Межслоевой обмен через примесные состояния в мультислоях железо/кремний

© В.Н. Меньшов, В.В. Тугушев

Российский научный центр "Курчатовский институт", 123182 Москва, Россия

E-mail: tuvictor@mail.ru

(Поступила в Редакцию 19 декабря 2007 г.)

Рассмотрена модель обменной связи между слоями ферромагнитного металла через прослойку невырожденного полупроводника с точечными дефектами. Рассчитана асимптотика обменных интегралов; показано, что знак межслоевого обмена может меняться в зависимости от положения и заполнения примесных состояний в прослойке. Результаты использованы для качественного объяснения экспериментальных данных в мультислоях железо/кремний.

Работа поддержана грантом РФФИ 07-02-01252-а.

PACS: 73.21.Ac, 75.75.+a

1. Введение

В работах, посвященных изучению механизма межслоевой обменной связи (МОС) в мультислоях типа железо/кремний (см. обзор [1]), неоднократно отмечалась интегрирующая особенность этой связи — возможная смена знака интеграла МОС между соседними слоями железа J(L) при изменении толщины прослойки кремния L. Антиферромагнитный (АФМ) характер интеграла J(L) при больших значениях L (по одним данным при L > 5-6 Å [2]; по другим — при L > 18-20 Å [3]) был достаточно давно и надежно установлен различными группами исследователей, но детали поведения J(L)при малых L сильно различались и во многом противоречили друг другу. В большинстве экспериментов АФМ-характер МОС наблюдался во всем измеренном интервале толщин L, причем величина J(L) экспоненциально и монотонно падала с возрастанием L [4]. В некоторых экспериментах, однако, имел место ярко выраженный максимум J(L) при некоторой характерной толщине прослойки L_{max}, лежащей в широком диапазоне значений от $L_{\text{max}} \approx 6-8$ Å [1] до $L_{\text{max}} \approx 20-22$ Å [3]. В работах [3, 5] была также зафиксирована смена знака J(L) при значениях $L < L_{max}$, т.е. переход от АФМ- к ферромагнитному (ФМ) типу МОС. Таким образом, в настоящее время можно с уверенностью говорить об усилении ФМ-компоненты межслоевого обмена и конкуренции ФМ- и АФМ-механизмов МОС при уменьшении расстояния между слоями железа в структурах Fe/Si, полученных различными методами.

Стандартное объяснение АФМ-поведения МОС при больших толщинах прослойки [5] состоит в предположении доминирующей роли суперобмена (за счет прямого туннелирования [6] или туннелирования через резонансные примесные состояния [7]) между слоями ферромагнитного металла через прослойку немагнитного диэлектрика. В то же время нарастание ФМ-компоненты МОС при уменьшении толщины прослойки связывается авторами [5] с обменом РККИ-типа через образующиеся вследствие интердиффузии проводящие мостики внутри диэлектрической прослойки. Однако, как уже отмечалось в литературе (см., например, [1]), столь естественная на первый взгляд интерпретация экспериментальных данных на самом деле далеко не очевидна из-за образования вблизи интерфейса железо/кремний промужеточного слоя, содержащего структурные дефекты, примеси, а также включения силицидов железа ($Fe_{1-x}Si_x$) различного состава. Этот важный аспект проблемы межслоевого обмена, связанный с неоднородностью прослойки вследствие значительной неконтролируемой интердиффузии компонентов через интерфейс, мы попытались простейшим способом учесть в работе [8], где была предложена модель МОС, базирующаяся на следующих главных предположениях.

1) На границе раздела Fe/Si формируется тонкий химический интерфейс объемно центрированного моносилицида железа (*c*-FeSi) и возникают поляризованные по спину квазидвумерные интерфейсные состояния.

2) Магнитная связь между слоями Fe осуществляется путем суперобменного взаимодействия интерфейсных состояний через прослойку Si и включает как внутризонные, так и межзонные процессы.

3) Немонотонный характер зависимости МОС от толщины и состава прослойки связан с конкуренцией АФМи ФМ-составляющих суперобмена.

