Магнитные свойства и электронное строение перовскита LaGaO₃, допированного никелем

© Н.В. Чежина, Э.В. Бодрицкая, Н.А. Жук*, В.В. Банников**, И.Р. Шеин**, А.Л. Ивановский**

Санкт-Петербургский государственный университет, 199034 Санкт-Петербург, Россия * Сыктывкарский государственный университет, 167000 Сыктывкар, Россия ** Институт химии твердого тела Уральского отделения Российской академии наук, 620041 Екатеринбург, Россия E-mail: bannikov@ihim.uran.ru

(Поступила в Редакцию 11 марта 2008 г.)

Синтезированы твердые растворы LaGa_{1-x}Ni_xO₃ (0.01 $\leq x \leq 0.10$) и исследованы их магнитные и электрические свойства. Установлено, что основное состояние атомов Ni(III) — низкоспиновое ${}^{2}E_{g}$, но в исследованном интервале температур осуществляется спиновое равновесие ${}^{2}E_{g} \leftrightarrows {}^{4}T_{1g}$. Увеличение концентрации никеля приводит к росту электронной проводимости твердых растворов. На основе расчетов FLAPW-GGA модельного состава LaGa_{0.5}Ni_{0.5}O₃ показано, что основную роль в изменении магнитных и электрических свойств немагнитного полупроводника LaGaO₃ при его допировании никелем играют Ni3 $d(e_{g\uparrow,\downarrow})$ -состояния.

PACS: 71.20.-b, 75.30.Hx, 75.30.Cr

1. Введение

В последнее время перовскитоподобный галлат лантана LaGaO₃ привлекает внимание как перспективная система, допирование которой позволяет получить широкий спектр новых материалов с интересными физическими свойствами. При этом активно применяется так называемое мультикатионное допирование, когда происходит одновременное частичное замещение позиций подрешеток La и Ga атомом Sr и атомами s, p или d металлов (Li, Mg, Cr, Co, Ni) соответственно [1–7]. Такое допирование позволяет регулировать электрофизические, магнитные и другие свойства образующихся многокомпонентных перовскитоподобных твердых растворов (ТР) в широком диапазоне, в частности получать фазы со смешанной электронно-ионной проводимостью, которые используются для создания твердооксидных источников тока (SOFC), кислородных сит и т.д.

Вместе с тем, при мультикатионном допировании значительное число факторов (сложный химический состав, структурные искажения, возникновение кислородной нестехиометрии) существенно затрудняет анализ природы изменения магнитных и электронных свойств исходной матрицы (LaGaO₃), ответственных за физические свойства ТР на ее основе [1–7].

Поэтому представляется целесообразным подробно изучить роль атомов переходных металлов (как одного из основных типов допантов) в изменении физических свойств LaGaO₃. Для этого в настоящей работе предпринято исследование концентрационной и температурной зависимостей магнитной восприимчивости и электропроводности твердых растворов LaGa_{1-x}Ni_xO₃, а также приводятся результаты *ab initio* расчетов зонной структуры модельной системы LaGa_{0.5}Ni_{0.5}O₃.

2. Методики исследований

Твердые растворы LaGa_{1-x}Ni_xO₃ $(0.01 \le x \le 0.10)$ получены керамическим способом путем прокаливания тонко растертых и спрессованных в таблетки смесей La₂O₃ марки осч, Ga₂O₃, полученного из металлического галлия растворением в HNO3 с последующим термическим разложением, и NiO, полученного термическим разложением Ni(NO₃)₂ · 6H₂O (чда без кобальта). Таблетки прокаливались на воздухе при 1450°С в течение 50 h. Гомогенность твердых растворов контролировалась рентгенофазовым анализом (дифрактометр УРС-50М, CuK_{α} -излучение) и по постоянству парамагнитной составляющей магнитной восприимчивости при различном времени прокаливания и при изменении состава газовой фазы (воздух, поток О₂). Проведен химический анализ на содержание никеля рентгено-флюоресцентным методом (прибор Спектроскан с родиевой трубкой). Погрешность анализа для ТР LaGa1-xNixO3 была не более $\pm 2\%$ величины *x*.

