Синтез и свойства поликристаллов NaFeGe₂O₆

© Т.В. Дрокина*, О.А. Баюков*,**, Г.А. Петраковский*,**, Д.А. Великанов*,**, А.Ф. Бовина*, Г.Н. Степанов*, Д.А. Иванов*

 * Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия
** Сибирский федеральный университет, 660074 Красноярск, Россия

E-mail: tvd@iph.krasn.ru

(Поступила в Редакцию 15 апреля 2008 г.)

Синтезированы поликристаллы NaFeGe₂O₆. Измерены рентгеноструктурные, магнитные, электрические и мессбауэровские характеристики материала. Установлено, что это моноклинное соединение является диэлектриком с температурой антиферромагнитного упорядочения 15 К. Мессбауэровский спектр при 300 К представляет собой квадрупольный дублет. Величина изомерного сдвига 0.40 mm/s характерна для высокоспинового иона Fe³⁺, находящегося в октаэдрической координации. Величина квадрупольного расщепления 0.34 mm/s свидетельствует об искажении кислородного октаэдра вокруг катиона железа. Проведены оценки обменных взаимодействий, сделано предположение о магнитной структуре кристалла.

PACS: 75.40.Cx, 75.50.Ee, 76.80.+y

1. Введение

Интерес к низкоразмерным магнетикам связан с возможностью достаточно точного теоретического анализа спинового состояния и с проявлением квантовых эффектов в этих системах. Основной экспериментальный материал по низкоразмерным магнетикам к настоящему времени накоплен для окисных соединений. Например, в окисных купратах легко организовать одно- и двумерные системы. Вопрос же, касающийся получения и анализа свойств низкоразмерных материалов с высокоспиновыми катионами, изучен меньше. В принципе переход от одной размерности к другой можно осуществлять за счет синтеза кристаллов, решетка которых формируется цепочками магнитоактивных катионов с различной степенью межцепочечной связи.

К таким системам относится метагерманат NaFeGe₂O₆. Как показало рентгеноструктурное исследование, его кристаллическая структура изотипна структуре диопсида CaMgSi₂O₆ с заменой Ca, Mg и Si на Na, Fe и Ge [1]. Соединение NaFeGe₂O₆ имеет моноклинную сингонию, пространственную группу C2/c и следующие параметры ячейки: a = 10.0100 Å, $b = 8.9400 \,\text{Å},$ c = 5.5200 Å, $\beta = 108.0000^{\circ}$ [1]. NaFeGe₂O₆, как и все пироксены, представляет собой цепочечный германат, в кристаллической структуре которого тетраэдры GeO4 связаны между собой в бесконечные цепочки, вытянутые вдоль оси с. Полиэдры вокруг атомов Fe представляют собой октаэдры. Посредством общих ребер они связаны в непрерывные зигзагообразные ленты, тянущиеся вдоль оси с. В направлении оси *b* ленты двух сортов чередуются.

2. Синтез кристаллов и техника эксперимента

Поликристаллический NaFe-германат синтезирован с помощью твердотельной реакции при нормальном давлении. Образцы приготовлены из шихты, содержащей 16% Na₂CO₃, 23% Fe₂O₃ и 61% GeO₂, с последующим помолом, формованием и прессованием полидисперсного порошка. Спрессованные под давлением ~ 10 kbar таблетки диаметром d = 12 mm, толщиной h = 4 mm подвергались высокотемпературной обработке. Предварительный отжиг осуществлялся при температуре $T_a = 800^{\circ}$ C в течение 25 h. С целью повышения однородности образцов таблетки размельчались, снова формовались и подвергались спеканию при $T_a = 820^{\circ}$ C в течение 24 h.

Рентгеноструктурный анализ синтезированных поликристаллов был выполнен на дифрактометре ДРОН-2.0 в излучении Cu K_{α} (графитовый монохроматор) при температуре T = 300 К. Мессбауэровские исследования проводились при комнатной температуре с источником ⁵⁷Co(Cr) на порошках толщиной 5–10 mg/cm² по естественному содержанию железа. Магнитные измерения осуществлялись на СКВИД-магнитометре в интервале температур T = 4.2-300 К на образце весом 195 mg. Удельное сопротивление исследовано при 300 К.