Данная модель позволила воспроизвести основные черты МОС в структурах типа [1,2], в которых, повидимому, только межзонные электрон-дырочные возбуждения определяют величину ФМ-вклада в МОС. Согласно оценкам, проведенным в [8], вследствие значительной величины запрещенной зоны в чистом кремнии этот вклад может стать преобладающим лишь при очень малой толщине прослойки (менее 6 Å, как в [1,2]), но никак не при значительно большей ее толщине (менее 20 Å, как в [3]). Таким образом, для объяснения смены характера МОС в структурах [3] механизм ФМ-обмена [8] оказался недостаточным, что связано, как нам теперь представляется, с более сложным, чем предполагалось ранее, характером неоднородности переходного слоя. Именно учету этого важного обстоятельства посвящена настоящая работа.

2. Модельный гамильтониан

Рассмотрим слой широкозонного немагнитного полупроводника (Si) с номинальной толщиной L = 2l(где *l* — половина толщины прослойки), помещенной между двумя слоями ферромагнитного металла (Fe). Согласно модели [8], непосредственного перекрытия волновых функций Fe и Si на интерфейсе Fe/Si не происходит, но вследствие перестройки химических связей возникает тонкий промежуточный слой ФМ-фазы объемно центрированного моносилицида железа *c*-FeSi, благодаря специфике зонной структуры которого появляются почти бездисперсные спин-поляризованные интерфейсные состояния, гибридизующиеся с состояниями прослойки. Ось z сориентируем вдоль направления роста структуры, т.е. перпендикулярно плоскости интерфейса, который предполагаем идеально гладким, и будем отсчитывать координату z от середины прослойки.

Запишем полный гамильтониан прослойки *H_S* следующим образом:

$$H_S = H_i + H_{ib} + H_b. \tag{1}$$

Здесь *H_i* — гамильтониан интерфейсный состояний,

$$H_{i} = H_{i}(+l) + H_{i}(-l), \qquad (2)$$
$$H_{i}(\pm l) = \sum_{\alpha\beta} \int a_{\alpha}^{+}(\mathbf{q}, \pm \mathbf{l}) \left[E_{i}(\mathbf{q}, \pm l) \delta_{\alpha\beta} + J_{i}(\pm l) \left(\mathbf{M}(\pm l)\boldsymbol{\sigma} \right)_{\alpha\beta} \right] a_{\beta}(\mathbf{q}, \pm l) d\mathbf{q}, \qquad (3)$$

где a^+ и a^- операторы рождения и уничтожения квазичастиц с энергией $E_i(\mathbf{q}, \pm l)$; \mathbf{q}^- двумерный квазиимпульс в плоскости интерфейса (**x**, **y**), ортогональной оси **z**; $J_i(\pm l)$ — обменный интеграл между состояниями ФМ и состояниями промежуточного слоя; $\mathbf{M}(\pm l)$ вектор намагниченности на правой (+) и левой (-) ФМобкладках соответственню; $\boldsymbol{\sigma}$ — вектор, составленный из матриц Паули; (α, β) — спиновые индексы. Далее предполагается, что величины $E_i(\mathbf{q}, \pm l)$ и $J_i(\pm l)$ идентичны для обоих интерфейсов; $E_i(\mathbf{q}, +l) = E_i(\mathbf{q}, -l) = E_i(\mathbf{q})$, $J_i(+l) = J_i(-l) = J_i$. Модули векторов $\mathbf{M}(\pm l)$ также одинаковы, но их направление $\mathbf{e}(\pm l)$ могут быть отличны друг от друга: $\mathbf{M}(\pm l) = M\mathbf{e}(\pm l), \mathbf{e}(+l) \neq \mathbf{e}(-l)$.

Гамильтониан H_{ib} описывает одноэлектронную гибридизацию между интерфейсными состояниями и объемными состояниями прослойки; он может быть записан в рамках модели плоского дефекта как

$$H_{ib} = H_{ib}(+l) + H_{ib}(-l),$$
(4)

$$H_{ib}(\pm l) = \sum_{\alpha} \int \left[a_{\alpha}^{+}(\mathbf{q}, \pm l) V(\mathbf{q}, \mathbf{q}', \pm l) b_{\alpha}(\mathbf{q}', k_{z}) \right] \times \exp(\pm ik_{z}l) + h.c. d\mathbf{q} d\mathbf{q}' dk_{z},$$
(5)

где b^+ и b — операторы рождения и уничтожения квазичастиц для состояний прослойки в зоне с законом