Магнитная восприимчивость (в температурном интервале 77–400 К при 16 фиксированных значениях температуры) измерялась по методу Фарадея. Ошибка относительных измерений была не более 2%. Для определения парамагнитной составляющей магнитной восприимчивости, рассчитанной на моль атомов никеля, диамагнитные поправки вносились с учетом восприимчивости диамагнитной матрицы LaGaO₃, измеренной в том же температурном интервале.

Электрические характеристики TP LaGa_{1-x}Ni_xO₃ измерены двухэлектродным методом на переменном токе. При этом на торцы таблеток наносилась серебряная паста, после чего образцы обжигались при 400°C в течение 1 h. Измерения проводились на частотах 1, 10, Расчеты зонной структуры проведены для двух систем. На первом этапе рассмотрен идеальный кубический перовскит LaGaO₃ (пр. гр. *Pm3m*, позиции атомов в ячейка: La(0,0,0), Ga(1/2,1/2,1/2), O(1/2,1/2,0)). ТР LaGa_{1-x}Ni_xO₃ моделировался ГЦК-ячейкой двойного перовскита La₂GaNiO₆ (что соответствует формальной стехиометрии ТР LaGa_{0.5}Ni_{0.5}O₃). Атомы-компоненты располагались в позициях: Ga(0,0,0), Ni(1/2,0,0), La(1/4,1/4,1/4) и O(1/4,0,0).

Расчеты выполнены полнопотенциальным методом присоединенных плоских волн (FP-LAPW, кол WIEN2k) [8] с обобщеной аппроксимацией (GGA) обменно-корреляционного потенциала [9]. Радиусы атомных muffin-tin (МТ) сфер составляли 2.50 (La), 1.95 (Ga), 1.70 (О) и 1.80 а.u. (Ni). Набор плоских волн К_{тах} определяется как R_{MT}K_{max} = 7.0. Интегрирование по зоне Бриллюэна проведено методом тетраэдров с использованием сетки $10 \times 10 \times 10$ для 35 и 47 *k*-точек в неприводимой части зоны Бриллюэна LaGaO3 и LaGa_{0.5}Ni_{0.5}O₃ соответственно. Критерий сходимости (для полной энергии) составлял 0.0001 Ry. Равновесные значения параметров ячеек определялись из условия минимизации полной энергии системы. В расчетах принят ферромагнитный тип спинового упорядочения.

3. Результаты и их обсуждение

3.1. Магнитная восприимчивость и электрические свойства ТР LaGa_{1-x}Ni_xO₃. Изотермы парамагнитной составляющей магнитной восприимчивости $\chi_{Ni}(x)$ ТР LaGa_{1-x}Ni_xO₃ приведены на рис. 1. Экстраполяция значений χ_{Ni} на бесконечное разбавление твердого раствора $(x \rightarrow 0)$ позволяет на основании температурной зависимости оценить величины эффективного магнитного момента никеля μ_{Ni} (см. таблицу). Характер зависимости $\mu_{Ni}(T)$ свидетельствует о том, что в ТР никель находится в основном в трехвалент-

Рис. 1. Зависимость парамагнитной составляющей магнитной восприимчивости, рассчитанной на моль атомов никеля (χ_{Ni}), от концентрации никеля в твердых растворах LaGa_{1-x}Ni_xO₃. *T*, K: *I* — 90, *2* — 120, *3* — 180, *4* — 320.

8

Эмпирические оценки величины эффективного магнитного момента никеля μ_{Ni} в твердом растворе LaGa_{1-x}Ni_xO₃ с использованием парамагнитной составляющей магнитной восприимчивости $\chi_{Ni}(x)$

Τ,Κ	$\mu_{ m Ni},\mu_{ m B}$
90	3.70
100	3.69
120	3.86
140	4.03
160	4.02
180	3.98
200	4.06
220	4.02
320	4.08

ном состоянии. Это подтверждается данными спектров ЭПР, где при комнатной температуре наблюдается одна линия с g = 2.157 [10]. Кроме того, никель, очевидно, находится в состоянии спинового равновесия ${}^{4}T_{1g} \leftrightarrow {}^{2}E_{g}$. Расчет зависимости $\mu_{\rm Ni}(T)$ в предположении спинового равновесия [11] приводит с учетом одноэлектронной константы спин-орбитального взаимодействия $\xi = 390 \,{\rm cm}^{-1}$ к величине энергетической щели между низкоспиновым (${}^{2}E_{g}$) и высокоспиновым (${}^{4}T_{1g}$) состояниями $\Delta E \sim 940 \,{\rm cm}^{-1}$, причем основным состоянием для одиночных атомов Ni(III) в LaGaO₃ является низкоспиновое ${}^{2}E_{g}$, а с ростом температуры увеличивается доля атомов в высокоспиновом состоянии ${}^{4}T_{1g}$.

