Масштабная инвариантность флуктуаций плотности в пленках и агрегатов макромолекул в растворах полистирола

© Д.В. Новиков, А.Н. Красовский*, Н.А. Осмоловская*, В.И. Ефремов

Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича, 191186 Санкт-Петербург, Россия * Санкт-Петербургский университет кино и телевидения, 191119 Санкт-Петербург, Россия

E-mail: samar@qrel.sut.ru

(Поступила в Редакцию 5 апреля 2006 г. В окончательной редакции 6 июня 2006 г.)

Методом электронной микроскопии изучены закономерности перехода от раствора к твердотельному состоянию (пленке) аморфного полимера. На примере линейного атактического полистирола установлено соответствие между характеристиками фрактальных агрегатов макромолекул в растворе и параметрами пространственного распределения флуктуаций плотности на поверхности пленки. Соответствие имеет место при условии, что плотность упаковки клубков не превышает критического значения в точке фазового перехода жидкость-твердое тело, а концентрация полимера в растворе отвечает образованию непрерывной сетки зацеплений макромолекул.

PACS: 64.70.Dv, 68.08.-p

1. Введение

Аморфные полимеры — это структурно неоднородные системы [1]. Флуктуации плотности в аморфных пленках, полученных из растворов гибкоцепных полимеров, неизбежно возникают вследствие неравновесных условий формирования пленок и предопределяются концентрацией c, молекулярной массой M полимера и термокинетическими условиями агрегации макромолекул в растворе [2,3]. Флуктуации плотности имеют масштабноинвариантный характер [4] и могут быть описаны в рамках модели фрактальных кластеров [5,6].

Переход от разбавленных к концентрированным растворам полимеров можно связать с превращением дискретных агрегатов (ассоциатов) макромолекул [3,5,6] в растворе в бесконечный кластер, приводящим к изменению их плотности и фрактальной размерности. С ростом концентрации с полимера в растворе гидродинамический радиус $\langle R_g \rangle$ агрегатов макромолекул увеличивается по закону $\langle R_g \rangle = R_g w^{-1/D} ([\eta] c / \ln \eta_r)^{1/(2D-3)}$ [7], где R_g — радиус клубка, w — коэффициент упаковки клубков, D — фрактальная размерность агрегата, [η] и η_r — характеристическая и относительная вязкость полимера в растворе соответственно [8].

С ростом вязкости раствора полимера подвижность агрегатов макромолекул падает, так как фундаментальное время релаксации макромолекул и агрегатов резко увеличиваетя с ростом параметра $[\eta]c$ [9]. Можно предположить, что время релаксации агрегатов макромолекул в растворе превышает время пленкообразования [10], и размеры флуктуаций повышенной плотности в пленках, полученных из растворов полимеров, должны предопределяться гидродинамическими параметрами агрегатов макромолекул в растворе.

Согласно концепции фазового дуализма [11], сегменты макромолекул в твердотельном состоянии аморфного полимера можно рассматривать как термодинамически двойственные частицы, проявляющие свойства газа и жидкости. Поэтому переход от растворов гибкоцепных макромолекул к пленкам относится к фазовому превращению типа "сегментный газ "–жидкость [11] и приводит к росту плотности на масштабе, соответствующем гидродинамическому радиусу агрегатов $\langle R_g \rangle$.

Радиус R_0 структурных элементов, формирующих флуктуации плотности в твердом теле, можно получить с использованием радиальной функции g(R) распределения плотности. Как известно [5,6], степень агрегации *s* элементов фрактального кластера на масштабе радиуса *R* равна $s = \omega(R/R_0)^D$, где R_0 — радиус элементарной частицы кластера, ω — плотность массы кластера. Поэтому функция g(R) в двумерной проекции (E = 2) может быть разложена в степенной ряд

$$g(R) = \omega R_0^{-D} R^{D-2} \times (D + 1/3D(D-1)(D-2)(\delta/R)^2 + \dots)/2\pi\rho, \quad (1)$$

где $\omega = nS_0/\langle S \rangle$, n — число элементов в кластере, S_0 и $\langle S \rangle$ — площадь проекций элемента и кластера соответственно, $\rho = n/S$ — средняя по поверхности плотность распределения элементов кластера, δ — шаг сканирования плотности.