дисперсии $E(\mathbf{k}), k_z$ — проекция трехмерного квазиимпульса $\mathbf{k} = (\mathbf{q}, k_z)$ на ось **z**, $V(\mathbf{q}, \mathbf{q}', \pm l)$ — матричные элементы периодического в плоскости (**x**, **y**) потенциала гибридизации на интерфейсах, которые полагаем равными, так что $V(\mathbf{q}, \mathbf{q}', +l) = V(\mathbf{q}, \mathbf{q}', -l) = V(\mathbf{q}, \mathbf{q}')$. Для простоты в настоящей работе считаем, что интерфейсные состояния лежат вблизи какого-либо экстремума зоны полупроводниковой прослойки (например, вблизи дна зоны проводимости) и только эта зона вносит вклад в MOC.

В отличие от работы [8], где рассматривалась прослойка из чистого материала, здесь считаем прослойку достаточно грязной вследствие образования в ней в процессе роста структуры дефектов различного типа, которые будем моделировать набором точечных примесных центров. Гамильтониан объемных состояний прослойки H_b запишем в виде

$$H_b = H_0 + H_1. (6)$$

В (6) *H*₀ описывает состояния квазичастиц в зоне проводимости,

$$H_0 = \sum_{\alpha} \int b_{\alpha}^+(\mathbf{k}) E(\mathbf{k}) b_{\alpha}(\mathbf{k}) d\mathbf{k}, \qquad (7)$$

а H_1 — их рассеяние на точечных дефектах,

$$H_{1} = \sum_{\alpha,\beta,m} \int b_{\alpha}^{+}(\mathbf{r}) \{ V_{m} \delta_{\alpha\beta} + J_{m} (\mathbf{S}_{m} \boldsymbol{\sigma})_{\alpha\beta} \} \delta(\mathbf{r} - \mathbf{R}_{m}) b_{\beta}(\mathbf{r}) d\mathbf{r}$$
$$+ \frac{1}{2} U \sum_{a,m} \int n_{\alpha}(\mathbf{r}) n_{-\alpha}(\mathbf{r}) \delta(\mathbf{r} - \mathbf{R}_{m}) d\mathbf{r}, \qquad (8)$$

где

$$n_{\alpha}(\mathbf{r}) = b_{\alpha}^{+}(\mathbf{r}) \, b_{\alpha}(\mathbf{r}).$$

Здесь V_m и J_m — соответственно потенциальная и обменная компоненты электрон-примесного взаимодействия; S_m — классический вектор магнитного момента на дефекте в точке \mathbf{R}_m ; $n_\alpha(\mathbf{r})$ — плотность электронов с проекцией спина α в точке **г**. Гамильтониан (6)–(8) использовался ранее [9,10] для расчета эффективного обмена между магнитными моментами точечных дефектов в разбавленных магнитных полупроводниках. Было показано, что наличие резонансных локализованных состояний, отщепленных от широкой разрешенной зоны $E(\mathbf{k})$ вследствие рассеяния носителей на примесных центрах, вызывает значительное усиление РККИ-обмена в вырожденных материалах, в которых уровень Ферми лежит внутри разрешенной зоны. При этом для вычисления поправки к энергии системы, связанной с гамильтонианом возмущения H_1 , применялся метод усредненной по примесным конфигурациям матрицы рассеяния (метод средней *t*-матрицы) во втором порядке разложения по недиагональной в узельном представлении компоненте функции Грина гамильтониана Но. В нашем случае при рассмотрении обмена между моментами плоских дефектов на границах $z = \pm l$ ограничимся учетом лишь диагональной в узельном представлении компоненты функции Грина гамильтониана H_0 и будем для простоты полагать, что обмен между моментами точечных дефектов внутри полупроводниковой прослойки несуществен (например, вследствие малости соответствующей компоненты электрон-примесного взаимодействия, $J_m S_m \ll V_m$). Везде далее считаем полупроводниковую прослойку невырожденной (отсутствуют свободные носители в разрешенной зоне, т. е. уровень Ферми лежит ниже ее края). Для исключения двукратного заполнения локализованных примесных состояний в гамильтониане (8) аналогично [9,10] для каждого примесного узла вводится "хаббардовское" (U > 0) слагаемое, имеющее чисто технический характер.