Для оценки характера и величины обменных взамодействий в рамках приближения разбавленного раствора [12] проведен расчет парамагнитной составляющей магнитной восприимчивости в интервале x от 0.01 до 0.05 для всех измеренных температур в модели Гейзенберга–Дирака–ван-Флека [13] с учетом температурной зависимости g-фактора для триплетного основного состояния Ni(III) [12,14]. Магнитная восприимчивость определялась как сумма восприимчивостей мономеров и всех возможных димеров (обменно-связанных пар никеля со спинами 1/2–1/2, 1/2–3/2 и 3/2–3/2). Число экспериментальных точек достаточно для того, чтобы достичь согласования экспериментальных и расчетных данных не хуже чем 5%.

Согласно результатам, представленным на рис. 2, основной вклад в обменные взаимодействия между атомами Ni(III) в TP LaGa_{1-x}N_xO₃ вносят группировки Ni_{1/2}-O-Ni_{1/2} с обменным параметром J = -20 cm⁻¹; кроме того, сравнительно небольшую роль при малых концентрациях Ni играют смешанные группировки Ni_{1/2}-O-Ni_{3/2} с параметром обмена J = +10 cm⁻¹.

Измерения электропроводности (σ) ТР LaGa_{1-x}Ni_xO₃ показали, что σ увеличивается с ростом температуры и концентрации никеля (рис. 3). При этом не наблюдается зависимости σ от частоты поля, что указывает на электронный тип проводимости. Экспериментально определенное значение энергии активации электропро-

Рис. 2. Зависимость доли димеров и мономеров от концентрации никеля в твердых растворах LaGa_{1-x}Ni_xO₃. *I* — димеры со спинами 1/2-3/2, 2 - 1/2-1/2, 3 - 3/2-3/2, $4 - a_{mon}$.

Рис. 3. Температурная зависимость удельной электропроводности твердого раствора LaGa_{1-x}Ni_xO₃ (x = 0.1) при различных частотах поля. ω , kHz: I - 1, 2 - 10, 3 - 100.

водности при концентрациях $x \sim 0.08 - 0.10$ составляет $E_a = 0.050 \pm 0.006$ eV.

На основании полученных данных можно предложить следующую картину поведения магнитных и электрических свойств ТР LaGa_{1-x}Ni_xO₃. Исходная фаза LaGaO₃ является широкозонным полупроводником. Внедряемые в позиции Ga атомы Ni находятся преимущественно в низкоспиновом трехвалентном состоянии, имея по одному $3d(e_g)$ -электрону. Если Ni3 $d(e_g)$ -уровни располагаются непосредственно выше потолка валентной зоны LaGaO₃, то это приводит к появлению электронной проводимости у ТР, а их спиновое расщепление определяет формирование на примесных атомах Ni локальных магнитных моментов (ЛММ).

Для проверки данной гипотезы проведены расчеты зонной структуры $LaGaO_3$ и модельного TP $LaGa_{0.5}Ni_{0.5}O_3$.

3.2. Электронный спектр И магнитные LaGa_{0.5}Ni_{0.5}O₃: зонные свойства LaGaO₃ И расчеты. Энергетические зоны $E(\mathbf{k})$ LaGaO₃ с оптимизированной постоянной решетки ($a_0 = 3.92 \text{ \AA}$) приведены на рис. 4. Видно, что LaGaO₃ является широкозонным полупроводником. Запрещенная щель (ЗЩ), отвечающая непрямым $(M-\Gamma \sqcup R-\Gamma)$ переходам, составляет 3.4 eV, прямому переходу $\Gamma - \Gamma - 3.6$ eV. Как известно, методы, использующие приближение функционала электронной плотности (в их числе — применяемый нами метод FP-LAPW-GGA), систематически занижают величину ЗЩ. Стандартным способом коррекции является введение эмпирического коэффициента K_e, который для перовскитоподобных оксидных фаз составляет около 1.4-1.6 [15]. Тогда, основываясь на результатах наших расчетов, для LaGaO₃ можно оценить "экспериментальную" ширину ЗЩ $\sim 4.8 - 5.4$ eV.

