Влияние структуры молекул фталоцианинов меди на характер их упорядочения в тонких пленках, спектры фотолюминесценции и поглощения

© В.Л. Берковиц, А.В. Зиминов**, А.Г. Казанский*, А.Г. Колосько, С.М. Рамш***, Е.И. Теруков, А.В. Фенухин*, В.П. Улин, Т.А. Юрре**, J.P. Kleider***

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

* Московский государственный университет им. М.В. Ломоносова,

119899 Москва, Россия

** Санкт-Петербургский государственный технологический институт,

198013 Санкт-Петербург, Россия

*** Laboratoire de Genie Electrigue de Paris (C.N.R.S. UMR 8507) Ecole Superieure d'Electricite,

Universites Paris VI e XI, France

E-mail: vladimir.berkovits@mail.ioffe.ru

(Поступила в Редакцию 6 апреля 2006 г.)

Методами спектроскопии анизотропного отражения, фотолюминесценции и фотопроводимости в режиме постоянного фототока исследовались тонкие пленки молекул фталоцианина меди (CuPc) и соответствующих молекулярных комплексов различной структуры, сформированные на стеклянных и ситаловых подложках. Установлено, что в пленках молекул CuPc и молекул CuPc с фталимидными периферийными заместителями молекулы расположены почти плоско по отношению к поверхности подложки. В пленках μ -пероксодимерных комплексов плоскости молекул CuPc образуют с поверхностью подложки угол, близкий к 90°. Наибольшая интенсивность люминесценции в области $\sim 1.12 \text{ eV}$ и минимальное поглощение в области энергий, меньших ширины запрещенной зоны, наблюдались у пленки молекул CuPc с фталимидными периферийными заместителями.

Работа выполнена при содействии РФФИ (грант № 05-03-32823).

PACS: 68.47.Pe, 73.61.Wp

В последнее десятилетие наблюдается очевидный всплеск активности в исследованиях молекулярных органических материалов, обладающих в твердой фазе полупроводниковыми свойствами. Пленки таких материалов уже используются в оптических и электронных приборах, устройствах записи и отображения информации, преобразования световой энергии [1], что позволяет говорить о появлении нового научно-технического направления — молекулярной органоэлектроники. Развитие этого направления требует углубленных исследований оптических и физических свойств тонких пленок органических соединений, которые существенно зависят как от структуры формирующих их молекул, так и от характера упорядочения этих молекул в пленке.

В настоящей работе изучались структурные особенности и оптические свойства тонких пленок, сформированных из молекул фталоцианина меди (CuPc) с различным типом периферийных групп. Металлокомплексы фталоцианинов (MPc) обладают наиболее высокими подвижностями носителей среди органических полупроводников и в силу этого рассматриваются как один из перспективных материалов для использования в электронике и оптоэлектронике. Планарные молекулы MPc представляют собой высокосимметричные π -электронные системы с выраженной делокализацией электронов [2]. Молекулярная фотолюминесценция в красной видимой и ближней ИК области имеет квантовую эффективность ≥ 0.5 .

1. Образы и экспериментальные методики

Исходные материалы CuPc были получены темплатным синтезом (180-190°, 2 h) при сплавлении фталонитрида с ацетатом меди и последующей поэтапной очисткой кипящей дистиллированной водой и органическим растворителями. Контроль чистоты осуществлялся тонкослойной хроматографией на силикагеле. Кроме того, использовались модификации исходного CuPc, полученные путем введения периферийных заместителей (фталимидов) во фталоцианин, а также через образование µ-пероксодимерных комплексов со связью CuPc-O-O-CuPc. Тетрафталимидный фталоцианин меди CuPc(CH₂phti)₄ был получен реакцией Манниха при взаимодействии CuPc с фталимидом и формалином в присутствии серной кислоты. Димерный µ-пероксидный фталоцианин меди (H₂OCuPcO)₂ получен окислением СиРс азотной кислотой. Структуры исходных молекул показаны на рис. 1.