С учетом того, что $\rho = n\rho_s/\langle S \rangle = \rho_s \omega/S_0$, где $\rho_s - c$ тепень заполнения поверхности кластером, и $S_0 \cong \pi R_0^2$, можно получить выражение

$$g(R) = D/(2\rho_s)R_0^{2-D}R^{D-2} \times [1 + 1/3(D-1)(D-2)(\delta/R)^2 + \ldots], \quad (2)$$

справедливое при $R \le \xi$, где ξ — корреляционный радиус кластера. Пренебрегая квадратичным членом в

скобках выражения (2) при $R = \xi$, получаем соотношение для R_0

$$R_0 = \xi [D/2\rho_s g(\xi)]^{1/D-2}.$$
 (3)

Для расчета значений R_0 в объеме (E = 3) следует использовать соотношение [12], $R_0(E = 3) = 4/\pi R_0(E = 2)$.

Безразмерную плотность ω упаковки элементов кластера можно определить из выражения для плотности кластера на масштабе радиуса R: $\rho(R) = = (\omega/\pi)R_0^{-D}R^{D-2}$. Используя представление о расположении элементов кластера в узлах пространственной квазирешетки с плотностью узлов $\rho_1 \approx \alpha (2R_0)^{-2}$, где α — константа, определяемая координационным числом квазирешетки [13], можно ввести понятие решеточной плотности $\rho(R)/\rho_1$, которая равна средней решеточной плотности ρ_s при $R = \xi$

$$\rho_s = (\omega/\pi\rho_1) R_0^{-D} \xi^{D-2}.$$
 (4)

Тогда из выражений (3) и (4) следует, что $\omega = \alpha \pi D/8g(\xi)$.

В настоящей работе в рамках кластерной модели изучено пространственное распределение флуктуаций плотности на поверхности пленок, полученных из растворов полистирола (PS) при вариации термодинамического качества растворителя и концентрации полимера. Цель работы — сопоставление гидродинамических характеристик агрегатов макромолекул в растворе с параметрами топологической структуры поверхности пленок.

2. Методика эксперимента

Изучали образец линейного атактического PS $(M = 9.1 \cdot 10^6)$ с узким молекулярно-массовым распределением. Пленки толщиной $15-20\,\mu$ m получали на стекле из растворов PS в хлороформе (Chl) при 298 К и декалине (Dcl) при 313 К, что на 12° выше θ -точки [8], в области концентрации $c = 0.1-0.9 \,\mathrm{g} \cdot \mathrm{dl}^{-1}$. Пленки сушили на воздухе соответственно при 298 К в течение 48 h (Chl) и при 301 К в течение 60 h (Dcl).

Зависимости относительной вязкости $\eta_r(c)$ от концентрации c PS в растворах получены с помощью капиллярной вискозиметрии [8] (скорсоть сдвига 100 s^{-1}) в области $c = 0.1 - 1.8 \text{ g} \cdot \text{dl}^{-1}$ при значении параметра [η]c = 0.1 - 10 (рис. 1). Характеристическая вязкость [η] образца PS в растворах равна 8.3 ± 0.2 (Chl, 298 K) и $4.8 \pm 0.1 \text{ dl} \cdot \text{g}^{-1}$ (Dcl, 313 K). Текущую характеристическую вязкость [η] $_c$ рассчитывали из кривых $\eta_r(c)$ по выражению [η] $_c = d \ln \eta_r/dc$ [8].

Методом электронной микроскопии изучали "воздушную" поверхность полимерных пленок, которые активировали бромом. Для этого пленки погружали в бромную воду (5 wt%) на 30 s, затем декорировали вакуумным напылением золота (вакуум $1.33 \cdot 10^{-3}$ Pa, интенсивность потока $10^{15}-10^{16}$ cm⁻²·s⁻¹, эффективная толщина слоя 0.4 nm [14,15]. Молекулярные комплексы брома

Рис. 1. Зависимости относительной вязкости η_r от концентрации *c* PS в растворе в Chl (*1*) и Dcl (*2*).

с ароматическими группами PS служили активными центрами формирования частиц золота на поверхности пленок в процессе декорирования [16]. Частицы золота отделяли от пленок с помощью опорных угольных реплик и изучали в электронном микроскопе EMV-100L.

