Анизотропия распространения света в тонких пленках опалов

© С.Г. Романов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Поступила в Редакцию в окончательном виде 21 апреля 2006 г.)

Приготовлены тонкие пленки опалов методом кристаллизации в движущемся мениске и исследованы их спектры оптического пропускания в поляризованном свете. Продемонстрировано, что анизотропия распространения света однозначно связана с фотонной зонной структурой опала и зависит от угла падения света, ориентации плоскости падения по отношению к решетке опала, длины волны и поляризации падающего света. Построены азимутальные диаграммы пропускания поляризованного света в области фотонных щелей трех порядков при наклонном падении пучка света. Найдено, что изменение анизотропии с длиной волны света происходит независимо в перпендикулярных поляризациях. Показано, что модель зонной структуры опала, как гранецентрированной кубической решетки плотноупакованных сфер, адекватно описывает оптическое пропускание пленок опалов только в области фотонной щели первого порядка.

Работа поддержана РФФИ (грант № 05-02-16975).

PACS: 42.70.Qs, 42.25.Ja, 78.67.-n

1. Введение

Фотонные кристаллы (ФК) — это периодически структурированные материалы, в которых распространение света подавлено в некоторой полосе частот, называемой фотонной щелью (ФЩ), вследствие интерференции падающей и когерентно рассеянных электромагнитных волн [1]. Поскольку в ФК рассеиватели организованы в решетку, для описания фотонной зонной структуры применяется концепция фотонной зоны Бриллюэна. Изменение центральной частоты ФЩ в зависимости от направления наблюдения является характерным свойством ФК, так как симметрия реализуемых на практике трехмерных (3M) решеток рассеивателей ниже сферической. Как правило, чем выше контраст показателя преломления (ПП) между рассеивателями и окружающей средой, тем слабее угловая дисперсия ФЩ. При достаточно высоком контрасте и высокой симметрии ФК некоторые ФЩ могут оставаться открытыми при любых углах наблюдения.

Опалы представляют собой удобную и доступную модель ЗМ ФК. Они состоят из одинаковых субмикронных диэлектрических сфер, плотно упакованных в гранецентрированную кубическую (ГЦК) решетку, получаемую при высушивании коллоидного кристалла [2]. Фотонные запрещенные зоны опала располагаются в области видимого или ближнего инфракрасного спектра в зависимости от диаметра D сфер. Практически интересные ФЩ располагаются в частотной области $a/\lambda = 0.5 - 1.5$, где $a = \sqrt{2}D$ — период решетки. Оптические свойства опалов являются сильно анизотропными, поскольку ширина всех ФЩ опала значительно меньше сдвига их центральных частот, происходящего при изменении направления наблюдения [3]. ФК на основе опалов могут обладать полной ФЩ, например, после заполнения полостей опала кремнием и последующем удалении исходных сфер [4].

Необходимым условием изучения анизотропии ФК является баллистический характер распространения света. Поскольку длина свободного пробега фотонов в ФК зависит от упорядоченности его решетки и контраста ПП, для достижения баллистического режима распространения можно уменьшить либо одно, либо другое. В противном случае значительную долю детектируемого излучения составит усредненный по направлению сигнал, перенесенный диффузно рассеянными фотонами [5]. В этом отношении пленки опалов, толщина которых меньше длины свободного пробега фотонов, удовлетворяют требованию баллистического переноса света в поперечном к плоскости пленки направлении [6].

Распространение света в опалах, приготовленных из силикатных или полимерных сфер, хорошо изучено в экспериментах по пропусканию, отражению, дифракции и рассеянию света [7-10]. В случае опалов с низким контрастом ПП, полученных заполнением иммерсионной жидкостью, угловая дисперсия ФШ первого порядка хорошо описывается в рамках брэгговской дифракционной модели [11]. Только в направлениях, вдоль которых происходит многоволновая дифракция, т. е. когда дифракционные резонансы, связанные с различными системами кристаллографических плоскостей, должны перекрываться, происходит их расщепление, ведущее к отклонению угловой дисперсии от брэгговской модели [12]. С увеличением контраста ПП область расщепления расширяется как по углу наблюдения, так и по спектру [13]. Для описания дисперсии ФЩ в этом случае более адекватен численный расчет зонной структуры ФК, например, с использованием разложения электромагнитных волн в решетке ФК по базису плоских волн [14], который дает точное решение. В отличие от дифракционной модели, которая описывает резонанс, соответствующий ФЩ, зонная структура ФК описывает собственные моды решетки. В ФК модели ФЩ интерпретируется как отсутствие собственных мод в некоторой области частот.

