Спектрально-люминесцентные свойства эпитаксиальных пленок гадолиний-галлиевого граната, легированных тербием

© Н.В. Васильева, В.В. Рандошкин, В.Н. Колобанов*, Е.Б. Крюкова**, В.В. Михайлин*, Н.Н. Петровнин*, В.Г. Плотниченко**, Ю.Н. Пырков**, Д.А. Спасский***, Н.Н. Сысоев*

Институт общей физики им. А.М. Прохорова Российской академии наук,

* Московский государственный университет им. М.В. Ломоносова,

119992 Москва, Россия

** Научный центр волоконной оптики при Институте общей физики

им. А.М. Прохорова Российской академии наук,

119991 Москва, Россия

*** Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына

Московского государственного университета им. М.В. Ломоносова,

119992 Москва, Россия

E-mail: natashav@ok.ru

(Поступила в Редакцию 9 ноября 2005 г.)

Методом жидкофазной эпитаксии из переохлажденного раствора-расплава на основе системы PbO–B₂O₃ выращены монокристаллические Tb-содержащие пленки гадолиний-галлиевого граната. В этих материалах исследованы оптическое поглощение в диапазоне длин волн от 0.2 до 10 μ m и люминесценция при возбуждении синхротронным излучением с энергией 3.5–30 eV при температурах 10 и 300 K. Обнаружена полоса поглощения с масимумом на длине волны $\lambda \approx 0.260 \,\mu$ m, соответствующая разрешенному по спину электрическому дипольному переходу между электронными конфигурациями $4f^{8}(^{7}F_{6}) \rightarrow 4f^{7}(^{8}S)5d$ ионов Tb³⁺. В диапазоне длин волн от 1.7 до 10 μ m наблюдаются узкие малоинтенсивные полосы поглощения $4f \rightarrow 4f$ -переходов с основного уровня $^{7}F_{6}$ иона Tb³⁺ на уровни мультиплетов $^{7}F_{0-5}$. В спектрах люминесценции при 10 K наиболее интенсивной является полоса с максимумом на длине волны $\lambda \approx 0.544 \,\mu$ m, связанная с излучательным переходом $^{5}D_{4} \rightarrow ^{7}F_{5}$ в ионе Tb³⁺.

Работа выполнена при поддержке грантов DFG 436 RUS 113/437 и НШ 1771.2003.2.

PACS: 78.20.Ci, 78.40.-q

1. Введение

Тербийсодержащие монокристаллы гранатов представляют интерес для разработчиков лазеров видимого и ИК-диапазонов. В последнее время наблюдается большой интерес к созданию эффективных сцинтяллиционных рентгеновских экранов с высоким пространственным разрешением, которые можно создать только на основе пленок [1-3]. Монокристаллические пленки толщиной 0.1-100 µm, в частности со структурой граната, можно вырастить методом жидкофазной эпитаксии (ЖФЭ) из переохлажденного раствора-расплава на изоморфных подложках [3-5]. В качестве растворителя в этом методе чаще всего используют системы PbO-B2O3 или Bi₂O₃-B₂O₃. Основным отличием эпитаксиальных пленок от их объемных аналогов, выращиваемых, например, по методу Чохральского является вхождение в состав пленки примесных ионов Pb²⁺, пары ионов Pb²⁺ и Pb^{4+} , ионов Bi^{3+} из растворителя [6–8], а также ионов Pt⁴⁺ из платинового тигля. Примесные ионы в выращенных эпитаксиальных пленках по сравнению с подложкой дают дополнительные полосы поглощения. В частности, при гомоэпитаксии в гадолиний-галлиевых пленках, выращенных на подложках гадолиний-галлиевого граната (ГГГ) из Рb-содержащего раствора-расплава при малом переохлаждении, появляется полоса поглощения с максимумом на длине волны $0.280\,\mu$ m, которая связана с электронным переходом ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ примесных ионов Pb²⁺ (6s²), а при большом переохлаждении дополнительно возникают полосы поглощения, обусловленные межвалентными парными переходами ионов Pb²⁺ и Pb⁴⁺ (Pb²⁺ + Pb⁴⁺ + $h\nu \rightarrow$ Pb³⁺ + Pb³⁺) (0.550 μ m) и переходами с переносом заряда O²⁻ + Pb⁴⁺ + $h\nu \rightarrow$ Pb³⁺ + $V_{O^{2-}}$ (0.325 μ m), где $V_{O^{2-}}$ — вакансия кислорода [7]. В последнем случае пленки приобретают фиолетовую окраску. В пленках, выращенных на подложках ГГГ из Вi-содержащего раствора-расплава, дополнительное поглощение связано с электронным переходом ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ примесных ионов Bi³⁺ (6s²) с максимумом на длине волны 0.290 μ m [8].

