щель сужается.

Для LCO ситуация сложнее, она показана на рис. 4. При нулевом давлении воспроизводятся результаты [6]. Особенностью зонной структуры валентной зоны в GTB—методе является наличие синглетной и триплетной зон, причем триплетные состояния при нулевом давлении лежат в глубине валентной зоны примерно на 0.5-0.7 eV (рис. 4, a). Дело в том, что с ростом давления эти состояния выходят на самый потолок валентной зоны (рис. 4, b и 5). В результате дырочные состояния в этих материалах приобретают комбинированный синглетно-триплетный характер.

5. Заключение

Обнаруженное различие в поведении зонной структуры NCO и LCO с давлением важно для понимания причин различных зависимостей критических температур сверхпроводимости в электронных и дырочных ВТСП. Несмотря на то что теория сверхпроводимости под высоким давлением, опирающаяся на наши расчеты, еще не построена, качественно причина различия зависимости Т_с от давления может быть следующей. Для *п*-типа купратов, где зонная структура характеризуется лишь небольшими сдвигами экстремумов зон, эффективный низкоэнергетический гамильтониан будет иметь вид t-J модели с зависящими от давления параметрами t и J. Для дырочных купратов выход триплетных состояний на потолок валентной зоны заметно меняет эффективную модель с ростом давления. Эффективный гамильтониан, полученный для дырочных купратов в рамках GTB-метода, имеет вид двухзонной синглетно-триплетной модели [9]. Синглетно-триплетные возбуждения бозевского типа (спиновый экситон) были предложены в работах [10,11] как дополнительный, возможный механизм спаривания. Однако в отсутствие давления расстояние между синглетной и триплетной зонами достаточно велико (около 0.5-0.7 eV), так что вклад спиновых экситонов оказывается мал. Сближение триплетной и синглетной зон, полученное нами с ростом давления, должно усилить спин-экситонный механизм спаривания, который действует аддитивно к магнитному механизму t-J модели. В результате возникает более сильная зависимость Т_с от давления.

Список литературы

- V.Z. Kresin, S.A. Wolf, Yu.N. Ovchinnikov. Phys. Rev. B 53, 11831 (1996).
- [2] C. Acha, M. Nunez-Regueiro, S. Le Floch, P. Bordet, J.J. Copponi, C. Chaillout, J.-L. Tholence. Phys. Rev. B 57, R5630 (1998).
- [3] C. Janowitz, U. Seidil, R.-S. Unger, A. Krapf, R. Manzke, V. Gavrichkov, S. Ovchinnikov. Письма в ЖЭТФ 80, 819 (2004).
- [4] В.А. Гавричков, С.Г. Овчинников, А.А. Борисов, Е.Г. Горячев. ЖЭТФ 118, 422 (2000); V. Gavrichkov, А.А. Borisov, S.G. Ovchinnikov. Phys. Rev. B 64, 235 124 (2001).
- [5] В.А. Гавричков, С.Г. Овчинников. ЖЭТФ 25, 630 (2004).
- [6] M.M. Korshunov, V.A. Gavrichkov, S.G. Ovchinnikov, I.A. Nekrasov, Z.V. Pchelkina, V.I. Anisimov. Phys. Rev. B 72, 165 104 (2005).
- [7] S.G. Ovchinnikov, V.I. Anisimov, I.A. Nekrasov, Z.V. Pchelkina. The Physics of Metals and Metallography 99, Suppl. 1, 593 (2005).
- [8] В.В. Вальков, С.Г. Овчинников. Квазичастицы в сильно коррелированных системах. СОРАН, Новосирирск (2001). 277 с.
- [9] М.М. Коршунов, С.Г. Овчинников. ФТТ 43, 399 (2001).
- [10] С.Г. Овчинников. Письма в ЖЭТФ 64, 23 (1996).
- [11] M.M. Korshunov, S.G. Ovchinnikov, A.V. Sherman. The Physics of Metals and Metallography 100, Suppl. 1, 837 (2005).