Управление энергообменом при двойном двухволновом смешении в фоторефрактивных кристаллах

© Ф.А. Рустамов, С.Р. Мурадов, В.Х. Шарбатов

Институт физических проблем Бакинского государственного университета, AZ-1148 Баку, Азербайджан

E-mail: f_rustamov@yahoo.com

(Поступила в Редакцию 21 марта 2006 г.)

Аналитически решена задача двойного двухволнового смешения в фоторефрактивных кристаллах на основе двухуровневой модели оптических переходов. Получены формулы для интенсивностей всех четырех взаимодействующих волн и амплитуды голографической решетки. Показана возможность управления как величиной, так и направлением энергообмена между взаимодействующими лучами чисто оптическим способом, а именно изменением отношения интенсивностей и начальной разности фаз между интерференционными картинами.

PACS: 42.40.Eq, 42.70.Nq, 42.65.Hw

1. Введение

Двух- и четырехволновое смешение в фоторефрактивных кристаллах изучено достаточно подробно и предложены такие его применения как усиление оптических сигналов, оптическая обработка сигналов, оптическая память и т.д. [1-3]. Большинство из этих применений основано на возможности перекачки энергии между взаимодействующими оптическими волнами. Известно, что перекачка энергии из одного луча в другой зависит от разности фаз между профилем показателя преломления (голографической решетки) и создающей ее интерференционной картиной двух когерентных лучей, и она оптимальна, если эта разность фаз равна $\pi/2$. Для оптимизации этой разности фаз известны такие методы как приложение внешнего постоянного или переменного электрического поля [4,5], движущаяся голографическая решетка [6,7], изменение интенсивности считывающего излучения и подбор толщины кристалла [8,9], двойное двухволновое смешение [10,11]. Конечно среди этих методов наибольший интерес представляют безынерционные, а именно чисто оптические методы управления [8–11].

В настоящей работе рассмотрена задача двойного двухлучевого смешения в фоторефрактивных кристаллах (рис. 1) на основе двухуровневой модели оптических переходов [12,13]. Согласно этой модели, при записи голографической решетки в оптических переходах участвует два донорных уровня соответственно с концентрациями N_{d1} и N_{d2}. Эти локализованные на различной глубине донорные уровни по разному откликаются на лучи различной частоты. При двойном двухлучевом смешении кристалл освещается двумя парами когерентных лучей с различными частотами ω_g и ω_r . Лучи I_{+1}^g и I^{g}_{-1} из области сильного оптического поглощения, падая на кристалл, образуют интерференционную картину. Возбужденные в светлых областях кристалла электроны переходя с более глубоких донорных уровней N_{d1} в зону проводимости и далее из-за диффузии и/или дрейфа распределяются по кристаллу, рекомбинируя в конечном счете в темных областях с донорными уровнями N_{d1} и N_{d2} . Возникшее периодическое распределение электронов, а значит и периодическое внутреннее электростатическое поле, через фоторефрактивный эффект приводит к модуляции коэффициента преломления, т.е. возникает первая голографическая решетка. Вторая пара лучей I_{+1}^r и I_{-1}^r , удовлетворяя условию Брэгга, имеет частоту далекую от области сильного оптического поглощения. Выбор частот этих волн определяется тем, чтобы разность частот ω_{q} и ω_{r} была намного больше, чем обратное время отклика среды. В этом случае фоторефрактивная среда не может откликаться на быстрые осцилляции интенсивности, а лучи различной частоты не могут записывать голографическую решетку. Падая на кристалл, лучи I_{+1}^{r} и I_{-1}^{r} образуют свою интерференционную картину. Электроны, возбужденные с более мелких донорных уровней N_{d2}, попадают в зону проводимости, вследствие диффузии и/или дрейфа распределяются по кристаллу, рекомбинируют с донорными уровнями N_{d1} и N_{d2} и это через электрооптический эффект приводит к возникновению второй голографической решетки. Таким образом, в кристалле существует две голографические решетки одного периода, сумма которых и будет определять как амплитуду, так и фазу результирующей голографической решетки. Изменяя интенсивности и фазы падающих на кристалл лучей, можно изменять амплитуду и фазу каждой решетки, а значит и имплитуду, и фазу результирующей решетки.

Рис. 1. Схема двойного двухволнового смещения.