Энергия межслоевой обменной связи

В отсутствие гибридизации между состояниями прослойки и интерфейса в нашей модели нет никакой обменной связи между моментами $\mathbf{M}(\pm l)$ на правой и левой границах прослойки. Рассматривая гамильтониан (4), (5) по теории возмущений и используя стандартную "примесную" диаграммную технику [11,12] для функций Грина, получим поправки *n*-го порядка $\Delta\Omega_n$, пропорциональные V^n , в полный термодинамический потенциал системы Ω в форме разложения в ряд по степеням гибридизации V. Очевидно, что только коэффициенты при четных степенях этого ряда отличны от нуля. Слагаемые второго порядка по гибридизации $\Delta\Omega_2$ в интересующую нас энергию межслоевого обмена вклада не вносят, а первый ненулевой вклад появляется в четвертом порядке теории возмущений

$$\Delta\Omega_{4} = \frac{1}{2} \sum_{\alpha\beta} \oint \frac{d\omega}{2\pi i} \int \frac{d\mathbf{q} d\mathbf{q}' d\mathbf{q}'' d\mathbf{q}'''}{(2\pi)^{8}} G_{i}^{\alpha\beta}(\omega, \mathbf{q}, -l)$$

$$\times \left[V^{*}(\mathbf{q}, \mathbf{q}') V(\mathbf{q}''', \mathbf{q}) \Gamma_{1}(\omega, \mathbf{q}', \mathbf{q}''', L) V^{*}(\mathbf{q}'', \mathbf{q}''') V(\mathbf{q}', \mathbf{q}'') + \int \frac{d\mathbf{p}}{(2\pi)^{2}} V^{*}(\mathbf{q}, \mathbf{q}') V(\mathbf{q}''' - \mathbf{p}, \mathbf{q}) \Gamma_{2}(\omega, \mathbf{q}', \mathbf{q}''', \mathbf{p}, L) \right]$$

$$\times V^{*}(\mathbf{q}'', \mathbf{q}''') V(\mathbf{q}' + \mathbf{p}, \mathbf{q}'') G_{i}^{\beta\alpha}(\omega, \mathbf{q}'', +l), \qquad (9)$$

где функция $V^*(\mathbf{q},\mathbf{q}')$ комплексно сопряжена с $V(\mathbf{q},\mathbf{q}')$

$$\Gamma_{1}(\omega, \mathbf{q}', \mathbf{q}''', L) = \int \frac{dk_{z}dq_{z}}{(2\pi)^{2}} \left\{ \frac{1}{2} \left[G(\omega, \mathbf{q}', k_{z}) \times G(\omega, q''', k_{z} - q_{z}) + G(\omega, \mathbf{q}''', k_{z}) G(\omega, \mathbf{q}', k_{z} + q_{z}) \right] + x\Lambda(\omega) \left[G^{2}(\omega, \mathbf{q}', k_{z}) G(\omega, \mathbf{q}''', k_{z} - q_{z}) + G^{2}(\omega, \mathbf{q}''', k_{z}) G(\omega, \mathbf{q}', k_{z} + q_{z}) \right] \right\} \exp(iq_{z}L), \quad (10)$$

$$\Gamma_{2}(\omega, \mathbf{q}', \mathbf{q}''', \mathbf{p}, L) = x\Lambda^{2}(\omega)$$

$$\times \int \frac{dk_{z}dk'_{z}dq_{z}}{(2\pi)^{3}} G(\omega, \mathbf{q}', k_{z})G(\omega, \mathbf{q}''' - \mathbf{p}, k'_{z} - q_{z})$$

$$\times G(\omega, \mathbf{q}' + \mathbf{p}, k'_{z} + q_{z})G(\omega, \mathbf{q}''', k'_{z}) \exp(iq_{z}L),$$
(11)

где

$$\Lambda(\omega)=\frac{V_0}{2(1-V_0G_0(\omega))},\quad G_0(\omega)=\int \frac{d{\bf k}}{(2\pi)^3}\,G(\omega,{\bf k}).$$

Здесь мы ввели обозначения $G_i(\omega, \mathbf{q}, \pm l)$ и $G(\omega, \mathbf{k})$ соответственно для функций Грина "невозмущенных" гамильтонианов интерфейсов (3), $G_i(\omega, \pm l) = [\omega + i\mathbf{0} - H_i(\pm l)]^{-1}$, и полупроводниковой прослойки (7), $G(\omega) = (\omega + i\mathbf{0} - H_0)^{-1}$, в импульсном представлении; ω — частота, $\Lambda(\omega)$ — одноцентровая амплитуда рассеяния на дефекте в пределе $|J_m S_m/V_m| \rightarrow 0$, причем мы положили $V_m = V_0$ для всех узлов $m, x \ll 1$ — концентрация дефектов. В настоящей работе все вычисления проводятся только при нулевой температуре T = 0, но в принципе аналогичная процедура может быть осуществлена и при конечной температуре $T \neq 0$ в рамках температурной диаграммной техники.