3. Результаты экспериментов и их обсуждение

Рентгеноструктурный анализ показал, что синтезированный материал имеет состав NaFeGe₂O₆. Параметры решетки NaFe-метагерманата составляют a = 10.008 Å, b = 8.948 Å, c = 5.523 Å, $\beta = 107.59^{\circ}$, что находится в Данные для порошка NaFeGe₂O₆, полученные из измерений восприимчивости

θ, Κ	С,К	$\mu_{\mathrm{calc}}, \mu_{\mathrm{B}}$	$\mu_{\mathrm{exper}}, \mu_{\mathrm{B}}$	$T_{\rm max}, {\rm K}$	T_N, \mathbf{K}
-135	0.0135	5.91	5.89	25	15

Примечание. θ — асимптотическая температура Нееля, C — константа Кюри–Вейсса, μ_{calc} — расчетное значение эффективного магнитного момента, μ_{exper} — экспериментальное значение эффективного магнитного момента, T_{max} — температура, соответствующая максимальному значению намагниченности, T_N — температура Нееля.

согласии с данными [1]. На рентгенограмме присутствуют следы примесной фазы.

Согласно результатам исследования электрических свойств полученного соединения, величина удельного электрического сопротивления при T = 300 K составляет $\rho \approx 10^{11}\Omega \cdot \text{сm}$. При понижении температуры образца величина удельного сопротивления возрастает.

Результаты магнитных измерений керамических образцов NaFeGe₂O₆ представлены на рис. 1 и 2 в таблице. На рис. 1 приведена температурная зависимость обратной восприимчивости $\chi^{-1}(T)$. Измерение проведено на СКВИД-магнитометре в магнитном поле 100 Ое на образце, охлажденном до температуры 4.2 К в отсутствие магнитного поля. Поведение кривой обратной восприимчивости $\chi^{-1}(T)$ в высокотемпературной области можно описать законом Кюри-Вейсса. Асимптотическая температура Нееля, определяемая как точка пересечения с осью T асимптоты к кривой $\chi^{-1}(T)$ в области высоких температур, имеет значение $\Theta = -135 \, \text{K}$. Константа Кюри–Вейсса $C = 0.0135 \, \text{K}$, что соответствует значению эффективного магнитного момента (молярное значение) $\mu_{\text{eff}} = 5.89 \,\mu_{\text{B}} \,(\mu_{\text{B}} - \text{магнетон Бора}).$ Используя известные величины орбитального и спинового моментов количества движения для магнитного иона Fe³⁺ (соответственно L = 0, S = J = 5/2), можно рассчитать значение эффективного магнитного момента. Считая фактор спектроскопического расщепления g = 2, имеем $\mu_{\rm eff} = 5.91 \,\mu_{\rm B}$. Удовлетворительное согласие расчетного и экспериментального значений эффективного магнитного момента свидетельствует об основной роли ионов трехвалентного железа в формировании парамагнитных свойств, об отсутствии иных примесных магнитных ионов в заметном количестве. Наблюдаемая аномалия магнитной восприимчивости у и намагниченности σ поликристалла NaFeGe₂O₆ при температуре $\sim 15 \, {\rm K}$ (рис. 1, 2) сведетельствует о магнитном фазовом переходе в интеферромагнитное состояние.

Месбауэровский спектр соединения NaFeGe₂O₆, изображенный на рис. 3, представляет собой квадрупольный дублет с величиной расщепления 0.34 ± 0.03 mm/s, изомерным химическим сдвигом 0.40 ± 0.02 mm/s относительно металлического железа α -Fe и шириной линии поглощения на полувысоте 0.30 ± 0.03 mm/s. Величина изомерного сдвига характерна для высокоспинового иона Fe³⁺, находящегося в октаэдрической координации.

Рис. 1. Зависимость обратной магнитной восприимчивости поликристаллов NaFeGe₂O₆ от температуры.

Рис. 2. Температурная зависимость намагниченности поликристалла NaFeGe₂O₆.

Рис. 3. Мессбауэровский спектр NaFeGe₂O₆. Стрелками показаны положения внутренних линий секстета примесной фазы гематина α -Fe₂O₃.

Квадрупольное расщепление свидетельствует об искажении кислородного октаэдра вокруг катиона железа.

В спектре заметны дополнительные линии поглощения, отмеченные стрелками на рис. 3, указывающие

Рис. 4. Внутрицепочечные связи Fe–O–Fe в структуре NaFeGe₂O₆ (выделены жирными линиями). Все линии показывают октаэдрическое окружение центрального катиона Fe анионами кислорода. В порядке возрастания размера иона указаны Ge, Fe, Na, O.

Рис. 5. Межцепочечные связи Fe–O–Ge–O–Fe центрального катиона Fe с катионами Fe из соседних четырех цепочек в NaFeGe₂O₆. В порядке возрастания размера иона указаны Ge, Fe, Na, O.