Пленки данных молекул толщиной $d \approx 0.65 \,\mu$ m формировались при осаждении комплексов CuPc на подложки из ситала и кварцевого стекла. Образец 1 представлял собой пленку исходного CuPc, образецы 2 и 3 — пленки, образованные молекулами CuPc(CH₂phti)₄ и (H₂OCuPcO)₂ соответственно.

Структурные особенности пленок CuPc исследовались оптическим методом спектроскопии анизотропного от-

Рис. 1. Структуры исходных молекул: *а* — фталоцианина меди (CuPc), *b* — фталоцианина меди с периферийными заместителями CuPc(CH₂phti)₄, *с* — фталоцианина меди с аксиальными заместителями (H₂OCuPcO)₂.

ражения. Кроме того, изучались спектры фотолюминесценции и спектральные зависимости коэффициента поглощения α в ближней ИК и видимой областях спектра путем измерения фотопроводимости в режиме постоянного фототока.

Спектроскопия анизотропного отражения [3] регистрирует спектральную зависимость величины

$$\Delta R/R = 2(R_{\alpha} - R_{\beta})/(R_{\alpha} + R_{\beta}), \qquad (1)$$

где R_{α} и R_{β} — коэффициенты отражения нормально падающего на поверхность света, линейно поляризованного вдоль лежащих в плоскости поверхности образца взаимно ортогональных направлений α и β . В установке для регистрации спектров анизотропного отражения [4] линейная поляризация падающего на образец света модулируется между направлениями α и β с частотой 100 kHz с помощью фотоупругого модулятора. Если на грубине поглощения света пленка CuPc обладает анизотропией оптических свойств относительно направлений α и β , то в отраженном свете возникает модуляция по интенсивности на той же частоте. Отраженный свет регистритуется ФЭУ с последующей обработкой сигнала с помощью синхронного детектора. Специальная электронная система поддерживает во всей исследуемой спектральной области (1.5–5.5 eV) величину фототока ФЭУ на постоянном уровне, обеспечивая тем самым получение на выходе синхронного детектора сигнала анизотропии $\Delta R/R$.

Спектроскопия анизотропного отражения широко применяется для исследований оптических свойств кристаллических поверхностей полупроводников и металлов. В таких экспериментах исследуемая поверхность ориентируется таким образом, чтобы направления ее осей совпадали с направлениями α и β . Поскольку для пленок CuPc, нанесенных на аморфную поверхность стекла, направление осей анизотропии априори неизвестно, возникает необходимость изучения азимутальной засисимости эффекта анизотропии. Если оси анизотропии, лежащие в плоскости поверхности пленки, составляют угол F по отношению к ортогональным направлениям α и β , то сигнал анизотропии изменяется как [5]

$$\Delta R/R = \Delta R/R_{\rm max} \cdot \cos(2F). \tag{2}$$

Ясно, что сигнал анизотропии достигает максимальной величины в случае, когда направления α и β совпадают с направлением осей анизотропии в плоскости поверхности образца. Во всех выполненных экспериментах плоскость поверхности пленки ориентировалась таким образом, чтобы получить максимальную величину $\Delta R/R$.

Экспериментальные результаты и обсуждение

Мы обнаружили, что все исследованные образцы 1-3 пленок CuPc обладают характерными спектрами анизотропного отражения, которые представлены на рис. 2. Для всех образцов спектры содержат особенности, расположенные в спектральных областях, соответствующих так называемым *Q*-полосе поглощения (600–700 nm) и полосе поглощения Сорэ (250–450 nm) в CuPc [6]. Эти полосы поглощения обычно соотносят с электронными переходами между дважды вырожденными уровнями молекулярных НОМО и LUMO орбиталей, образованных системой сопряженных π -связей центрального кольца в молекулах CuPc.

В случае молекулярных пленок отличный от нуля сигнал $\Delta R/R$ может возникать вследствие анизотропной самой молекулы и/или из-за анизотропной структуры формирующихся пленок. Исследованные молекулы CuPc плоско симметричны. В простейшем случае сигнал анизотропного отражения от пленки CuPc может возникать,

Рис. 2. Спектры анизотропного отражения *a* — CuPc (образец *I*), *b* — CuPc(CH₂phti)₄ (образец *2*), *c* — (H₂OCuPcO)₂ (образец *3*). Горизонтальные линии в начале каждого спектра показывают нулевой уровень сигнала.