Основные уравнения при двойном двухлучевом смешении и их аналитическое решение

Нелинейная система дифференциальных уравнений, отражающая двойное двухволновое смешение в фоторефрактивных кристаллах и основанная на двухуровневой модели оптических переходов, имеет следующий вид [12,13]:

$$\begin{aligned} \frac{dA_1}{dz} &= -i \, \frac{\delta\beta}{d_1} \, (A_1 A_4^* + A_2^* A_3) A_4, \\ \frac{dA_4^*}{dz} &= i \, \frac{\delta\beta}{d_1} \, (A_1 A_4^* + A_2^* A_3) A_1^*, \\ \frac{dA_3}{dz} &= -i \, \frac{\delta\beta}{d_1} \, (A_1 A_4^* + A_2^* A_3) A_2, \\ \frac{dA_2^*}{dz} &= i \, \frac{\delta\beta}{d_1} \, (A_1 A_4^* + A_2^* A_3) A_3^*, \\ E_{+2} &= \frac{\beta}{d_1} \, (A_1 A_4^* + A_2^* A_3), \end{aligned}$$
(1)

где $A_{1,4} = C_{\pm 1}^g, A_{3,2} = \sqrt{S}C_{\pm 1}^r, S = \frac{\gamma_{r1}\alpha_2 N_{d2}}{\gamma_{r2}\alpha_1(N_{d1}-N_a)}, \delta = \frac{r\varepsilon_0 k^2}{2k_z}, \beta = A + iB,$

$$\begin{split} I_{0}^{r,g} &= \frac{c \sqrt{\varepsilon}}{4\pi} \left(|C_{+1}^{r,g}|^{2} + |C_{-1}^{r,g}|^{2} \right) = \frac{c \sqrt{\varepsilon}}{4\pi} \left(I_{+1}^{r,g} + I_{-1}^{r,g} \right), \\ A &= \frac{E_{0}}{\left(1 + \frac{E_{T}}{E_{q}} \right)^{2} + \left(\frac{E_{0}}{E_{q}} \right)^{2}}, \\ B &= \frac{E_{T} \left(1 + \frac{E_{T}}{E_{q}} + \frac{E_{0}^{2}}{E_{T}E_{q}} \right)}{\left(1 + \frac{E_{T}}{E_{q}} \right)^{2} + \left(\frac{E_{0}}{E_{q}} \right)^{2}}, \\ E_{T} &= \frac{2k_{x}k_{b}T}{e}, \quad E_{q} = \frac{2\pi e N_{a}}{\varepsilon \varepsilon_{0}k_{x}}. \end{split}$$

Здесь N_a , N_{d1} и N_{d2} — концентрация акцепторного и донорных уровней соответственно; α_1 , α_2 и γ_1 , γ_2 — коэффициенты ионизации и захвата соответственно; ε и ε_0 — высокочастотная и статическая диэлектрические постоянные соответственно; r — линейный электрооптический коэффициент; C_{\pm}^g и C_{\pm}^r — комплексные амплитуды взаимодействующих волн; k — волновой вектор; T — температура; e — заряд электрона; k_b — постоянная Больцмана; E_T — "диффузионное" поле; E_q — внутреннее максимальное поле; E_0 — внешнее приложенное поле. Параметр S, характеризующий относительную эффективность участия различных донорных уровней в оптических переходах, был рассчитан на основе микроскопических параметров кристалла $\text{Bi}_{12}\text{SiO}_{20}$ [20] и S = 0.05.

Система уравнений (1) имеет следующие интегралы [12–14]:

$$\begin{cases} A_1 A_3^* + A_2^* A_4 = c_2, & A_1 A_2 - A_3 A_4 = c_1, \\ I_1 + I_4 = d_1, & I_2 + I_3 = d_2. \end{cases}$$
(2)

Здесь $d_1 = I_0^g$, $d_2 = SI_0^r$, $I_i = |A_i|^2$.