Спектроскопические свойства ионоа Tb^{3+} изучались как в монокристаллах (см., например, работы [9,10]), так и в стеклах [11,12]. Были исследованы межконфигурационные 4f - 5d-переходы [13,14] и f - f-переходы [15,16]. Оптическое поглощение иона Tb^{3+} в эпитаксиальных пленках ГГГ, насколько нам известно, не исследовалось.

Целью настоящей работы является исследование спектрально-люминесцентных свойств монокристаллических Тb-содержащих пленок ГГГ, выращенных методом ЖФЭ.

¹¹⁹⁹⁹¹ Москва, Россия

2. Рост пленок

Эпитаксиальные пленки выращивались методом ЖФЭ из переохлажденного раствора-расплава на основе системы PbO–B₂O₃ на подложках ГГГ с ориентацией (111). Раствор-расплав гомогенизировался при температуре 1100°С в платиновом тигле не менее 4 h, после чего его температура снижалась до температуры роста T_g пленок. Состав шихты характеризовался следующими мольными отношениями (R_1, R_2, R_3):

$$\begin{split} R_1 &= [\text{Ga}_2\text{O}_3] / \Sigma[\text{Ln}_2\text{O}_3] \approx 14.42, \\ R_2 &= [\text{PbO}] / [\text{B}_2\text{O}_3] \approx 16.03, \\ R_3 &= \left(\Sigma[\text{Ln}_2\text{O}_3] + [\text{Ga}_2\text{O}_3] \right) / \left(\Sigma[\text{Ln}_2\text{O}_3] + [\text{Ga}_2\text{O}_3] \right) \\ &+ [\text{PbO}] + [\text{B}_2\text{O}_3] \right) \approx 0.08, \end{split}$$

где $\Sigma[Ln_2O_3] = [Ga_2O_3] + [Tb_4O_7] + [La_2O_3]$, а формулы соединений в квадратных скобках обозначают концентрации соответствующих оксидов (в mol.%).

Было выращено шесть серий Tb-содержащих гранатовых пленок (по четыре–семь образцов в каждой) с расчетной концентрацией тербия от 3.3 до 90 at.% (табл. 1). Время роста составляо 5 min или 1 h. Скорость вращения подложки при росте пленок составляла 50 грт. Максимальная скорость роста f_g достигала в экспериментах 1.12μ m/min, а максимальная толщина пленки $h_{\text{max}} = 53.3 \mu$ m. Известно, что для выращивания эпитаксиальных гранатовых пленок высокого оптического качества необходимо максимальное соответствие параметров элементарной ячейки пленки a_0^f и подложки a_0^s , т. е. должно выполняться неравенство

$$|a_0^s - a_0^f| \le 0.001 \,\mathrm{nm.} \tag{1}$$

Параметр решетки подложки из ГГГ $a_0^G = 1.2383$ nm, а параметр решетки Tb₃Ga₅O₁₂ составляет $a_0^{\text{Tb}G} = 1.2345$ nm, поэтому для согласования параметров ре-

Таблица 1. Условия роста эпитаксиальных пленок состава (Tb,La,Gd)₃Ga₅O₁₂

Номер серии (состав шихты)	<i>C</i> (Tb), at.%	K _{La}	ΔT , °C	$h_{\rm max}, \mu{ m m}$
Ι	3.3	_	1022-1006	53.3
II	10	0.25	1010-992	37.3
III	30	0.25	1039-1019	48.1
IV	30	0.15	1036-1013	33.5
V	30	0.05	991-975	32.8
VI	90	0.05	970-930	23.3

 Примечание. C (Tb) — расчетная концентрация тербия в эпитаксиальной пленке, K_{La} — коэффициент распределения лантана.