Сопоставление экспериментально определенной дисперсии ФЩ и расчетной зонной структуры для ГЦК решетки дает хорошее согласие в области ФЩ первого порядка. Для ФЩ более высокого порядка такое сопоставление было проведено только в отношении ФЩ, проявляющихся в спектрах отражения в конфигурации зеркального отражения [15,16]. Для составления более полной картины распространения света необходимо исследовать спектры пропускания, поскольку только они учитывают все потери проходящего пучка света. В свою очередь задача исследования пропускания требует приготовления хорошо кристаллизованных тонких пленок опалов для реализации компромиса между сохранением баллистического характера распространения света и ослаблением интенсивности света в дифракционных минимумах.

В настоящей работе представлены результаты экспериментального исследования спектров пропускания тонких пленок опалов в области частот, захватывающих ФЩ трех порядков. Измерения проведены в наиболее часто используемой конфигурации, базирующейся на отклонении направления падения пучка света от оси [111] решетки опала, совпадающей с нормалью к поверхности пленки. Дисперсия ФЩ сопоставлена с расчетной зонной структурой для ГЦК решетки. Измерена анизотропия распространения света в опале в зависимости от угла падения для света, поляризованного в плоскости падения и перпендикулярно к ней. Получены угловые диаграммы распространения света при фиксированном угле падения в зависимости от азимутальной ориентации решетки по отношению к плоскости падения света. Сделан вывод о возможном отклонении симметрии решетки сфер в пленках опалов от ГЦК симметрии.

2. Техника эксперимента

Сферы номинальным диаметром 349 nm синтезированы из полиметилакрилата. Пленки опалов были приготовлены методом кристаллизации решетки сфер в движущемся мениске на поверхности стеклянной подложки при вытягивании ее из суспензии сфер [17]. Этот метод дает хорошо кристаллизованные пленки опалов, состоящих из одинаково ориентированных монокристаллических блоков с характерным размером около 50 µm, разделенных между собой трещинами.

Луч света диаметром 1 mm от галогенной лампы накаливания после прохождения через призменный поляризатор был направлен на стеклянную подложку с пленкой опала. После прохождения пленки свет собирался линзой из телесного угла в 2° и фокусировался на входную щель одинарного решеточного монохроматора. Во избежание поляризационной зависимости, вносимой решеткой монохроматора, перед щелью была помещена четвертьволновая пластинка для превращения линейно поляризованного света в циркулярно поляризованный. Сигнал детектора снимали с кремниевого фотодиода в

Рис. 1. a — схема эксперимента: угол падения луча θ в плоскости падения и азимутальный угол φ вращения плоскости падения относительно пленки опала, s- и p-стрелки указывают направление вектора электрического поля для двух исследованных поляризаций света. b — зона Бриллюэна опала с обозначением высокосимметричных точек. Жирные линии показывают направления сканирования по углу падения и азимуту.

режиме синхронного детектирования. Спектры измеряли в диапазоне от 500 до 1000 nm с шагом 1 nm при поляризации вектора электрического поля световой волны в плоскости падения (*p*-поляризация) и перпендикулярно этой плоскости (*s*-поляризация) (рис. 1, *a*). Угол падения θ измеряли от нормали к поверхности пленки, совпадающей с осью [111] ГЦК решетки опала. Решетка опала была ориентирована с помощью дифракционной картины [18] таким образом, что увеличение угла падения соответствовало сканированию вдоль линии *LKL'* зоны Бриллюэна ГЦК решетки (рис. 1, *b*). Зависимость спектров пропускания от ориентации плоскости падения по отношению к решетке опала была измерена при угле падения $\theta = 43^{\circ}$ путем изменения угла азимутальной ориентации φ в *s*- и *p*-поляризации.

3. Анизотропия по углу падения света

Спектры пропускания пленки опала при $\theta = 0^\circ$ в ортогональных поляризациях представлены на рис. 2, а. Основной чертой этих спектров является 14-кратное ослабление прошедшего света в полосе дифракционного резонанса с центральной длиной волны $\lambda_1 = 781 \, \text{nm}$ вдоль направления [111], который можно определить как ФЩ первого порядка. Изменение угла падения света на пленку опала приводит к значительному коротковолновому сдвигу этого дифракционного резонанса. Диаметр сфер D = 354 nm и эффективный показатель преломления опала *n*_{eff} = 1.349 определялись как параметры подгонки угловой зависимости положения центра этой полосы по формуле $\lambda_1 = 2 imes 0.816 D \sqrt{n_{ ext{eff}}^2 - \sin^2 heta}$. Толщина пленки *d* была определена из периода Фабри-Перо осцилляций $\Delta E [eV]$ по формуле $d = 1239/2n_{eff}\Delta E [nm]$. Для спектров рис. 2, а толщина пленки составила 9400 nm или 33 слоя плотноупакованных сфер. Было

Рис. 2. *а, b, с* — спектры пропускания пленки опала при $\theta = 0, 40$ и 53° в *s*- и *p*-поляризации. Минимумы пропускания сопоставлены кристаллическим плоскостям. *d* — спектры отношения пропускания в *p*-поляризации к пропусканию в *s*-поляризации при этих углах, кривые *l* (штрих), *2* (сплошная) и *3* (штрихпунктир) соответственно. Стрелками показаны две полосы пика анизотропии кривой *2*.