на наличие примесной магнитоупорядоченной фазы, что согласуется с результатами рентгеновского анализа. Параметры сверхтонкой структуры спектра этой фазы соответствуют гематиту α -Fe₂O₃. Из площади спектра "примесного" секстета следует, что в фазе гематита находится менее 5%.

При рассмотрении кристаллической структуры диопсида видно, что кислородные октаэдры, содержащие катионы железа, образуют зигзагообразные цепочки, вытянутые вдоль оси c [1]. Октаэдры связаны между собой общими ребрами, образуя тем самым 90°-косвенные обменные связи между ближайшими соседними катионами железа (рис. 4). В плоскости, перпендикулярной оси c, взаимодействие катионов железа может осуществляться по протяженным косвенным связям Fe–O–Ge–O–Fe (рис. 5). Таким образом, внутрицепочечное взаимодействие, происходящее по коротким связям Fe–O–Fe, ожидается намного бо́лышим, чем межцепочечное. В этом случае можно оценить силу внутрицепочечных обменных взаимодействий, используя известную связь [2] асимптотической температуры Нееля с интегралом максимального обмена, действующего в системе,

$$k\Theta = \frac{2}{3}S(S+1)zJ_1,\tag{1}$$

где число ближайших соседей в цепочке z = 2. Эта оценка приводит к $J_1 = -11.5$ К при экспериментальной величине $\Theta = -135$ К.

Температура магнитного упорядочения *T_N* зависит от межцепочечных взаимодействий [3]

$$kT_N = \frac{4}{3}S(S+1)J_1\frac{1}{I},$$
 (2)

где $I = 0.64(J_1/J_{2a})^{1/2}[1 + 0.253 \ln(J_{2a}/J_{2b})]$. Здесь $J_{2a,2b}$ — интегралы обмена в направлениях *a*, *b*, перпендикулярных цепочке, определяющие межцепочечное взаимодейстие. Для структуры диопсида $J_{2a} = J_{2b}$, так что предыдущая формула упрощается до $I = 0.64(J_1/J_{2a})^{1/2}$. Оценка, проведенная согласно этим формулам, дает величину межцепочечного взаимодействия $J_2 = -0.072$ К при экспериментальном значении $T_N = 15$ К.

Таким образом, в соединении NaFeGe₂O₆ межцепочечное взаимодействие на два порядка величины меньше внутрицепочечного.

Из анализа структуры диопсида видно, что каждый катион железа в структуре диопсида имеет восемь протяженных связей Fe–O–Ge–O–Fe с шестью катионами железа из четырех соседних цепочек. Таким образом, каждый катион железа имеет четыре внутрислойные, принадлежащие одному слою *ab*, связи J_2^{intra} и четыре межслойные связи J_2^{inter} . С целью того, что все взаимодействия антиферромагнитны, внутрислойные взаимодействия конкурируют с межслойными, т.е. температура Нееля определяется разностью обменных интегралов $J_2^{intra} - J_2^{inter} = J_2 = -0.072$ К. Магнитная структура диопсида зависит от соотношения между обменами: если $J_2^{intra} > J_2^{inter}$, то будет иметь место антиферромагнитное упрядочение в слое *ab*, при $J_2^{inter} > J_2^{intra}$ — ферромагнитное.

4. Заключение

Методом твердофазной реакции синтезирован поликристаллический NaFeGe₂O₆. Рентгеновские, магнитные, электрические и мессбауэовские измерения показали, что это соединение относится к диэлектрикам с температурой антиферромагнитного упорядочения $T_N = 15$ К, имеет моноклинную структуру диопсида, содержащего катионы трехвалентного железа в высокоспиновом состоянии с октаэдрической координацией по кислороду. Анализ обменных взаимодействий, проведенный в приближении ближайших соседей, позволяет полагать, что магнитная структура кристалла представляется ансамблем цепочек катионов железа с интегралом внутрицепочечного катион–катионного обмена $J_1 \approx -11.5$ К и величиной межцепочечного взаимодействия $J_2 \approx -0.07$ К. Конкуренция межцепочечных внутри- и межслойных обменных взаимодействий определяет низкую температуру антиферромагнитного упорядочения.

Авторы благодарят Н.И. Киселева за помощь в исследовании электрических свойств синтезированного соединения.

Список литературы

- Л.П. Соловьева, В.В. Бакакин. Кристаллография 12, 591 (1967); Информационная карта WWW-МИНКРИСТ. http://database.iem.ac.ru/mincryst.
- [2] Дж. Смарт. Эффективное поле в теории магнетизма. Мир. М. (1968). 271 с.
- [3] M.J. Hennessy, C.D. McElwee, P.M. Richards. Phys. Rev. B 7, 930 (1973).