Решение системы уравнений (1) при помощи интегралов (2) дает следующие выражения для отношения амплитуд волн:

$$A_{13} = \frac{A_1}{A_3} = -\left[\frac{L_- D e^{-\rho z} + L_+ D^{-1} e^{\rho z}}{2c_2^* (D e^{-\rho z} + D^{-1} e^{\rho z})}\right],$$
$$A_{24}^* = \frac{A_2^*}{A_4^*} = \left[\frac{L_- F e^{-\rho z} + L_+ F^{-1} e^{\rho z}}{2c_2^* (F e^{-\rho z} + F^{-1} e^{\rho z})}\right],$$
(3)

где введены следующие обозначения:

$$L_{\pm} = \Delta \pm Q, \quad \Delta = d_2 - d_1,$$
 $Q = \left(\Delta^2 + 4|c_2|^2\right)^{\frac{1}{2}}, \quad \rho = \frac{i\delta\beta}{2d_1}Q$

Здесь *D* и *F* являются постоянными интегрирования, найти которые следует из граничных условий. Учитывая, что при двойном двухволновом смешении граничные условия имеют вид

$$I_1(0) = I_{10}, \quad I_2(0) = I_{20}, \quad I_3(0) = I_{30}, \quad I_4(0) = I_{40},$$

для постоянных интегрирования можно получить следующие выражения:

$$\begin{split} D^2 &= -\frac{L_+ + 2I_{10} + 2\sqrt{\frac{I_{10}I_{20}I_{40}}{I_{30}}} \cdot \exp(i\Phi_0)}{L_- + 2I_{10} + 2\sqrt{\frac{I_{10}I_{20}I_{40}}{I_{30}}} \cdot \exp(i\Phi_0)}, \\ F^2 &= -\frac{L_+ - 2I_{20} - 2\sqrt{\frac{I_{10}I_{20}I_{30}}{I_{40}}} \cdot \exp(-i\Phi_0)}{L_- - 2I_{20} - 2\sqrt{\frac{I_{10}I_{20}I_{30}}{I_{40}}} \cdot \exp(-i\Phi_0)}, \end{split}$$
(4)

где $\Phi_0 = (\varphi_{10} - \varphi_{40}) - (\varphi_{30} - \varphi_{40})$ — начальная разность фаз между интерференционными картинами, образующими результирующую голографическую решетку. Следует отметить, что в отличие от схемы одновременной записи-считывания [12–14] в данном случае *D* и *F* являются комплексными выражениями.

Учитывая, что для интенсивностей волн верны соотношения

$$I_1 = I_3 \cdot I_{13}(z), \quad I_2 = I_4 \cdot I_{24}(z),$$
$$I_{13}(z) = |A_{13}|^2, \quad I_{24}(z) = |A_{24}|^2,$$

и используя формулы (3) и (4), окончательно для интенсивностей взаимодействующих волн получаем следующие выражения:

$$I_{1}(z) = I_{13}(z) \cdot \frac{d_{2} - d_{1}I_{24}(z)}{1 - I_{13}(z)I_{24}(z)},$$

$$I_{2}(z) = I_{24}(z) \cdot \frac{d_{1} - d_{2}I_{13}(z)}{1 - I_{13}(z)I_{24}(z)},$$

$$I_{3}(z) = \frac{d_{2} - d_{1}I_{24}(z)}{1 - I_{13}(z)I_{24}(z)},$$

$$I_{4}(z) = \frac{d_{1} - d_{2}I_{13}(z)}{1 - I_{13}(z)I_{24}(z)}.$$
(5)

Анализ влияния интенсивностей и начальной разности фаз на амплитуду результирующей решетки можно провести на основе системы (1), если интерференционный член представить в виде $A_1A_4^* + A_2^*A_3 = G(z) \cdot \exp(i\varepsilon(z))$, где G(z) и $\varepsilon(z)$, являясь вещественными функциями, характеризуют амплитуду и фазу результирующей и голографической решетки [15,16]. Поскольку в случае отсутствия внешнего приложенного поля ($E_0 = 0$), который и будем далее рассматривать, фаза решетки не зависит от z, дифференцируя интерференционный член по z, имеем

$$\frac{dG}{dz} = -\frac{\delta B}{d_1}G[I_1 - I_4 + I_3 - I_2].$$

Формально интегрируя это уравнение, получим

$$G(z) = G(0) \cdot \exp\left\{\frac{\Gamma}{2d_1} \int_{0}^{z} \left[I_1 - I_4 + I_3 - I_2\right] dz\right\}, \quad (6)$$

где $\Gamma = -2\delta B$ и

$$G(0) = \sqrt{I_{10}I_{40} + I_{20}I_{30} + 2\sqrt{I_{10}I_{20}I_{30}I_{40}}\cos\Phi_0}$$

3. Обсуждение полученных результатов

Полученные при самых общих граничных условиях выражения (5) и (6) позволяют исследовать зависимость интенсивностей взаимодействующих волн и амплитуды голографической решетки от расстояния распространения в кристалле и начальной разницы фаз между взаимодействующими лучами при самых различных условиях.