проведено сравнение данных с пленкой, полученной аналогичным методом толщиной 7900 nm (27 слоев), которая демонстрирует 6.6-кратное подавление пропускания в ФЩ. Относительная ширина полосы в спектре пропускания на полувысоте составляет 0.067 в *р*-поляризации и 0.069 в *s*-поляризации, что достаточно близко к теоретическому значению 0.057 для контраста ПП 1.5 : 1 [3,19]. При указанной толщине пленки она остается меньше длины свободного пробега фотонов, оцениваемой для пленок опалов в 15000-20000 nm [20]. При использовании дополнительного поляризатора-анализатора было найдено, что в скрещенных поляризациях уровень прошедшего сигнала примерно в 70 раз меньше, чем в параллельных поляризациях, т.е. свет не испытывает значительной деполяризации после прохождения пленки опала.

При угле падения света $\theta > 20^{\circ}$ проявляются полосы подавления пропускания за счет дифракции на других семействах кристаллических плоскостях, т. е. видны ФЩ двух порядков (рис. 2, *b*, *c*). Например, при $\theta = 52^{\circ}$ в спектре присутствуют минимумы при 627 nm за счет дифракции на плоскостях (111) и около 678 nm за счет дифракции на других плоскостях (рис. 2, *b*). Аппроксимация угловой дисперсии второго минимума зависимостью $\lambda_2 = 2 \times n_{\rm eff} t \sqrt{1 - \sin^2(\alpha - \arcsin(\sin \theta/n_{\rm eff})}$ дает межплоскостное расстояние t = 292 nm и угол с плоскостью (111) $\alpha = 69^{\circ}$, что близко к параметрам плоскостей (111), для которых t = 289 nm и $\alpha = 70.52^{\circ}$.

Спектры пропускания в ортогональных поляризациях при наклонном падении луча отличаются по структуре, причем это различие зависит от угла падения. Как следствие поляризационная анизотропия пропускания, представленная как отношение интенсивностей прошедшего *p*- и *s*-поляризованного света, не превышает 1.5 при $\theta = 0^{\circ}$ и достигает 180 при $\theta = 52^{\circ}$ в области длин волн ФЩ (рис. 2, *d*). Очевидно, что поляризационная анизотропия связана с ФЩ, поскольку максимумы анизотропии наблюдаются при тех же длинах волн, что и минимумы пропускания.

Обобщенные зависимости спектров пропускания от угла падения представлены на рис. 3, для обеих поляризаций. В *s*-поляризации пропускание пленки в длинноволновой области превышает 90%. Подавление пропускания в (111) минимуме сильнее, чем в (111) минимуме (рис. 3, *a*). Последнее, возможно, связано с двойникованием ГЦК решетки [7]. В области углов падения от 45 до 55°, охватывающих направление на ребро зоны Бриллюэна, происходит расщепление (111) и (111) минимумов [21,22], т.е. они разделены непрерывной полосой пропускания. В р-поляризации в этой области коротковолновые минимумы пропадают (рис. 2, b, c и 3, b) независимо от их генетической связи с теми или иными плоскостями решетки. Поэтому величина поляризационной анизотропии достигает своего максимума в области расщепления резонанса. В целом дисперсия максимумов анизотропии для ФЩ первого и

Рис. 3. *а*, *b* — зависимости пропускания *s*- и *p*-поляризованного света в пленке опала от угла падения θ и длины волны. *с* — спектры отношения соответствуют поляризационной анизотропии пропускания. Минимумы пропускания сопоставлены кристаллическим плоскостям.

Рис. 4. Расчетная зонная структура ФК на основе ГЦК решетки плотноупакованных сфер (линии). Числа указывают номера оптических мод. Светлые символы указывают положение центров минимумов в спектре пропускания пленки опала для *s*- и *p*-поляризованного света. Минимумы пропускания сопоставлены с кристаллическими плоскостями ГЦК решетки. Темные символы показывают дисперсию максимумов в спектрах отношения. Верхняя шкала указывает направление сканирования в зоне Бриллюэна.