Рис. 1. Фрагмент концентрационного треугольника псевдотройной системы $(Tb_4O_7-La_2O_3)-(Gd_2O_3-Ga_2O_3)-(PbO-B_2O_3).$

шеток эпитаксиальных пленок состава (Tb,Gd)₃Ga₅O₁₂ и подложки ГГГ в шихту вводили La2O3. При расчете шихты использовались коэффициенты распределения Gd и Тb, равные соответственно 1.50 и 1.58. Для каждой серии был экспериментально определен интервал температур ΔT , в котором расположена температура насыщения T_s (табл. 1). С ростом концентрации Tb₄O₇ температура насыщения раствора-расплава понижалась, и интервал температр, в котором имел место эпитаксиальный рост пленок, сужался и смещался в область более низких температур. В каждой серии, кроме последних двух, было выращено по две толстые пленки $(h > 10 \, \mu m)$ (с разной степенью переохлаждения): первая — при переохлаждении, обеспечивающем вхождение только примесных ионов Pb²⁺, вторая — при переохлаждении, обеспечивающем вхождение пары ионов Pb²⁺ и Pb⁴⁺. Выращенные тонкие пленки были бесцветными и содержали небольшое количество трещин; толстые пленки при малом переохлаждении были бесцветными, а при большом переохлаждении имели фиолетовый оттенок. Количество трещин в толстых пленках возрастало с ростом концентрации оксида тербия из-за несоответствия между параметрами решеток пленки и подложки. В сериях V и VI толстые пленки были матовыми. Параметры эпитаксиальных монокристаллических пленок состава (Tb,La,Gd)₃Ga₅O₁₂ приведены в табл. 2.

На рис. 1 показан фрагмент концентрационного треугольника псевдотройной системы $(Tb_4O_7-La_2O_3)-(Gd_2O_3-Ga_2O_3)-(PbO-B_2O_3)$. По осям отложены мольные доли оксидов в шихте. Темные квадраты — расчетные составы шихты растворов-расплавов, из которых выращивали эпитаксиальные монокристаллические Tb-содержащие гранатовые пленки с концентрацией тербия от 3.3 до 90 at.% (условия роста пленок приведены в табл. 1).

3. Эксперимент

При проведении экспериментов использовались термопары Ле Шателье (Pt/Pt10Rh). Суммарная толщина 2h пленок на обеих сторонах подложках и скорость роста пленки f_g рассчитывалась так же, как в работах [7,8] (табл. 2).

Спектры пропускания пленок при комнатной температуре измерялись с шагом 1 nm в диапазоне от 0.2 до 2.5 μ m с помощью спектрофотометра Lambda 900 фирмы Perkin–Elmer, а в диапазоне от 1.7 до 10 μ m (6000–1000 сm⁻¹) — с разрешением 2 сm⁻¹ с помощью Фурье-спектрометра IFS-113v фирмы Bruker. Спектры поглощения пленок рассчитывались на основе спек-

Таблица 2. Параметры эпитаксиальных монокристаллических пленок состава (Tb,La,Gd)₃Ga₅O₁₂

Номер образца	T_g , °C	2h, µm	f_g , μ m/min	$\Delta\lambda, \ \mathrm{cm}^{-1}$
I-1	1006	3.0	0.30	1912
I-2	989	11.0	1.10	3641
I-3	968	11.2	1.12	2743
I-4	951	5.8	0.58	3279
I-5	918	4.0	0.40	3534
I-6	971	106.6	0.89	_
I-7	920	90.7	0.76	_
II-1	992	4.2	0.42	3153
II-2	977	7.9	0.79	3054
II-3	958	6.3	0.63	2346
II-4	941	5.7	0.57	3332
II-5	978	74.4	0.62	—
II-6	924	74.5	0.62	-
III-1	1019	3.4	0.34	_
III-2	1000	10.3	1.03	_
III-3	981	8.3	0.83	—
III-4	965	4.5	0.45	_
III-5	946	3.6	0.36	_
III-6	1000	46.8	0.39	_
III-7	944	96.2	0.80	-
IV-1	1013	7.2	0.72	_
IV-2	993	5.3	0.53	_
IV-3	973	4.0	0.40	—
IV-4	953	3.4	0.34	—
IV-5	989	67.0	0.58	—
IV-6	932	58.3	0.49	_
V-1	975	2.5	0.25	3664
V-2	953	5.2	0.52	3595
V-3	933	4.8	0.48	2349
V-4	952	65.7	0.36	_
VI-1	930	2.7	0.27	3139
VI-2	909	3.2	0.32	3905
VI-3	892	5.5	0.55	2865
VI-4	876	4.6	0.46	2929
VI-5	914	46.6	0.39	—

Примечание. Δλ — ширина линии поглощения на ее полувысоте, при этом максимум данной линии находится на 260 nm.

тров пропускания следующим образом: сначала спектр пропускания подложки, измеренный до выращивания, делили на спектр пропускания подложки с выращенными на ней пленками, а затем натуральный логарифм этого отношения делили на суммарную толщину пленок, выросших с обеих сторон подложки.