На рис. 2 приведены вычисленные зависимости интенсивностей волн и амплитуды голографической решетки от приведенного расстояния распространения в кристалле при $m = I_{40}/I_{10} = I_{-1}^g(0)/I_{+1}^g(0) = 1$, $l = I_{20}/I_{30} = I_{-1}^r(0)/I_{+1}^r(0) = 1.001$ и различных значениях отношения $q_0 = I_0^r/I_0^g$ и начальной разницы фаз Φ_0 .

Как видно из приведенных графиков на рис. 2, a-a'' при $q_0 = 0.1$, характер взаимодействия между записывающими лучами I_{+1}^g и I_{-1}^g не зависит от Φ_0 , хотя характер

взаимодействия между считывающими лучами I_{-1}^r и I_{+1}^r (направление перекачки энергии) кардинальным образом зависит от начальной разности фаз Φ_0 . При $\Phi_0 = 0$, т.е. когда обе интерференционные картины совпадают по фазе, усиливаются сонаправленные лучи I_{-1}^g и I_{-1}^r . С увеличением Φ_0 перенос энергии от луча I_{+1}^r к лучу I_{-1}^r ослабляется, и при $\Phi_0 = \pi/2$ прекращается всякое взаимодействие между считывающими лучами. При дальнейшем увеличении Φ_0 направление переноса энергии меняется на обратное и теперь усиливается луч I_{+1}^r . При $\Phi_0 = \pi$, т.е. когда интерференционные картины находятся в противофазе, происходит полная перекачка энергии от луча I_{-1}^r в луч I_{+1}^r .

Для анализа зависимостей интенсивностей взаимодействующих лучей от Φ_0 на рис. 2 приведены также расчетные зависимости амплитуды результирующей голографической решетки от расстояния при различных значениях Фо. При двойном двухволновом смешении голографическая решетка является суммой двух голографических решеток, первая из которых строится лучами I_{+1}^g и I_{-1}^g , а вторая лучами I_{-1}^r и I_{+1}^r . Когда лучи I_{-1}^r и I_{+1}^r намного слабее лучей I_{+1}^g и I_{-1}^g ($q_0 = 0.1$), влияние второй голографической решетки на результирующую пренебрежимо мало, и поэтому амплитуда и фаза результирующей решетки не зависят от Ф₀. При этом результирующая решетка фактически является первой голографической решеткой. При этом, поскольку внешнего электрического поля нет, разница фаз между интерференционной картиной лучей I_{+1}^{g} и I_{-1}^{g} и результирующей решеткой равна $\pi/2$ (рис. 3, *a*) [15,16]. Поэтому энергообмен между лучами I_{+1}^g и I_{-1}^g наиболее эффективен. Как видно из рис. 2, а, в этом случае усиливается луч I_{-1}^{g} . При $\Phi_{0} = 0$ интерференционная картина лучей I_{-1}^r и I_{+1}^r также отстает от голографической решетки на $\pi/2$ (рис. 3, *a*), и поэтому усиливается луч I_{-1}^r (рис. 2, *a*). При увеличении Φ_0 разница фаз между интерференционной картиной лучей I_{-1}^r и I_{+1}^r и голографической решеткой уменьшается, что и приводит к ухудшению энергообмена. При $\Phi_0=\pi/2$ разность фаз между интерференционной картиной лучей I_{-1}^r и I_{+1}^r и голографической решеткой становится равной нулю (рис. 3, b), и поэтому никакой перекачки энергии между лучами I_{-1}^r и I_{+1}^r не происходит. При дальнейшем увеличении Φ_0 интерференционная картина лучей I_{-1}^r и Ir₊₁ начинает опережать по фазе голографическую решетку, поэтому энергообмен между лучами I_{-1}^r и I_{+1}^r восстанавливается, но в этом случае уже усиливается луч I_{+1}^r , т.е. направление энергопереноса меняется на обратное (рис. 2, a'). И наконец, при $\Phi_0 = \pi$ интерференционная картина лучей I_{-1}^r и I_{+1}^r опережает по фазе голографическую решетку ровно на $\pi/2$ (рис. 3, *c*) и происходит полная перекачка энергии от луча Ir-1 в луч I_{+1}^r . Таким образом, меняя разность фаз Φ_0 , удается полностью управлять как величиной, так и направлением энергопереноса между лучами I_{-1}^r и I_{+1}^r и по желанию усиливать или луч I_{-1}^r , или же наоборот луч I_{+1}^r .