если составляющие ее молекулы наклонены одинаковым образом по отношению к плоскости подложки. Известно, что компактные слои, формирующиеся при осаждении молекул CuPc на стеклянные подложки, состоят из линейных ассоциатов (стопок), образованных соосно расположенными молекулами [7]. Можно поэтому считать, что главной причиной появления ненулевого сигнала анизотропного отражения пленок является наличие угла наклона между плоскостями молекул в стопке и плоскостью поверхности подложки. Спектры образцов 1 и 2 (рис. 2, a и b) содержат подобные спектральные особенности, которые несколько отличаются по интенсивности. Как уже указывалось, оптические свойства пленок CuPc и CuPc(CH₂phti)₄ в исследуемой области определяются электронными переходами в центральных кольцах этих молекул, которые имеют идентичную структуру. Поэтому схожесть спектров рис. 2, а и с указывает на сходную структуру ассоциатов, формирующих пленки этих молекул. Наблюдаемое различие в интенсивности сигналов анизотропного отражения в спектрах (рис. 2, а и b), скорее всего, обусловлено незначительным отличием толщин пленок образцов 1 и 2 [5].

Интенсивности спектральных особенностей в спектре отражения образца 3 (рис. 2, c) в несколько раз превышают интенсивности аналогичных особенностей в спектрах пленок образцов 1 и 2, что указывает на существенное различие в структурах сравниваемых пленок. Действительно, попарное связывание молекул CuPc пероксидными мостиками (рис. 1, c) должно кардинально менять характер упаковки молекул в ассоциатах и их коодинацию по отношению к подложке. Образование линейных ассоциатов CuPc из соосно расположенных молекул обусловлено междомолекулярными взаимодействиями макроциклов соседних молекул. В случае димерных комплексов образование таких ассоциатов становится невозможным в силу репульсивного кулоновского взаимодействия между одноименными группировками. Более

энергетически выгодным становится образование в пленке структуры, сформированной плотно упакованными слоями димерных молекул, чередующимися в гексагональной последовательности (АВАВ). При этом центры молекул в смежных рядах оказываются сдвинутыми относительно друг друга на расстояние, равное радиусу молекулы. Расположение же молекулярных слоев относительно плоскости поверхности подложки диктуется требованием минимизации энергии межфазной границы подложка/слой. На поверхности стеклянной подложки находятся атомы кислорода, входящие в тетраэдрические группировки SiO₄ и несущие эффективный отрицательный заряд. Ядра молекул (H₂OCuPcO)₂ заряжены отрицательно, а углеводородная периферия молекул — положительно, поэтому оптимальные условия смачивания достигаются, когда с поверхностью стекла контактирует периферия, т.е. при вертикальном расположении слоев димерных молекул. Первоначально оси молекул в плоскости подложки ориентированы хаотично и не могут вызывать сигнал анизотропного отражения. По мере формирования молекулярных слоев в пленке может возникать доменная структура, внутри которой формируются макроскопические области с преимущественной ориентацией осей молекул, т.е. участки пленки, которые при взаимодействии со светом выступают как поляризующая среда. Отметим, что при полной ориентации доменов амплитуда синала анизотропного отражения должна приближаться к 1. Наблюдаемая величина ~ 0.14-0.16 свидетельствует о слабой упорядоченности доменов в области наблюдения.

На рис. З показаны спектры люминесценции образцов 1-3 в ближней ИК области спектра. Как видно из рисунка, эти спектры имеют схожую спектральную структуру с ярко выраженным максимумом на длине волны $\lambda \approx 1.11 \, \mu m$ (1.12 eV). Положение данного максимума в исследованных пленках близко к положению максимума фосфоресценции ($\lambda \approx 1.075 \, \mu m$), наблюдавшегося в растворах CuPc в α -хлорнафталине [8]. Авторы [8] связывают этот максимум с переходом из возбужденного триплетного состояния T_1 в основное S_0

Рис. 3. Спектры фотолюминесценции a — CuPc (образец 1), b — CuPc(CH₂phti)₄ (образец 2), c — (H₂OCuPcO)₂ (образец 3).