На рис. 4 экспериментальные данные по дисперсии минимумов пропускания сопоставлены с зонной схемой собственных оптических мод опала, рассчитанной для бесконечного ФК методом разложения по плоским волнам [14]. Ранее было показано, что дисперсия ФЩ первого порядка в зонной структуре опала для бесконечного кристалла хорошо совпадает с дисперсией минимума пропускания, рассчитанной методом матрицы переноса для тонкой пленки опала, если число (111) плоскостей превышает 30 слоев [3]. Это позволяет использовать такую зонную структуру для сравнения с экспериментальными данными, полученными на образцах конечных размеров. Экспериментально определенная дисперсия ФЩ первого порядка хорошо согласуется с зонной структурой в обеих поляризациях. Было сделано предположение о том, что различие в распространении света разной поляризации обусловлено различной симметрией собственных мод опала, с которыми связывается падающий свет [23]. При этом свет в *s*-поляризации возбуждает антисимметричные относительно зеркальной плоскости моды ΦK , и ослабление света происходит в щели между первой и четвертой модами, а свет в *p*поляризации возбуждает симметричные моды и ослабление его соответствует щели между второй и третьей модами [24]. В силу зависимости величины подавления пропускания от ширины щели [3] минимум в спектре пропускания для *s*-поляризованного света глубже, чем в *p*-поляризованном свете, что качественно согласуется с экспериментом (рис. 3 и 4).

Для дисперсии минимумов пропускания, соответствующих ФЩ второго порядка (моды 5 и 6), совпадение с зонной структурой хуже, чем для ФШ первого порядка (рис. 4). Следует отметить, что в этой области длин волн имеются только две моды бесконечной ГЦК решетки, т.е. для объяснения поляризационной анизотропии необходимо предположить отличие решетки сфер в пленке опала от ГЦК симметрии. Кроме того, в спектрах пропускания пленочных опалов, приготовленных вытягиванием из суспензии сфер, систематически отмечается присутствие минимумов, дисперсия которых представлена на рис. 4 треугольниками, пятиугольниками и ромбами. В зависимости от толщины образца и/или положения светового пятна спектральное положение этих минимумов может меняться, однако в той или иной мере они присутствуют в спектрах всех исследованных пленок. Собственных мод с соответствующей дисперсией в направлении сканирования вдоль LKL' у ГЦК решетки нет. В то же время эти особенности не могут быть связаны с беспорядком, поскольку случайным образом расположенные дефекты приведут, скорее, к сглаживанию спектров пропускания, чем к формированию дополнительных минимумов. Таким образом, наблюдение дополнительных минимумов пропускания также может рассматриваться как указание на отклонение решетки сфер в пленке опала от ГЦК симметрии. Тем не менее дальнейшее обсуждение будет происходить в терминах ГЦК модели решетки опала вследствие неразработанности других моделей, а также исходя из предположения о незначительности искажения решетки реального опала [25]. Тогда минимумы, обозначенные на рис. 4 треугольниками, условно относятся к ФЩ третьего порядка (7 и 8 моды).

Дифракционный резонанс, следующий за (111) и (200) резонансами в ГЦК решетке по мере уменьшения длины волны, относится к семейству плоскостей (220) [7]. Влияние (220) дифракции на проходящий свет значительно слабее по сравнению с (111) резонансом. Вызвано это, во-первых, меньшей плотностью заполнения кристаллической плоскости сферами по мере увеличения ее индекса. В ГЦК решетке заполнение (111), (200) и (220) плоскостей изменяется как $\pi/2\sqrt{3}$: $\pi/4$: $\pi/4\sqrt{2}$ соответственно. Во-вторых, глубина минимума пропускания связана с шириной ФЩ: чем меньше ширина, тем меньше ослабление. Поэтому, например, в направлении [111] длина аттенюации 3.44*a*, а вдоль [100] — 87.4*a*, где *a* — постоянная решетки [3]. С этой зависимостью безусловно связано и меньшее ослабление в минимуме ФЩ пер-

вого порядка по мере приближения к углу $\theta = 47^{\circ}$, так как ФЩ в направлении ГК уже, чем вдоль Г*L*. Наконец, когда длина волны сравнивается или становится меньше, чем постоянная решетки, пропускание уменьшается за счет рассеяния, связанного со всевозможными дефектами решетки опала. В результате разрешение ФЩ в этой области ухудшается. Поскольку в условиях нашего эксперимента с увеличением угла падения возрастает длина оптического пути через пленку, это тоже ведет к более заметным потерям на рассеяние.

Дисперсия максимумов отношения пропускания в *s*и *p*-поляризации сопоставлена с дисперсией минимумов пропускания на рис. 4. При этом в области ФЩ первого порядка наблюдается тенденция к расщеплению максимума на две полосы по краям ФЩ в области направлений вдали от ребра зоны Бриллюэна (кривая 2 на рис. 2, *d*). Это наблюдение предполагает не только меньшую глубину минимума пропускания в *p*-поляризации, но и его меньшую ширину, что согласуется с зонной структурой. Следует отметить, что с увеличением толщины пленки такое расщепление становится более заметным и занимает больший интервал углов по сравнению со случаем, показанным на рис. 4.