Рис. 2. Расчетные зависимости относительных интенсивностей (a - d, a' - d') и амплитуды (a'' - d'') голографической решетки от расстояния распространения при различных значениях Φ_0 , $q_0 = I_0^r/I_0^g$ и m = 1, l = 1.001: $a, a', a'' - q_0 = 0.1$; $b, b', b'' - q_0 = 10$; $c, c', c'' - q_0 = 20; d, d', d'' - q_0 = 100. \ 1 - \Phi_0 = 0, 2 - \Phi_0 = \pi/4, 3 - \Phi_0 = \pi/2, 4 - \Phi_0 = 3\pi/4, 5 - \Phi_0 = 0\pi.$

При увеличении интенсивности лучей I_{-1}^r и I_{+1}^r (рис. 2, b-b'', c-c'') начинает сказываться влияние образуемой ими голографической решетки на результирующую решетку. При этом как амплитуда результирующей решетки, так и ее фаза начинают зависеть от Φ_0 (рис. 2, b'', c''). С увеличением Φ_0 амплитуда результирующей голографической решетки уменьшается, а разница фаз между результирующей голографической решеткой и интерференционными картинами лучей I_{+1}^g , I_{-1}^g и I_{-1}^{r}, I_{+1}^{r} отличается от $\pi/2$, что и приводит к ухудшению условия энергообмена (рис. 2, b-b'', c-c''). Причем если при $q_0 = 10$ еще можно менять направление перекачки энергии, то при $q_0 = 20$ это сделать не удается.

Если интенсивность лучей I'_{-1} и I'_{+1} намного превышают интенсивности лучей I^g_{+1} и I^g_{-1} ($q_0 = 100$), то определяющим значением в построении результирующей голографической решетки обладает именно решетка, записанная лучами I_{-1}^r и I_{+1}^r . В этом случае процесс протекает так же описанным выше образом, но в этом случае управляется энергообмен между лучами I_{+1}^g и I_{-1}^{g} (рис. 2, d-d'').

Таким образом, энергообменом между взаимодействующими лучами можно управлять, изменяя отношение интенсивностей q₀ и начальную разность фаз Ф₀. На рис. 4 представлены расчетные зависимости интенсивностей взаимодействующих волн на выходе из кри-

Рис. 3. Пространственный фазовый сдвиг между интерференционными картинами лучей I_{+1}^{g} , I_{-1}^{g} (I); I_{-1}^{r} , I_{+1}^{r} (2) и результирующей голографической решеткой (3) при $q_{0} = I_{0}^{r}/I_{0}^{g} \ll 1$, $E_{0} = 0$ и различных значениях начальной разности фаз Φ_{0} . $a - \Phi_{0} = 0$ (лучи I_{-1}^{g} и I_{-1}^{r} усиливаются), $b - \Phi_{0} = \frac{\pi}{2}$ (луч I_{-1}^{g} усиливаются), $c - \Phi_{0} = \pi$ (лучи I_{-1}^{g} и I_{+1}^{r} не изменяются), $c - \Phi_{0} = \pi$ (лучи I_{-1}^{g} и I_{+1}^{r} усиливаются).