Полная плотность электронных состояний соединения LaGaO₃ содержит пять основных полос (рис. 5). Полоса A, лежащая в интервале $-14 - -15 \,\text{eV}$ ниже уровня Ферми (E_F), составлена в основном p-состояниями лантана с малой примесью 2s-состояний кислорода. Полоса B с максимумом ПС около $-12.5 \,\text{eV}$ образована преимущественно вкладами 3d-состояний галлия, небольшой вклад в нее также вносят s-состояния кислорода. Обратим внимание на состав широкой валентной полосы C, где преобладающую роль играют 2p-состояния кислорода. Кроме того, из рис. 5, отчетливо видно примешивание в этот энергетический интервал валентных состояний Ga и La. Иными словами, химическая связь в перовските LaGaO₃ имеет комбинированный ионноковалентный тип, при котором наряду с наличием ион-

Рис. 4. Энергетические зоны $E(\mathbf{k})$ перовскита LaGaO₃.

Рис. 5. Полная (*a*) и парциальные (*b*) плотности электронных состояний LaGaO₃.

Рис. 6. Распределения электронной плотности ρ в (002) Ga-O плоскости (*a*) и в (001) La-O плоскости (*b*) кубического перовскита LaGaO₃.

ной составляющей, обусловленной зарядовым переносом (La, Ga) \rightarrow O, имеет место гибридизация валентных состояний атомов металлических подрешеток и атомов кислорода. Это наглядно видно на картах зарядовой плотности ρ (рис. 6). Отметим, что локализация ρ вдоль линий связи Ga–O оказывается заметно большей, чем вдоль линий связи La–O. Нижняя часть зоны проводимости (пик *D*, на 4.5 eV выше E_F) образована главным образом свободными 4f-состояниями лантана. Следующую по энергии полосу *E* формируют антисвязывающие *d*-состояния La и 2p-состояния кислорода. Расчеты показали, что частичное замещение в составе LaGaO₃ галлия никелем приводит к некоторому сжатию кристаллической решетки (~ 1% объема), что легко объясняется соотношением величин атомных радиусов: $r_{\rm at}$ (Ga) = 1.39 Å> $r_{\rm at}$ (Ni) = 1.24 Å.

Наиболее интересным эффектом допирования LaGaO₃ является принципиальная перестройка электронного спектра матрицы, в результате которой LaGa_{0.5}Ni_{0.5}O₃ переходит в состояние магнитного металла (рис. 7). Видно, что в области ЗЩ исходной фазы возникает зона спин-поляризованных Ni($d_{\uparrow}-d_{\downarrow}$)-состояний со значительной примесью 2*p*-состояний кислорода. Эти состояния вносят определяющий вклад в плотность состояний на уровне Ферми: $N_{\uparrow}(E_F) = 1.75$ states/(eV · cell) и $N_{\downarrow}(E_F) = 0.28$ states/(eV · cell).

Рис. 7. Полная (a) и парциальные (b, c) плотности спиновых состояний LaGaO_{0.5}Ni_{0.5}O₃.

Поляризация спиновой плотности на уровне Ферми $P = |N_{\uparrow}(E_F) - N_{\downarrow}(E_F)| / \{N_{\uparrow}(E_F) + N_{\downarrow}(E_F)\} = 0.724.$ В свою очередь имеет место заметное расщепление Ni3 $d_{\uparrow,\downarrow}$ -состояний на 3 $d(t_{2g\uparrow,\downarrow})$ - и 3 $d(e_{g\uparrow,\downarrow})$ -компоненты. Полоса Ni3 $d(t_{2g\uparrow})$ -состояний расположена в интервале от -2.0 до -1.0 eV ниже E_F , а Ni3 $d(t_{2g\downarrow})$ — в интервале от -1.5 до -0.75 eV, т.е. Ni3 $d(t_{2g\downarrow})$ -состояния полностью заняты и существенного вклада в область вблизи E_F не вносят. Частично занятые Ni3 $d(e_{g\uparrow,\downarrow})$ -состояния, претерпевая значительно бо́лышую спиновую поляризацию, обеспечивают основной вклад в прифермиевскую область (рис. 7), а также формируют магнитные моменты атомов никеля в TP.