Спектры люминесценции с разрешением 10 nm при возбуждении синхротронным излучением (СИ) с энергией 3.5–30 eV измерялись на экспериментальной установке Superlumi, расположенной в канале СИ в DESY (Гамбург, Германия), при температурах 10 и 300 К. Люминесценция регистрировалась в области длин волн от 200 до 750 nm вторичным монохроматором ARC SpectraPro SP-308, использовавшимся в режиме спектрографа. Полученные спектры нормировались на функцию спектральной чувствительности тракта регистрации.

Результаты измерений и обсуждение

Считается, что ион Tb³⁺ наряду с гадолинием и лантаном входит в додекаэдрическую подрешетку граната {Tb,La,Gd}₃[Ga]₂(Ga)₃O₁₂ и имеет орторомбическую симметрию, которая описывается точечной группой D₂ (222) [17,18]. Ион Тb³⁺ является некрамерсовским ионом, так как имеет четное число 4f-электронов [18]. Его основной конфигурации $4f^8$ соответствует основной уровень ${}^{7}F_{6}$ (L = 3, S = 3); возбужденными конфигурациями являются $4f^75d$, $4f^76s$, $4f^76p$. Электронной конфигурации $4f^{7}(^{8}S)5d$ свободного иона Tb³⁺ соответствуют два мультиплета $^{7}D_{5-1}$ со спиновым числом S = 3 и ${}^9D_{2-6}$ с S = 4 [11,13,19]. Переходы с основного уровня 7F_6 (S = 3) на уровни возбужденной конфигурации с S = 4 запрещены по спину, а переходы между уровнями одинаковой мультиплетности с S = 3 разрешены [11,13]. Наиболее интенсивными оказываются переходы между электронными состояниями с одинаковой спиновой мультиплетностью. Поэтому в спектрах поглощения исследуемых пленок в области средневолнового ультрафиолета должны наблюдаться интенсивные широкие полосы поглощения перехода ${}^7F_6 \rightarrow {}^7D_{5-1}$. В исследуемых пленках мультиплеты некрамерсовского иона Tb^{3+} в кристаллическом поле с симметрией D_2 расщепляются на синглеты; в частности, основной уровень ${}^{7}F_{6}$ с J = 6 расщепляется на тринадцать синглетов, причем некоторые синглетные уровни располагаются достаточно близко друг к другу, образуя квазидублеты [18], поэтому расшифровка оптических спектров затруднена.

В спектрах поглощения исследуемых тонких пленок в диапазоне длин волн от 0.200 до 0.450 μ m наблюдаются полосы поглощения с максимумами при 0.260, 0.280 и 0.340 μ m (рис. 2). Широкая (полуширина приведена в табл. 2) полоса поглощения с максимумом на длине волны $\lambda \approx 0.260 \,\mu$ m соответствует разрешенному электрическому дипольному переходу между электронными конфигурациями $4f^{8}(^{7}F_{6}) \rightarrow 4f^{7}(^{8}S)5d(^{7}D)$ ионов

Рис. 2. Спектры оптического поглощения $\alpha(\lambda)$ для образцов эпитаксиальных пленок № I-2 (1), II-2 (2) и V-2 (3) при 300 K с примером разложения спектра 1 на составляющие для более точного определения положений линий поглощения. Нумерация пленок соответствует табл. 2.

Рис. 3. Спектры оптического поглощения $\alpha(\lambda)$ подложки ГГГ (1) и толстой пленки (Tb,La,Gd)₃Ga₅O₁₂ № II-6 (2) при 300 К. Нумерация пленок соответствует табл. 2.

Тb³⁺ [13,14]. Интенсивность этой полосы поглощения возрастает с ростом концентрации оксида тербия в растворе-расплаве, а следовательно, и в пленке. Полоса поглощения с максимумом на длине волны $\lambda \approx 0.280 \,\mu$ m, интенсивность которой падает с ростом концентрации оксида тербия, обусловлена электронным переходом ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ примесных ионов Pb²⁺ [6,7]. Полоса поглощения с максимумом в интервале 0.335–0.345 μ m, которая наблюдается и в подложке из ГГГ и связывается с созданием кислородных вакансий, коотпенсирующих заряд двухвалентных ионов Ca²⁺ и Mg²⁺, вводимых в ГГГ для снижения количества дислокаций, соответствует поглощению комплексных центров окраски [20].