Детали громоздкого, но стандартного вывода формул (9)–(11) здесь не приводятся. Заметим только, что метод средней *t*-матрицы в применении к гамильтониану (8) имеет ряд технических особенностей; в частности, корректный переход к пределу немагнитного дефекта $|J_m S_m/V_m| \rightarrow 0$ может быть проведен только после суммирования всего диаграммного ряда в канале одноцентрового рассеяния и исключения двукратного заполнения локализованных примесных состояний [9,10].

Определим энергию межслоевой обменной связи $\Delta\Omega_{\rm ex}$ как ту часть термодинамического потенциала $\Delta\Omega_4$, которая является билинийной формой от векторов намагниченности "правой, и "левой" обкладок,

$$\Delta\Omega_{\rm ex} = I(L)\mathbf{M}(-l)\mathbf{M}(+l),\tag{12}$$

где I(L) — обменный интеграл. Чтобы получить явное выражение для функции I(L), упростим интегралы в формулах (9)–(11) следующим образом [8]. Основной вклад в интегралы по переменным ($\mathbf{q}', \mathbf{q}''', \mathbf{p}, k_z, k_z', q_z$) в выражениях (9)–(11) вносит область малых квазиимпульсов вблизи дна широкой зоны проводимости, где энергия квазичастиц мала, а на больших квазиимпульсах подынтегральные выражения быстро спадают. В то же время в интегралы по переменным (\mathbf{q}, \mathbf{q}'') вносят вклад все почти бездисперсные интерфейсные состояния, в том числе с большими квазиимпульсами. Поэтому используем "среднеквадратичное" приближение

$$\int \frac{d\mathbf{q}''}{(2\pi)^2} V(\mathbf{q}, \mathbf{q}'') G_i^{\alpha\beta}(\omega, \mathbf{q}'', \pm l) V^*(\mathbf{q}'', \mathbf{q}')$$
$$\approx \gamma \Gamma^{\alpha\beta}(\omega, \pm l) \delta(\mathbf{q} - \mathbf{q}'), \qquad (13)$$

Физика твердого тела, 2008, том 50, вып. 11

где

$$egin{aligned} \Gamma^{lphaeta}(\omega,\pm l) &= \int rac{d\mathbf{q}}{(2\pi)^2}\,G^{lphaeta}_i(\omega,\mathbf{q},\pm l) \ & \gamma &= \int rac{d\mathbf{q}}{(2\pi)^2}V^*(\mathbf{K}_0^{\perp},\mathbf{q})V(\mathbf{q},\mathbf{K}_0^{\perp}), \end{aligned}$$

К₀ — квазиимпульс, соответствующий экстремуму зоны проводимости, **K**₀[⊥] — проекция вектора **K**₀ на плоскость (**x**, **y**); без ограничения общности примем **K**₀ = 0. Таким образом, влияние интерфейсных состояний на объемные состояния прослойки описывается в приближении (13) с помощью введения зависящих только от частоты ω эффективных поверхностных потенциалов $\gamma \Gamma^{\alpha\beta}(\omega, \pm l)$. Отметим, что в нашей модели ширина разрешенной зоны в прослойке *W* значительно превышает ширину пика плотности интерфейсных состояний *W*_i; при этом уровень Ферми лежит вблизи этого пика и находится ниже края разрешенной зоны.