4. Азимутальная анизотропия

Спектры пропускания были измерены в s- и p-поляризации при угле падения $\theta = 43^{\circ}$ и азимутальном вращении плоскости падения света. Плоскость падения при $\varphi = 0^{\circ}$ была ориентирована так, что отклонение от направления ГL происходило вдоль линии LK. Рис. 5, а показывает изменение положения полос пропускания и глубины аттенюации света в них с изменением угла φ . Азимутальная дисперсия полос пропускания приведена на рис. 5, b-d. Минимум, соответствующий первой ФЩ, сохраняет свое спектральное положение при всех углах наблюдения ϕ , что отвечает неизменности (111) межплоскостного расстояния. При вращении плоскости падения конец *k*-вектора с началом в центре зоны Бриллюэна описывает круг на шестиугольной грани UWK, а длина вектора остается неизменной (рис. 1, b). Очевидно, что осцилляции положения этой ФЩ появятся, если проводить измерения при угле падения $\theta > 47^{\circ}$.

Диаграмма положения ФЩ второго порядка имеет шесть лепестков, по три на каждую кристаллическую плоскость из семейств (200) и ($\overline{1}11$). Из рис. 6 видно, что 5 и 6 моды в сечениях зоны Бриллюэна, содержащих линии *LK* и *LU*, одинаковы, а в сечении, содержащем линию *LW*, эти моды смещены в коротковолновую область. Таким образом объясняется осевая симметрия шестого порядка изменения положения этой ФЩ. Одновременно диаграмма 5–6 щели сжата в направлении вытягивания пленки из суспензии при кристаллизации опала. Это возможно, если упаковка сфер опала несколько, порядка 2%, более плотная в направлении движения мениска при кристаллизации пленки. Это искажение,

Рис. 5. a — спектры пропускания опала при $\theta = 43^{\circ}$ и различных углах φ , значения которых указаны около кривых. Стрелки указывают ФШ. b-d — угловые диаграммы положения центров минимумов пропускания, соответствующих ФЩ первого, второго и третьего порядков.

Рис. 6. Зонная структура ФК ГЦК опала вдоль основных направлений *LK*, *LW* и *LU*. Моды 1–4 показаны штрихпунктиром, моды 5–6 — сплошными линиями, моды 7–8 — точками, моды 9–10 — штриховыми линиями. Вертикальные сплошные линии указывают угол падения $\theta = 43^{\circ}$. Заштрихованные прямоугольники указывают область возможного изменения положения ФЩ соответствующего порядка, указанного цифрой справа, при азимутальном повороте плоскости падения. Двунаправленные интервалы смещения минимумов пропускания, взятые из рис. 5.

по-видимому, достаточно для модификации фотонной зонной структуры опала.

Угловая диаграмма положения середины минимума пропускания, относящегося к ФЩ третьего порядка, также оказалась практически симметричной по отношению к оси шестого порядка. Лепестки этой диаграммы появляются в противофазе к лепесткам диаграммы ФЩ второго порядка, что соответствует расположению 7-8 мод по отношению к 5-6 модам в сечениях LK и LW (штриховые стрелки на рис. 6). Азимутальные диаграммы положения минимумов в р-поляризации не приведены, поскольку коротковолновые минимумы практически пропадают для большинства углов φ при данном угле $\theta = 43^{\circ}$. По-видимому, аналогичная интерпретация симметрии угловой диаграммы ФЩ может быть получена и в дифракционной модели, однако, в силу сложности второй и третьей зон расширенной трехмерной зоны Бриллюэна ГЦК решетки, такое объяснение лишено наглядности.

Рис. 7. Азимутальные угловые диаграммы пропускания *s*-поляризованного света в пленке опала при различных длинах волн.

Сравнение азимутальной зависимости положения ФЩ и зонной структуры опала с ГЦК решеткой выявляет наличие расхождений, как и в случае сравнения с зависимостью от угла падения. Зонная структура, представленная на рис. 6, рассчитана для бесконечного опала с периодом решетки и ПП исследованных пленок опалов, так что в направлении $\Gamma L \ (\theta = 0^{\circ})$ длина волны минимума пропускания совпадает с серединой ФЩ первого порядка. Вертикальные линии соответствуют углу падения $\theta = 43^{\circ}$. Пересечение вертикальной линии с оптическими модами дает представление о положении ФЩ при данном угле наблюдения. Заштрихованные области обозначают пределы изменения положения минимума пропускания при изменении азимутальной ориентации плоскости падения между сечениями LK, LW и LU зоны Бриллюэна опала. В силу симметрии зоны Бриллюэна эти сечения исчерпывают все возможные высокосимметричные направления распространения света. Справа указаны экспериментально определенные интервалы изменения положения минимумов пропускания. Как видно, поведение длинноволнового минимума полностью совпадает с ожидаемым поведением ФЩ первого порядка как по спектральному положению, так и по отсутствию азимутальной дисперсии. Для второй ФЩ диапазоны

изменения положения щели в эксперименте и по расчету совпадают, но экспериментальные данные сдвинуты в длинноволновую область. Для третьей ФЩ также наблюдается качественное согласие между расчетом и экспериментом, но имеется некоторая разница величин. Следует отметить, что для второй ФЩ нарушается отмеченная для первой ФЩ пропорциональность ширины щели и глубины минимума пропускания: в направлении *LW* минимум сильно сглаживается несмотря на большее разделение 5 и 6 мод.