Рис. 4. Спектральные зависимости произведения $\alpha \cdot \eta$ в относительных единицах, полученные методом фотопроводимости в режиме постоянного тока для исследованных пленок: *a* — CuPc (образец 1), *b* — CuPc(CH₂phti)₄ (образец 2), *c* — (H₂OCuPcO)₂ (образец 3).

состояние молекулы. Как видно из рис. 3, интенсивность люминесценции и, в частности, интенсивность основного максимума при $1.11\,\mu$ m, так же как и спектры анизотропного отражения, обнаруживает зависимость от структуры молекул, формирующих исследованные пленки. Максимальная люминесценция наблюдается для образца 2.

Для получения спектральных зависимостей коэффициента поглощения а в органических полупроводниках, как правило, измеряют спектры оптического пропускания [9]. Однако в тонких пленках органических полупроводников в области малых значений а, когда выполяется соотношение $\alpha \cdot d < 1$, применение такой методики весьма затруднительно. В то же время значительная фотопроводимость фталоцианинов позволяет использовать для получения спектральных зависимостей а фотоэлектрические методики, в частности, метод постоянного фототока (Constant Photocurrent Method — СРМ) [10], который успешно используется при исследовании спектральных зависимостей α в аморфных полупроводниках. Поскольку величина внутренней квантовой эффективности η зависит от энергии падающих на образец квантов, метод СРМ позволяет измерить спектральную зависимость произведения $\alpha \cdot \eta$.

Для измерения фотопроводимости на поверхность пленок напылялись контакты из Al длиной 4 mm. Расстояние между контактами составляло 0.5 mm. Измерения проводились при комнатной температуре в вакууме 10^{-3} Ра при напряженности электрического поля в образце 200 V/cm. На рис. 4 показаны спектральные зависимости произведения $\alpha \cdot \eta$ в относительных единицах $(\alpha \cdot \eta)/(\alpha \cdot \eta)1.8$ eV, полученные для исследованых

образцов. Как видно из рисунка, в области края поглощения в интервале энергий 1.4-1.6 eV зависимость $\alpha \cdot \eta(hv)$ близка к экспоненциальной. Эта зависимость может быть связана с экспоненциальным распределением локализованных состояний в металлофталоцианинах [11]. Энергия, характеризующая крутизну зависимости $\alpha \cdot \eta(hv)$ в данной области спектра, минимальна для образца 2 и составляет $\approx 53 \text{ meV}$. Авторы [11] связывают эти локализованные состояния с флуктуациями концентрации заряженных ионов, в частности, MPc⁺ и O₂⁻, обусловливающими флуктуации электростатического потенциала в объеме пленки.

В области $hv < 1.4 \,\mathrm{eV}$ в спектрах $\alpha \cdot \eta$ наблюдается три локальных максимума при энергиях квантов 1.12, 1.21 и 1.36 eV. Положения этих максимумов для исследованных пленок близки к значениям, полученным при измерениях спектров поглощения в толстых (10-30 µm) монокристаллических чешуйках CuPc [12] и при измерении спектров фотопроводимости CuPc [13,14] в ближней ИК области спектра. Интенсивный максимум поглощения при энергиях квантов 1.12-1.14 eV связывают с переходом из основного S_0 в возбужденное триплетное T_1 состояние. При этом предполагают, что запрет на этот переход снимается спин-орбитальным взаимодействием, связанным с наличием тяжелого центрального атома металла. Подтверждением такой интерпретации природы максимума в спектрах СРМ является совпадение его энергетического положения (1.12 eV) с положением наиболее интенсивного максимума в спектрах фотолюминесценции, который, как уже указывалось, должен быть связан с переходами $T_1 \rightarrow S_0$.