сталла от начальной разности фаз Φ_0 при различных значениях q_0 . При $q_0 = 0.1$, как видно из рис. 4, *a*, *a'*, энергообмен между лучами I_{-1}^r и I_{+1}^r полностью управляется разностью фаз Φ_0 . Если при $\Phi_0 = 0$ вся энергия перекачивается в луч I_{-1}^r , то с увеличением Φ_0 он ослабляется, постепенно усиливается луч I_{+1}^r и наконец при $\Phi_0 = \pi$ вся энергия переходит в луч I_{+1}^r . Таким образом, если интенсивности записывающих лучей I_{+1}^g и I_{-1}^g

больше интенсивностей I'_{-1} и I'_{+1} , то выходные значения I^{g}_{+1} и I^{g}_{-1} не подвергаются изменению, а интенсивности I'_{-1} и I'_{+1} полностью управляются начальной разностью фаз Φ_0 и по необходимости можно усиливать либо луч I'_{-1} , либо луч I'_{+1} . С увеличением q_0 (рис. 4, b, b') изменяется эффективность энергообмена как между лучами I^{g}_{+1} и I^{g}_{-1} , так и между лучами I'_{-1} и I'_{+1} . При $q_0 = 20$ (рис. 4, c, c') зависимость интенсивностей как записывающих лучей, так и считывающих лучей от Φ_0 идентична. В этом случае, хотя есть возможность управлять энергообменом, направление энергообмена не происходит. Если же интенсивности считывающих лучей намного превышают интенсивности записывающих лучей

Рис. 4. Вычисленные зависимости выходных значений интенсивностей от начальной разницы фаз Φ_0 при m = 1, l = 1.001и $\Gamma z = 5$. $a, a' - q_0 = 0.1$; $b, b' - q_0 = 10$; $c, c' - q_0 = 20$; $d, d' - q_0 = 100$.

чей $(q_0 = 100)$, то наоборот энергообмен между лучами I_{+1}^g и I_{-1}^g полностью управляется разностью фаз Φ_0 , хотя характер энергообмена между лучами I_{-1}^r и I_{+1}^r не изменяется.

4. Выводы

В настоящей работе аналитически решена задача двойного двухволнового смешения в фоторефрактивных кристаллах на основе двухуровневой модели оптических переходов. Получены выражения для интенсивностей всех четырех взаимодействующих волн и амплитуды голографической решетки, отражающие их зависимость как от начального отношения интенсивностей (q_0, m, l) , так и начальной разности фаз между интерференционными картинами записывающих и считывающих лучей Φ_0 . Показано, что, изменяя q_0 и Φ_0 , можно оптически управлять энергообменом между лучами и даже изменять его направление.

Список литературы

- N.V. Kukhtarev, V.B. Markov, S.G. Odulov, M.S. Soskin, V.L. Vinetskii. Ferroelectrics 22, 961 (1979).
- [2] J.P. Huignard, A. Marrakchi. Opt. Lett. 6, 622 (1981).
- [3] S.I. Stepanov, M.P. Petrov. Opt. Acta. 31, 1335 (1984).
- [4] C. Besson, J.M.C. Jonathan, A. Villing, G. Pauliat, G. Roosen. Opt. Lett. 14, 1359 (1989).
- [5] S.I. Stepanov, M.P. Petrov. Opt. Commun. 53, 292 (1985).
- [6] Ph. Refregier, L. Solimar, H. Rajbenbach, J.P. Huignard. J. Appl. Phys. 58, 45 (1985).
- [7] G.C. Valey. J. Opt. Soc. Am. B 1, 868 (1984).
- [8] F.A. Rustamov, E.A. Sadykhov. Opt. Quantum. Electron. 27, 249 (1995).
- [9] F.A. Rustamov. Opt. Quantum Electron. 27, 239 (1995).
- [10] F. Wang, B. Liu, L. Liu, L. Xu. J. Opt. Soc. Am. B 13, 2775 (1996).
- [11] S. Honma, A. Okamoto, Y. Takayama. J. Opt. Soc. Am. B 18, 974 (2001).
- [12] F.A. Rustamov, F.N. Gadjiev. Opt. Quantum Electron. 24, 1165 (1992).
- [13] F.A. Rustamov. Opt. Quantum Electron. 23, 613 (1991).
- [14] M. Cronin-Golomb, B. Fischer, J.O. White, A. Yariv. IEEE J. Quantum Electron. QE-20, 12 (1984).
- [15] N.V. Kukhtarev, V.B. Markov, S.G. Odulov, M.S. Soskin, V.L. Vinetskii. Ferroelectrics 22, 949 (1979).
- [16] F.A. Rustamov. Opt. Quantum Electron. 27, 117 (1995).