Сложная картина азимутального поведения ФЩ приводит к интересным зависимостям анизотропии величины и поляризации пропускания. На рис. 7 показаны угловые диаграммы величины пропускания света в *s*-поляризации при различных длинах волн. Эти диаграммы построены на основе спектров пропускания, измеренных при изменении азимута плоскости падения и угле падения $\theta = 43^{\circ}$. При длинах волн, много больших длин волн первой ФЩ, диаграмма пропускания изотропна с точностью до экспериментальной погрешности. В области ФЩ пропускание уменьшается на порядок величины и становится анизотропным с осью второго порядка: пропускание оказывается значительно меньше в направлении, перпендикулярном направлению роста

Рис. 8. Угловые диаграммы пропускания *p*-поляризованного света при различных длинах волн.

пленки вдоль подложки. Таким образом, направление кристаллизации (вытягивания) пленки влияет не только на положение минимума, но и на величину аттенюации света, а значит, и на ширину ФЩ [3]. С уменьшением длины волны эта анизотропия сохраняется, хотя на нее накладывается анизотропия с осью шестого порядка в соответствии с азимутальным сдвигом минимума от 5-6 мод. К длине волны 630 nm эта диаграмма наиболее четко сформирована и имеет узкие лепестки. Дальнейшее уменьшение длины волны приводит к перестройке диаграммы направленности: сначала лепестки расширяются, а потом вся диаграмма поворачивается на 15°. Причем опять появляется сильное искажение по оси второго порядка, но теперь уже под углом 105° к направлению вытягивания пленки. Около $\lambda = 590 \, \mathrm{nm}$ диаграмма опять принимает форму с шестью лепестками и при дальнейшем уменьшении длины волны постепенно поворачивается, оказываясь при $\lambda = 550 \,\mathrm{nm}$ в противофазе к диаграмме при 630 nm. К 530 nm диаграмма вновь оказывается разупорядоченной.

В *р*-поляризованном свете азимутальная зависимость пропускания изотропна в длинноволновой области (рис. 8). Модуляции в соответствии с осью симметрии второго порядка не проявляются. При длинах волн короче 640 nm появляется слабо выраженная модуляция с шестью лепестками со сдвигом около 30° к диаграммам в *s*-поляризации. Причем эта конфигурация сохраняется и при тех длинах волн, при которых происходит перестройка и поворот диаграммы в *s*-поляризации. Данная форма диаграммы становится наиболее ярко выраженной в диапазоне длин волн 590–550 nm. При меньших длинах волн в диаграмме можно выделить уже 12 лепестков.

В целом угловые азимутальные диаграммы пропускания в s- и p-поляризации не совпадают и формируются независимо друг от друга. При этом величина пропускания в максимумах оказывается примерно одинаковой. В области длин волн между первой и второй ФЩ s-поляризованный свет распространяется анизотропно, а р-поляризованный свет распространяется практически изотропно, хотя и с несколько большей интенсивностью в тех направлениях, где меньше интенсивность распространения света в s-поляризации. В области между второй и третьей ФЩ ($\lambda < 590 \, \text{nm}$) анизотропия распространения света обеих поляризаций качественно одинакова. В области третьей ФЩ эта синхронность опять нарушается, теперь из-за более сильной анизотропии распространения р-поляризованного света. Если предположить, что одинаковая анизотропия обусловлена переносом света одинаковыми по симметрии модами опала, то диаграммы пропускания поляризованного света могут помочь в определении отличий реальной зонной структуры ФК на основе пленок опалов от расчетной зонной структуры опала с ГЦК решеткой.

Рис. 9. Угловые диаграммы поляризационной анизотропии распространения света при различных длинах волн.

ность прошедшего *p*-поляризованного света становится попеременно то больше, то меньше по сравнению с интенсивностью прошедшего *s*-поляризованного света.