Радиальную функцию g(R) распределения дискретных частиц золота на поверхности PS получали сканированием плотности распределения частиц на микрофотографиях с шагом $\delta = 3$ nm.

Скопления декорирующих частиц золота на поверхности пленок представляли в виде кластеров на двумерной решетке [16] с расстоянием между узлами, соответствующим наиболее вероятному расстоянию *г* между частицами. Координационное число *m* квазирешетки полагали равным среднему числу ближайших соседей вокруг произвольно выбранной частицы [16].

Степень заполнения поверхности кластерами ρ_s рассчитывали по соотношению $\rho_s = \rho/\rho_l$, где ρ_l — плотность распределения узлов решетки, зависящая от *m* и равная, в частности, $\rho_l = 0.77/r^2$ для m = 3 и $\rho_l = 1/r^2$ для m = 4 [13].

Функции g(R) радиального распределения плотности кластеров получали при величине $\delta \approx r$.

3. Результаты и их обсуждение

Как известно [7], переход к θ -состоянию клубков макромолекул в растворе связан с изменением показателя степени *a* в выражении для текущей характеристической вязкости: $[\eta]_c = a[\eta]([\eta]c)^{a-1}$, при этом показатель степени a = (3 - D)/D [17] может быть рассчитан с помощью зависимостей величины $[\eta]_c$ от параметра $x = [\eta]c$.

Величина $[\eta]_c$ уменьшается с ростом концентрации cPS в растворе, а отношение $f(x) = [\eta]/[\eta]_c$ изменяется как $f(x) = a^{-1}x^{1-a}$. Для растворов PS в Chl кривая f(x)в координатах $\ln f - \ln x$ состоит из трех линейных участков (рис. 2). Разбавленному раствору клубков в термодинамически хорошем растворителе (a = 0.8, D = 5/3) [17] отвечает первый участок f(x) ($[\eta]c \leq 2$).

Растворитель	$c, \mathbf{g} \cdot \mathbf{dl}^{-1}$	$[\eta]c$	r, nm	т	$ ho_s$	ξ , nm ±10%	$\langle R_g angle$, nm $\pm 7\%$	$egin{array}{l} D & (R \leq \xi) \ \pm 0.02 \end{array}$	R_0 , nm	<i>R_g</i> , nm 7%	ω
Chl	0.1	0.8	36	2.6	0.85	220	170	1.90	72	116	0.57
	0.3	2.5	30	3.4	0.67	250	230	1.85	46	101	0.52
	0.4	3.3	28	3.1	0.39	360	250	1.70	32	98	0.49
	0.8*	6.6	36	1.3	0.21	400	430**	1.62	10	82	0.53
Dcl	0.48	2.3	33	4.9	0.98	500	162	1.98	66	80	0.81
	0.56*	2.7	35	4.3	0.80	500	166	1.94	33	69	0.74
	0.7	3.4	30	4.8	0.44	500	168	1.84	16	66	0.60
	0.9	4.3	45	4.3	0.30	550	180	1.74	11	63	0.66

Параметры пространственного распределения частиц золота и кластерной структуры поверхности пленок PS

* Критическая концентрация полимера в растворе.

** Корреляционный радиус ξ агрегатов макромолекул в растворе. Радиус клубка определяли как $R_g = 0.527([\eta]_c M/\Phi)^{1/3}$, где Φ — константа Флори [8]. Плотность массы кластеров ω рассчитана с использованием шестиугольной и квадратной решеток соответственно для пленок PS, полученных из растворов полимера в Chl и в Dcl.

Рис. 2. Зависимости отношения $f(x) = [\eta]/[\eta]_c$ от параметра $x = [\eta]c$ для PS в растворе в Chl (1) и Dcl (2).

Рис. 3. Зависимости относительной плотности ρ_r агрегатов макромолекул в растворе от параметра [η]c: I — Chl; 2 — Dcl.