В спектрах поглощения исследуемых пленок в диапазоне от 6000 до 1000 cm⁻¹ (1.7–10 μ m) наблюдаются узкие малоинтенсивные полосы поглощения $4f \rightarrow 4f$ -переходов иона Tb³⁺ с основного уровня ⁷F₆ на уровни мультиплетов ⁷F₀ (5666, 5593, 5458 cm⁻¹), ⁷F₁ (5406, 5207, 5129, 4987, 4909 cm⁻¹), ⁷F₂ (4826, 4763, 4665, 4553 cm⁻¹), ⁷F₃ (4518, 4480, 4405, 4348, 4268, 4231 cm⁻¹), ⁷F₄ (3631, 3559, 3527, 3487, 3454, 3335, 3278, 3244 cm⁻¹), ⁷F₅ (2503, 2411, 2324, 2294, 2281, 2130, 2089, 2045, 2005 cm⁻¹) (рис. 3).

На рис. 4 и 5 показаны спектры люминесценции при возбуждении СИ в образце № 1-2, при температурах 10 и 300 К. При T = 10 К люминесценция возбуждалась на длине волны $\lambda = 0.080 \,\mu$ m, а при T = 300 К — на длинах волн $\lambda = 0.085$ и $0.220 \,\mu$ m. Из этих рисунков

Рис. 4. Спектры люминесценции эпитаксиальной пленки № I-2 при возбуждении СИ с длиной волны $\lambda = 0.080 \,\mu$ m при T = 10 K. На вставке показан спектр люминесценции той же пленки в области от 0.200 до 0.500 μ m.

Рис. 5. Спектры люминесценции эпитаксиальной пленки № I-2 при возбуждении СИ с длинами волн $\lambda = 0.220$ (*I*) и 0.085 μ m (*2*) при *T* = 300 K.

Рис. 6. Схема энергетических уровней ионов Tb³⁺ в эпитаксиальной пленке (Tb,Gd)₃Ga₅O₁₂ (образец № I-2) при 300 К (поглощение) и 10 К (люминесценция).

видно, что наиболее интенсивной является полоса люминесценции с максимумом на длине волны $\lambda \approx 0.544 \,\mu$ m, соответствующая излучательному переходу ${}^5D_4 \rightarrow {}^7F_5$. Достаточно интенсивными являются также полосы люминесценции с максимумами на длинах волн $\lambda \approx 0.490$, 0.583 и 0.623 μ m. Аналогичная структура спектра люминесценции наблюдалась в работах [21,22] при исследовании Тb-содержащих кварцевых гель-стекол при возбуждении на длине волны $\lambda_{\rm exc} = 0.200 \,\mu$ m при 298 K и алюмоборатных стекол при возбуждении на длине волны $\lambda_{\rm exc} = 0.254 \,\mu$ m при 300 K.

Поскольку в спектрах поглощения эпитаксиальных пленок мультиплеты 5D_3 и 5D_4 иона Tb³⁺ при 300 К не разрешаются, схема энергетических уровней этого иона построена на основе полос поглощения (рис. 3) и люминесценции (рис. 4). Эта схема представлена на рис. 6.

5. Заключение

Таким образом, в настоящей работе показано, что из Рb-содержащего раствора-расплава на подложках ГГГ с ориентацией (111) методом ЖФЭ можно выращивать пленки ГГГ, легированные тербием. Обнаруженная в этих пленках широкая интенсивная полоса поглощения с максимумом на длине волны 0.260 µm, интенсивность которой возрастает с ростом концентрации оксида тербия в пленке, соответствует разрешенному электрическому дипольному переходу между электронными конфигурациями $4f^{8}({}^{7}F_{6}) \rightarrow 4f^{7}({}^{8}S)5d({}^{7}D)$ ионов Tb³⁺. Полоса поглощения с максимумом на длине волны $\lambda \approx 0.280\,\mu\text{m}$, интенсивность которой падает с ростом концентрации оксида тербия, обусловлена электронным переходом ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ примесных ионов Pb²⁺. Узкие малоинтенсивные полосы поглощения в диапазоне от 6000 до $1000\,\mathrm{cm}^{-1}$ соответствуют $4f \rightarrow 4f$ -переходам иона Тb³⁺ с основного уровня ⁷F₆ на уровни мультиплетов $^{7}F_{0}$, $^{7}F_{1}$, $^{7}F_{2}$, $^{7}F_{3}$, $^{7}F_{4}$, $^{7}F_{5}$. Показано, что наиболее интенсивной среди полос люминесценции является полоса с максимумом на длине волны $\lambda \approx 0.544 \,\mu$ m, соответствующая излучательному переходу ${}^5D_4 \rightarrow {}^7F_5$ ионов Tb³⁺. На основе спектров поглощения и люминесценции построена схема энергетических уровней иона Tb³⁺ в эпитаксиальных пленках ГГГ, легированных тербием.