5. Заключение

Зависимость пропускания света в пленке опала от направления распространения и поляризации света является прямым следствием направленного характера фотонных щелей [26], которые не покрывают весь телесный угол ни при каком значении длины волны. В первом приближении направленность пропускания определяется наличием или отсутствием оптических мод ФК в данном направлении в некотором диапазоне длин волн. Этот подход обоснован для ФЩ первого порядка. В области ФЩ более высокого порядка имеется значительное расхождение наблюдаемой дисперсии ФЩ опала и зонной структуры ГЦК решетки. Однозначного объяснения данного явления пока не получено. Например, предложено принимать во внимание увеличение отражения опала за счет понижения групповой скорости распространения света в области длин волн так называемых "плоских" зон, имеющих дисперсию $d\omega/dk \rightarrow 0$ вдали от края зоны Бриллюэна [27]. Очевидно, что условие дифракции в этом случае не удовлетворяется. Кроме того, в модели "плоских" зон не должно быть смещения минимума пропускания при изменении угла падения. В этой модели также игнорируется факт существования в данном диапазоне частот других оптических мод с сильной дисперсией, которые могут обеспечить перенос света в данном направлении.

Рассмотренные экспериментальные данные подтверждают ранее высказанную идею о недостаточности дифракционной модели для правильного описания дисперсии ФЩ в опале с заметным контрастом показателя преломления [28,12]. Это относится к описанию дисперсии ФЩ в области многоволновой дифракции, к объяснению ФЩ высокого порядка и к интерпретации зависимости пропускания от поляризации падающего света.

Следует отметить, что необходимым условием существования минимума пропускания в дифракционной модели является соответствие длины волнового вектора падающей волны расстоянию между центром и границей зоны Бриллюэна, а структурный фактор решетки связан с амплитудой дифракционного резонанса (рис. 10, a). В этой схеме дифракция возможна в заданном направлении для векторов k и k' одновременно. Однако из рассмотрения зонной структуры ФК видно, что необходимым условием открытия ФЩ в данном направлении является отсутствие мод в некоторой полосе частот в проекции от центра на поверхность зоны Бриллюэна. В этом смысле истинная ФЩ открывается между 1

Рис. 10. *а* — расширенная схема зоны Бриллюэна опала, показывающая возможность выполнения условия дифракции на двух системах плоскостей одновременно. *b* — схема сечения зоны Бриллюэна, демонстрирующая различие ФЩ между *1–4* и *5–6* модами ГЦК решетки.

и 4 модами опала с ГЦК решеткой, в то время как ФЩ между 5 и 6 модами отсутствует (рис. 10, b). Следует отметить, однако, значительно более плоскую дисперсию 5 и 6 мод, что ведет к меньшей групповой скорости переноса энергии этими модами по сравнению с 1 и 4 модами.

Для объяснения минимумов пропускания в коротковолновой области было предложено использовать сингулярности ван Хова (van Hove), т.е. пики плотности состояний в области "плоской" дисперсии оптических мод. Предпринятая попытка ввести плотность состояний, приведенную к выбранному направлению, дает дисперсию этих сингулярностей, которая аналогична дисперсии дифракционного резонанса на плоскостях решетки [29]. Однако и сама идея направленности плотности состояний и внутренняя противоречивость предложенной модели, предполагающей отнести одинаковые по виду минимумы пропускания от плоскостей (111) и, например, (111) соответственно к минимуму и максимуму плотности состояний, требуют дополнительной проверки. К тому же в этой модели поляризация не принимается во внимание.

Совокупность полученных данных позволяет выдвинуть выдвинуть утверждение об отличии симметрии упаковки сфер в пленках опала от ГЦК решетки. Возможно, что минимумы в спектрах пропускания пленок, которые не согласуются с фотонной зонной структурой идеальной ГЦК решетки плотноупакованных сфер [8,26], есть следствие пониженной симметрии решетки сфер в пленках опалов в силу малой толщины и направленности кристаллизации пленок. Общим свойством остается послойная упаковка кристаллических плоскостей вдоль подложки, как показывает соответствие дисперсии длинноволного минимума пропускания и ФЩ первого порядка в ГЦК решетке. Более низкая симметрия приводит к более развитой структуре мод и более сильной ее изменчивости с направлением. В то же время зонная структура бесконечной ГЦК решетки сфер остается приемлемым первым приближением зонной структуры пленок опала в области ФЩ низкого порядка.

Сильную поляризационную анизотропию распространения света, зависящую от угла падения света на решетку опала, ориентацию плоскости падения по отношению к этой решетке и длины волны, можно с уверенностью связать с присутствием ФЩ в структуре оптических мод опала. В области первой ФЩ зависимость пропускания от поляризации связана с разной симметрией собственных мод опала, доступных для связи с s- и р-поляризованным светом в этой области спектра [24]. В отражении картина комплементарна пропусканию. Аналогии с анизотропией, связанной с углом Брюстера, провести в случае ФК нельзя в силу наблюдения анизотропии во всем диапазоне углов падения света и неопределенности понятия фазовой скорости электромагнитной волны в области ФЩ. Однако зонная структура бесконечной ГЦК решетки оказывается недостаточной для объяснения поляризационной анизотропии в области ФШ второго порядка.