В области $[\eta]c = 2.5-6$ происходит перекрывание и поджатие клубков (a = 0.72, D = 1.74). Клубки в растворе Chl начинают перекрываться при так называемой концентрации c_1 [2], равной $0.3 \text{ g} \cdot \text{dl}^{-1}$. Участок в области $[\eta]c = 6.6-10$ связан с взаимопроникновением и перепутыванием клубков, радиус которых с ростом концентрации c приближается к радиусу θ -клубка (a = 0.53, D = 1.96) [17,18]. Бесконечный кластер макромолекул PS в растворе в Chl образуется при критическом значении $c^* = 0.8 \text{ g} \cdot \text{dl}^{-1}$ ([η] $c = 6.6 \pm 0.2$), соответствующем перекрыванию гидродинамических сфер поджатых клубков на третьем участке кривой f(x).

Для растворов PS в Dcl кривая f(x) состоит из двух участков (рис. 2). Участок в области $[\eta]c \leq 2.3$

Рис. 4. Электронные микрофотографии декорирующих частиц золота на поверхности пленок PS, полученных из растворов в Chl [концентрация c = 0.1 (*a*), 0.3 (*b*), $0.8 \text{ g} \cdot \text{dl}^{-1}$ (*c*)] и Dcl [концентрация c = 0.48 (*d*), 0.56 (*e*), $0.9 \text{ g} \cdot \text{dl}^{-1}$ (*f*)]. Увеличение ×10 000.

Рис. 5. Функции g(R) распределения плотности кластеров на поверхности пленок, полученных из растворов: a — PS в Chl, концентрация c = 0.1 (I), 0.3 (2) и 0.8 g · dl⁻¹ (3); b — PS в Dcl, концентрация c = 0.48 (I), 0.56 (2), 0.7 (3) и 0.9 g · dl⁻¹ (4). Шаг сканирования плотности распределения декорирующих частиц $\delta = 100$ nm. Стандартная ошибка определения значений функций ±0.02.

отвечает разбавленному раствору клубков. Протяженная область $[\eta]c = 2.5-11$ обусловлена заполнением объема раствора θ -клубками (a = 0.52, D = 1.97). Перекрывание гидродинамических сфер θ -клубков в растворе в Dcl происходит при критической концентрации $c^* = c_1$, равной $0.56 \text{ g} \cdot \text{dl}^{-1}$ ($[\eta]c = 2.5 \pm 0.2$).

Относительная плотность ρ_r агрегатов макромолекул в растворе равна $w^a (a[\eta]/[\eta]_c)^{a/(1-a)}$, где w = 0.637 коэффициент случайной упаковки клубков [7]. С ростом концентрации PS в растворах плотность ρ_r агрегатов падает и достигает величины, характерной для θ -условий [19] (рис. 3). Однако плотность ρ_r агрегатов PS в Dcl выше, чем в Chl, причем вблизи критической концентрации c^* плотности агрегатов клубков различаются более чем в два раза.

На рис. 4 представлены электронные микрофотографии декорирующих частиц золота для пленок, полученных из растворов PS в Chl (рис. 4, a) и в Dcl (рис. 4, b). Распределение частиц золота на поверхности пленок неоднородно и отражает распределение плотности полимера. Области с повышенной локальной плотностью мелких частиц образуют бесконечный фрактальный кластер, в полостях которого находятся крупные частицы золота. Параметры распределения декорирующих частиц и кластерной структуры поверхности пленок приведены в таблице.

Функции g(R) радиального распределения флуктуаций повышенной плотности (плотности бесконечного кластера декорирующих частиц золота) на масштабе $R < \xi$ подчиняются закону $g(R) \sim R^{D-2}$ и в двойных логарифмических координатах кривые g(R) являются прямолинейными (рис. 5, 6). Величину корреляционного радиуса ξ флуктуаций плотности определяли в точках локального минимума или перегиба функции g(R).

С ростом концентрации PS в растворах значение ρ_s средней решеточной плотности бесконечного кластера в пленках падает, как и плотность агрегатов макромолекул в растворах (таблица и рис. 3). Переход от растворов PS в Chl к растворам в Dcl приводит в соответствующих пленках к росту решеточной плотности ρ_s бесконечного кластера и координационного числа квазирешетки от $m \approx 3$ до $m \approx 4$. Началу перекрывания клубков в растворах в Chl и Dcl при $c = c_1([\eta]c \approx 2.5)$ отвечает примерное равенство плотности массы ω и средней ρ_s решеточной плотности кластера в пленках (см. таблицу). Этому условию соответствует наиболее однородное пространственное распределение плотности.