Авторы благодарят Г. Циммерера за предоставление возможности измерений на установке Superlumi, Г. Стриганюка за помощь в измерениях, М.Е. Дорошенко и В.Ф. Лебедева за обсуждение результатов работы.

Список литературы

- [1] В.В. Рандошкин, Н.В. Васильева, Н.Н. Сысоев. Наукоемкие технологии 5, 44 (2004).
- [2] Ю.В. Зоренко, И.В. Констанкевич, В.В. Михайлин, В.Н. Колобанов, Д.А. Спасский. Опт. и спектр. 96, 436 (2004).
- [3] J.M. Robertson, M.W. van Tol. Thin Solid Films **114**, 221 (1984).
- [4] Элементы и устройства на цилиндрических магнитных доменах. Справочник / Под ред. Н.Н. Евтихиева, Б.Н. Наумова. Радио и связь, М. (1987). 488 с.
- [5] В.В. Рандошкин, А.Я. Червоненкис. Прикладная магнитооптика. Энергоатомиздат, М. (1990). 320 с.
- [6] G.B. Scott, J.L. Page. J. Appl. Phys. 48, 1342 (1977).
- [7] В.В. Рандошкин, Н.В. Васильева, А.В. Васильев, В.Г. Плотниченко, С.В. Лаврищев, А.М. Салецкий, К.В. Сташун, Н.Н. Сысоев, А.Н. Чуркин. ФТТ 43, 1594 (2001).
- [8] В.В. Рандошкин, Н.В. Васильева, А.В. Васильев, В.Г. Плотниченко, Ю.Н. Пырков, А.М. Салецкий, К.В. Сташун, Н.Н. Сысоев. Неорган. материалы 40, 1 (2004).
- [9] J.A. Koningstein. Phys. Rev. 136, A 717 (1964).
- [10] M.A. Bunuel, L. Lozano, J.P. Chaminade, B. Moine, B. Jacquier. Opt. Mater. 13, 211 (1999).
- [11] В.И. Арбузов, В.Я. Грабовскис, Н.С. Ковалева, Н.Т. Рогулис, М.Н. Толстой. Опт. и спектр. 65, 943 (1988).
- [12] M.F. Churbanov, I.V. Scripachev, V.S. Shiryaev, V.G. Plotnichenko, S.V. Smetanin, E.B. Kryukova, Yu.N. Pyrkov, B.I. Galagan. J. Non-Cryst. Sol. **326 & 327**, 301 (2003).
- [13] E. Sarantopoulou, Z. Kollia, A.C. Cefalas, V.V. Semashko, R.Yu. Abdulsabirov, A.K. Naumov, S.L. Korableva. Opt. Commun. 156, 101 (1998).
- [14] H. Ebendorff-Heidepriem, D. Ehrt. J. Non-Cryst. Sol. 248, 247 (1999).
- [15] K.S. Thomas, S. Singh, G.H. Dieke. J. Chem. Phys. 38, 2180 (1963).
- [16] J. Qiu, M. Shojiya, R. Kanno, Y. Kawamoto. Opt. Mater. 13, 319 (1999).
- [17] R. Bayerer, J. Heber, D. Mateika. Z. Phys. B: Cond. Matter. 64, 201 (1986).
- [18] А.К. Звездин, В.М. Матвеев, А.А. Мухин, А.И. Попов. Редкоземельные ионы в магнитоупорядоченных кристаллах. Наука, М. (1985). 296 с.
- [19] А.С. Яценко. Наука, Новосибирск (2001). 200 с.
- [20] A. Matkovskii, D. Sugak, S. Melnyk, P. Potera, A. Suchocki,
 Z. Frukacz. J Alloys. Comp. 300–301, 395 (2000).
- [21] Г.Е. Малашкевич, Г.И. Семкова, А.П. Ступак, А.В. Суходолов. ФТТ 46, 1386 (2004).
- [22] D.M. Krol, R.P. van Stapele, J.H. Haanstra, T.J.A. Popma, G.E. Thomas, A.T. Vink. J. Lumin. **37**, 293 (1987).