Полный расчетный магнитный момент ЛЛЯ $LaGa_0 5Ni_0 5O_3$ (на одну ГЦК-ячейку) составляет $0.971 \,\mu_{\rm B}$ основной вклад в намагниченность допированного перовскита вносят атомы никеля: $\Pi MM(Ni) = 0.796 \mu_B$. На атомах кислорода и галлия лишь локализованы незначительные магнитные моменты: ЛММ $(Ga) = 0.033 \mu_B$, ЛММ $(O) = 0.018 \mu_B$. Эти ЛММ индуцированы перекрыванием валентных оболочек Ni-(Ga,O).

4. Заключение

На основании исследований магнитных и электрических свойств твердых растворов LaGa_{1-x}Ni_xO₃ показано, что замещающие позиции Ga в составе исходного немагнитного широкозонного полупроводника LaGaO₃ атомы Ni находятся преимущественно в низкоспиновом трехвалентном состоянии. С ростом температуры и концентрации никеля электропроводность ТР LaGa_{1-x}Ni_xO₃ увеличивается. При этом не наблюдается зависимости σ от частоты поля, что указывает на электронный тип проводимости. Экспериментально определенное значение энергии активации электропроводности при концентрациях $x \sim 0.08-0.10$ составляет $E_a = 0.050 \pm 0.006$ eV.

На основе расчетов FLAPW-GGA показано, что основную роль в изменении магнитных и электрических свойств LaGaO₃ при его допировании никелем играют Ni3d($e_{g\uparrow,\downarrow}$)-состояния, которые ответственны за формирование локальных магнитных моментов атомов никеля и металлоподобного типа спектра электронных состояний TP.

Список литературы

- K. Traina, M.C. Steil, J.P. Pirard, C. Henrist, A. Rulmont, R. Cloots, B. Vertruyen. J. Eur. Cer. Soc. 27, 3469 (2007).
- [2] M. Enoki, J.Yan, H. Matsumoto, T. Ishihara. Solid State Ionics 177, 2053 (2006).
- [3] Н.В. Чежина, И.В. Пийр, Н.В. Золотухина. ЖОХ 76, 1585 (2006).
- [4] A.M. Azad, M. Ramachandran, N. Schweitzer. Solid State Ionics 178, 1476 (2007).

- [5] R.T. Baker, B. Gharbage, F.J. Marques. J. Eur. Cer. Soc. 18, 105 (1998).
- [6] S. Litty, A.K. Shukla, J. Gopalakrishnan. Bull. Mater. Sci. 23, 169 (2000).
- [7] Н.В. Чежина, Н.В. Золотухина, М.В. Бодрицкая. ЖОХ 75, 1233 (2005).
- [8] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz. In: WIEN2K. An augmented plane wave plus local orbitals program for calculating crystal properties / Ed. K. Schwarz. Techn. Universität Wien, Austria (2001).
- [9] J.P. Perdew, S. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996).
- [10] С.А. Альтшулер, Б.М. Козырев. Электронный парамагнитный резонанс соединений элементов промежуточных групп. Наука, М. (1972). С. 436.
- [11] R.L. Martin, A.N. White. In: Trans. Metal Chem. Dekker, N.Y. (1968). V. 4. P. 113.
- [12] Н.В. Чежина. ЖОХ 66, 911 (1996).
- [13] В.Т. Калинников, Ю.В. Ракитин. Введение в магнетохимию. Метод статистической магнитной восприимчивости в химии. Наука, М. (1980). 380 с.
- [14] M.E. Lihnas. J. Chem. Phys. 55, 2977 (1971).
- [15] J. Robertson, R. Xiong, S.J. Clark. Thin Solid Films 496, 1 (2006).