Рис. 6. Функции g(R) в логарифмических координатах для пленок, полученных из растворов: a — PS в Chl, концентрация c = 0.1 (1), 0.3 (2) и 0.8 g · dl⁻¹ (3); b — PS в Dcl, концентрация c = 0.56 (1), 0.7 (2) g · dl⁻¹.

Снижение величины *m* для пленок, полученных из раствора PS в Chl в области $c \ge c^*$, можно связать с ростом анизотропии кластеров. Действительно, при формировании граничных слоев PS на поверхности стекла KRS-5 из раствора полимера в Chl в области $[\eta]c < 1.8$ анизотропия поляризуемости макромолекул положительна и отрицательна в области $[\eta]c = 2-4$ [20]. Рост абсолютной величины анизотропии поляризуемости в области $[\eta]c > 3$ связан с избытками макромолекул в граничном слое по сравнению с раствором. В растворах PS в Dcl плотность клубков выше, чем в Chl, поэтому соответствующих граничных слоях анизотропия поляризуемости макромолекул отсутствует [20].

С уменьшением концентрации c PS в растворе эффективный радиус R_0 элементов, формирующих флуктуации повышенной плотности полимера на поверхности пленок PS, возрастает (см. таблицу). Для разбавленных растворов Ps в Chl и Dcl в области $c \le c_1$ величина R_0 приближается к гидродинамическому радиусу θ -клубка R_g (рис. 7). Снижение величины R_0 с ростом концентрации c в области $c > c_1$ связано с перепутыванием клубков и образованием блобов в пленках [21].

Корреляционный радиус ξ флуктуаций плотности в пленках, полученных из раствором PS в Dcl, как и гидродинамический радиус $\langle R_g \rangle$ агрегатов макромолекул в растворах, практически не зависит от концентрации полимера в широком диапазоне c (см. таблицу). В пленках, полученных из растворов PS в Chl, величина ξ увеличивается с ростом концентрации c. Гидродинамический радиус $\langle R_g \rangle$ агрегатов макромолекул в растворе при $c = c^*$ составляет 430 nm, что практически совпадает с $\xi = 400$ nm в пленке (см. таблицу).

Для пленок PS, полученных из растворов в Chl, полные корреляционные функции h(R) = g(R) - 1 флуктуаций плотности на масштабе $R < \xi$ подчиняются соотношению Орнштейна–Цернике $h(R) \sim R^{-1} \exp(-R/\xi)$, определяющему пространственные корреляции между флуктуациями плотности в жидкостях [22] (рис. 8, *a*).

Рис. 7. Зависимость радиуса клубка R_g от параметра $[\eta]c$ для раствора PS в Dcl по данным капиллярной вискозиметрии (сплошная кривая); точками обозначены значения R_0 в пленках, полученных из растворов PS в Chl (1) и Dcl (2). Величина R_0 рассчитана по соотношению (3) для трехмерного случая.

Рис. 8. Функции h(R) в координатах Орнштейна–Цернике для пленок, полученных из растворов: a — PS в Chl, концентрация c = 0.1 (1), 0.3 (2) и 0.8 g · dl⁻¹ (3); b — PS в Dcl, концентрация c = 0.48 (1), 0.56 (2), 0.9 (3) g · dl⁻¹.

Для пленок PS, сформированных из растворов в Dcl при $c \leq c^*$, функции h(R) обнаруживают более медленный спад корреляций типа плотность–плотность на масштабе, соответствующем гидродинамическому радиусу $\langle R_g \rangle$ агрегатов макромолекул в растворе (рис. 8, *b*). Отклонения от соотношения Орнштейна–Цернике наблюдаются при относительно высокой плотности ω упаковки клубков в пленках (см. таблицу), превышающей критическую плотность в точке фазового перехода жидкость–твердое тело, которая для твердых сфер составляет 0.667 [23].

4. Заключение

Таким образом, величина плотности клубка определяет закономерности перехода от раствора к твердотельному состоянию аморфного полимера.