Для разрешения отмеченных противоречий необходимо предпринять дальнейшие исследования, учитывая, в частности, в моделировании конечную толщину пленки опала, возможность реализации упаковки сфер в решетку с отличной от ГЦК симметрией, симметрию собственных мод опала [23] и конфигурацию поверхностей равной энергии [26].

Автор благодарен Д.Н. Чигрину за расчеты зонной структуры опала.

Список литературы

- В.П. Быков. ЖЭТФ 35, 269 (1972); Е. Yablonovitch. Phys. Rev. Lett. 58, 2059 (1987); S. John. Phys. Rev. Lett. 58, 2486 (1987).
- [2] Н.Д. Денискина, Д.В. Калинин, Л.К. Казанцева. Благородные опалы, их синтез и генезис в природе. Наука, Новосибирск (1980).
- [3] A. Reynolds, F. Lopez-Tejeira, D. Cassagne, F.J. Garcýa-Vidal, C. Jouanin, J. Sanchez-Dehesa. Phys. Rev. B 60, 11422 (1999).
- [4] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondia, G.A. Ozin, O. Toader, H.M. van Driel. Nature 405, 437 (2000).
- [5] A.F. Koenderink, W.L. Vos. Phys. Rev. Lett. 91, 213 902 (2003).
- [6] Y. Xia, B. Gates, Y. Yin, Yu Lu. Adv. Mater. 12, 693 (2000).
- [7] А.В. Барышев, А.А. Каплянский, В.А. Кособукин, М.Ф. Лимонов, А.П. Скворцов. ФТТ 46, 1291 (2004).
- [8] J.F. Galisteo-López, C. López. Phys. Rev. B 70, 035108 (2004).
- [9] А.В. Барышев, А.А. Каплянский, В.А. Кособукин, М.Ф. Лимонов, К.Б. Самусев, Д.Е. Усвят. ФТТ 45, 434 (2003).
- [10] С.Г. Романов. Письма в ЖЭТФ 79, 751 (2004).
- [11] В.А. Кособукин. ФТТ 47, 1954 (2005).

- [12] S.G. Romanov, T. Maka, C.M. Sotomayor Torres M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, C. Jouanin. Phys. Rev. E 63, 056 603 (2001).
- [13] Г.М. Гаджиев, В.Г. Голубев, Д.А. Курдюков, А.Б. Певцов, А.В. Селькин, В.В. Травников. ФТП **39**, 1423 (2005).
- [14] K.M. Ho, C.T. Chan, C.M. Soukoulis. Phys. Rev. Lett. 65, 3152 (1990).
- [15] E. Pavarini, L.C. Andreani, C. Soci, M. Galli, F. Marabelli, D. Comoretto. Phys. Rev. B 72, 045 102 (2005).
- [16] J.F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, C. López. Phys. Rev. B 68, 115 109 (2003).
- [17] M. Egen, R. Voss, B. Griesebock, R. Zentel, S. Romanov, C. Sotomayor Torres. Chem. Mater. 15, 3786 (2003).
- [18] F. García-Santamaría, J.F. Galisteo-López, P.V. Braun, C. López. Phys. Rev. B 71, 195 112 (2005).
- [19] J.F. Bertone, P. Jiang, K.S. Hwang, D.M. Mittleman, V.L. Colvin. Phys. Rev. Lett. 83, 300 (1999).
- [20] A.F. Koenderink, A. Lagendijk, W.L. Vos. Phys. Rev. B 72, 153 102 (2005).
- [21] H.M. van Driel, W.L. Vos. Phys. Rev. B 62, 9872 (2000).
- [22] S.G. Romanov, T. Maka, C.M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, C. Jouanin. Phys. Rev. E 63, 056 603 (2001).
- [23] F. Lopez-Tejeira, T. Ochiai, K. Sakoda, J. Sancez-Dehesa. Phys. Rev. B 65, 195 110 (2002).
- [24] J.F. Galisteo-Lopez, F. Lopez-Tejeira, S. Rubio, C. Lopez, J. Sanchez-Dehesa. Appl. Phys. Lett. 82, 4068 (2003).
- [25] A.L. Reynolds, D. Cassagne, C. Jouanin, J.M. Arnold. Synthetic Metals 116, 453 (2001).
- [26] S.G. Romanov, D.N. Chigrin, V.G. Solovyev, T. Maka, N. Gaponik, A. Eychmüller, A.L. Rogach, C.M. Sotomayor Torres. Phys. Stat. Sol. (a) **197**, 662 (2003).
- [27] H. Míguez, V. Kitaev, G.A. Ozin. Appl. Phys. Lett. 84, 1239 (2004).
- [28] H.M. van Driel, W.L. Vos. Phys. Rev. B 62, 9872 (2000).
- [29] E. Pavarini, L.C. Andreani, C. Soci, M. Galli, F. Marabelli, D. Comoretto. Phys. Rev. B 72, 045 102 (2005).