Сопоставление спектров фотолюминесценции и спектров поглощения исследованных пленок, представленных на рис. 3 и 4, обнаруживает их корреляцию. Максимальная интенсивность фотолюминесценции среди исследованных пленок обнаружена у образца 2, для которого наблюдается минимальное поглощение в области энергий, меньших ширины запрещенной зоны CuPc. Повышенная интенсивность фотолюминесценции образца 2 указывает на меньшую концентрацию центров безызлучательной рекомбинации в данной пленке по сравнению с другими образцами. Снижение концентрации центров безызлучательной рекомбинации в свою очередь приводит к уменьшению относительной интенсивности максимума поглощения при $hv = 1.12 \,\mathrm{eV}$ в спектрах СРМ. Поскольку в методе СМР регистрируется фотопроводимость пленок, уменьшение концентрации центров рекомбинации может привести к уменьшению интенсивности процессов диссоциации экситонов Френкеля, возникающих при оптическом возбуждении молекулы. В связи с этим должна уменьшаться относительная фотопроводимость, соответствующая переходам $S_0 \rightarrow T_1$.

Пониженная концентрация центров безызлучательной рекомбинации в образце 2 согласуется с результатами измерений фотопроводимости исследованных образцов при облучении их светом с энергией кванта 1.95 eV. Величина фотопроводимости образца 2 при комнатной температуре на порядок превышала значения фотопроводимости образцов 1 и 3. Интенсивность фотолюминесценции образца 3 минимальна. Это можно объяснить наличием внутрикомплексных центров безызлучательной рекомбинации электронов на глубоких уровнях, связанных с атомами кислорода.

Итак, в настоящей работе методами спектроскопии анизотропного отражения, фотолюминесценции и фотопроводимости в режиме постоянного фототока исследовались тонкие пленки фталоцианинов меди с различными заместителями. Спектры анизотропного отражения полученных пленок однозначно указывают на зависимость структурных характеристик пленок от аксиальных и периферийных заместителей в CuPc. Установлено, что для молекул CuPc, CuPc(CH2phti)4, характерно почти плоское по отношению к поверхности подложки положение молекул в пленке. Для молекул (H₂OCuPcO)₂ плоскости молекул образуют с поверхностью подложки угол, близкий к 90°. Из всех исследуемых образцов наибольшая интенсивность люминесценции в области $\sim 1.12\,\mathrm{eV}$ и минимальное поглощение в области энергий, меньших ширины запрещенной зоны, наблюдались у пленки, образованной молекулами CuPc(CH₂phti)₄, что может быть связано с меньшей концентрацией центров безузлучательной рекомбинации в данной пленке.

Список литературы

- [1] C.M. Lieber. Nature (London) 415, 617 (2002).
- [2] A.B. Djurisic, C.Y. Kwong, T.W. Law, W.L. Guo, E.H. Li, Z.T. Liu, H.S. Kwok, L.S.M. Lam. Opt. Commun. 205, 155 (2002).
- [3] D.E. Aspnes, J. Vac. Sci. Technol. B 3, 1498 (1985).
- [4] V.L. Berkovits, V.N. Bessolov, T.N. L'vova, V.I. Safarov, R.V. Khasieva, B.V. Tsarenkov. J. Appl. Phys. 70, 3707 (1991).
- [5] C. Goletti, G. Bussetti, P. Chiaradia, A. Sassella, A. Borghesi. Organic Electronics 5, 73 (2204).
- [6] L. Edwards, M. Gouternax. J. Molecular Spectroscopy 33, 292 (1970).
- [7] Y.L. Lee, W.C. Tsai, J.R. Maa. Apll. Surf. Sci 173, 352 (2001).
- [8] P.S. Vincett, E.M. Voigt, K.E. Rieckhoff. J. Chem. Phys. 55, 4131 (1971).
- [9] Z.C. Ji, K.W. Wong, P.K. Tse, R.W.M. Kwok, W.M. Lau. Thin Solid Films 402, 79 (2002).
- [10] M. Vanecek, J. Kocka, J. Stuchlik, A. Triska. Sol. State. Commun. 39, 1199 (1981).
- [11] H. Naito, K.-H. Kishimoto, T. Nagase. Thin Solid Films, **331**, 82 (1998).
- [12] M. Scott. J. Chem. Phys. 44, 429 (1966).
- [13] P. Day, R.J.P. Williams. J. Chem. Phys. 42, 4049 (1965).
- [14] S.W. Harrison. J. Chem. Phys. 50, 4739 (1969).