Частичное сжатие клубков при формовании пленок из растворов PS в Chl можно трактовать как превращение типа "сегментный газ"–жидкость, так как решеточная плотность ρ_s и корреляционный радиус ξ флуктуаций плотности в пленках близки соответственно к плотно-

сти ρ_r и гидродинамическому радиусу $\langle R_g \rangle$ агрегатов макромолекул в растворах.

Переход от растворов PS в Dcl вблизи c^* к твердотельному состоянию полимера приводит к максимальному росту плотности и корреляционного радиуса агрегатов макромолекул. В этом случае пленки характеризуются наличием однородных по плотности областей, размер которых соответствует величине $\langle R_g \rangle$ агрегатов макромолекул в растворе (рис. 8, b). Такие области подобны так называемым сиботактическим областям в структурированных жидкостях, содержащим группы молекул с упорядоченностью, превышающей среднюю [22].

Список литературы

- [1] Г.М. Бартенев, С.Я. Френкель. Физика полимеров. Химия, Л. (1990). 432 с.
- [2] А.Ю. Гросберг, А.Р. Хохлов. Статистическая физика макромолекул. Наука, М. (1989). 328 с.
- [3] А.Н. Красовский, В.П. Николаев, А.М. Шляков, С.С. Мнацаканов. Высокомолек. соед. А 37, 273 (1995).
- [4] H.E. Stanley. Introduction of Phase Transition and Critical Phenomena. Oxford, N.Y. (1971). 178 p.
- [5] Е. Федер. Фракталы / Пер. с англ. под ред. Ю.А. Данилова и А. Шукурова. Мир, М. (1991). 254 с. [J. Feder. Fractals. Plenum Press, N.Y.–London (1988). 260 p.]
- [6] Б.М. Смирнов. Физика фрактальных кластеров. Наука, М. (1991). 134 с.
- [7] А.Н. Красовский, В.Н. Филиппов. ЖПХ 76, 1000 (2003).
- [8] В.Н. Цветков, В.Э. Эскин, С.Я. Френкель. Структура макромолекул в растворах. Наука, М. (1964). 719 с.
- [9] В.Г. Баранов, Д.Х. Амрибахшов, С.А. Агранова, С.Я. Френкель. Высокомолек. соед. Б 30, 384 (1988).
- [10] С.П. Папков. Физико-химические основы переработки растворов полимеров. Химия, М. (1971). 363 с.
- [11] В.Г. Баранов, С.Я. Френкель, Ю.В. Бресткин, И.С. Садиков. Докл. АН СССР 285, 345 (1985).
- [12] E.R. Weibel. Stereological methods. Academic Press, N.Y. (1979). Vol. 1. 287 p.
- [13] Д.В. Новиков, А.В. Варламов. Поверхность 6, 117 (1992).
- [14] Г.И. Дистлер, В.Н. Лебедева, В.В. Москвин. ФТТ 10, 3489 (1968).
- [15] Г.В. Птицын, Г.Х. Розенберг, Э.Ф. Чайковский. ФТТ 18, 280 (1976).
- [16] Д.В. Новиков, А.Н. Красовский, А.И. Андреева, С.В. Басов. Коллоид. журн. 61, 240 (1999).
- [17] В.Г. Баранов, С.Я. Френкель, Ю.В. Бресткин. Докл. АН СССР 290, 369 (1986).
- [18] В.Г. Баранов, Ю.В. Бресткин, В.И. Поддубный, С.А. Агранова, В.Н. Пинкевич. Высокомолек. соед. А 29, 2516 (1987).
- [19] А.Н. Красовский, Д.В. Новиков, В.Н. Филиппов, В.Д. Запорожец, Л.Ш. Нигманова. ЖПХ 76, 304 (2003).
- [20] А.А. Харлампиев. Автореф. канд. дис. Санкт-Петербургский университет кино и телевидения, СПб (1999). 21 с.
- [21] П. Де Женн. Идеи скейлинга в физике полимеров / Пер. с англ. под ред. И.М. Лифшица. Мир, М. (1982). 368 с. [P. De Gennes. Scaling Concepts in Polymer Physics. Cornel Univ. Press, Ithaca (1979).]
- [22] А.Ф. Скрышевский. Структурный анализ жидкостей и аморфных тел. Наука, М. (1980). 328 с.
- [23] W.G. Hoover, F.H. Ree. J. Chem. Phys. 45, 3649 (1966).