Далее при интегрировании в выражениях (9)–(11) по частоте ω запишем вершинную функцию $\Lambda(\omega)$ в "резонансном" приближении, имея в виду, что потенциал $V_0 < 0$ отщепляет от разрешенной зоны однократно занятое локализованное состояние с энергией $E_0 = -|E_0| < 0$, $|E_0| \ll W$,

$$\Lambda(\omega) \approx \frac{|\partial G_0(E_0)/\partial E_0|^{-1}}{2(\omega - E_0)},\tag{14}$$

где величина Е0 определяется из соотношения

$$1 - V_0 G_0(E_0) = 0. (15)$$

Принимая во внимание то обстоятельство, что в формирование уровня E_0 вносят вклад все, а не только лежащие вблизи края состояния трехмерной разрешенной зоны полупроводниковой прослойки, грубо оценим $|\partial G_0(E_0)/\partial E_0| \approx N_0/|E_0|$, где N_0 — срадняя по зоне плотность электронных состояний.

Указанные предположения позволяют существенно упростить выражение для интеграла I(L)

$$I(L) \approx I_1(L) + I_2(L) + I_3(L),$$
 (16)

$$I_{1}(L) = \frac{J_{i}^{2}\gamma^{2}}{2} \oint \frac{d\omega}{2\pi i}$$
$$\times \int \frac{d\mathbf{q}dk_{z}dp_{z}}{(2\pi)^{4}} D^{2}(\omega)A(\omega, \mathbf{q}, k_{z}, p_{z}) \exp(ip_{z}L), \quad (17)$$

$$I_2(L) = x \frac{J_i^2 \gamma^2}{2} \oint \frac{d\omega}{2\pi i}$$
$$\int d\mathbf{q} dk_z dp_z = 2 \, (z = z) \, (z = z)$$

$$\times \int \frac{a\mathbf{q}a\kappa_z ap_z}{(2\pi)^4} D^2(\omega) B(\omega, \mathbf{q}, k_z, p_z) \exp(ip_z L), \quad (18)$$

$$I_{3}(L) = x \frac{J_{i}^{2} \gamma^{2}}{2} \oint \frac{d\omega}{2\pi i} \int \frac{d\mathbf{q} d\mathbf{q}' dk_{z} dk'_{z} dp_{z}}{(2\pi)^{7}} \times D^{2}(\omega) C(\omega, \mathbf{q}, \mathbf{q}', k_{z}, k'_{z}, p_{z}) \exp(ip_{z}L), \quad (19)$$

где

$$\begin{split} A(\omega, \mathbf{q}, k_z, p_z) &= \frac{1}{2} \left[G(\omega, \mathbf{q}, k_z) G(\omega, \mathbf{q}, k_z + p_z) \right. \\ &+ G(\omega, \mathbf{q}, k_z) G(\omega, \mathbf{q}, k_z - p_z) \right], \\ B(\omega, \mathbf{q}, k_z, p_z) &= \frac{|E_0|}{2N_0(\omega - E_0)} \left[G^2(\omega, \mathbf{q}, k_z) \right. \\ &\times G(\omega, \mathbf{q}, k_z + p_z) + G^2(\omega, \mathbf{q}, k_z) G(\omega, \mathbf{q}, k_z - p_z) \right], \\ C(\omega, \mathbf{q}, \mathbf{q}', k_z, k_z', p_z) &= \frac{E_0^2}{4N_0^2(\omega - E_0)^2} G(\omega, \mathbf{q}, k_z) \\ &\times G(\omega, \mathbf{q}, k_z + p_z) G(\omega, \mathbf{q}', k_z') G(\omega, \mathbf{q}', k_z' - p_z), \\ G(\omega, \mathbf{q}, k_z) &= \frac{1}{\omega - E(\mathbf{k})}, \\ D(\omega) &= \int \frac{d\varepsilon N_i(\varepsilon)}{(\omega - \varepsilon)^2 - (J_i M)^2}. \end{split}$$

В последнем соотношении введена величина $N_i(\varepsilon)$ плотность состояний в интерфейсном слое. При моделировании формы $N_i(\varepsilon)$ ограничимся приближением локального интерфейсного уровня с энергией ε_i , так что $N_i(\varepsilon) \cong n_i \delta(\varepsilon - \varepsilon_i), \, \delta(\varepsilon)$ — дельта-функция, n_i — число состояний, формирующих пик; энергию ε_i отсчитываем от дна зоны проводимости, т.е. $\varepsilon_i = -|\varepsilon_i| < 0$, и для определенности полагаем $J_i M = |J_i M| > 0$. Для расщепленных по спину интерфейсных состояний считаем, что уровень "спин вверх" с энергией $-(|\varepsilon_i| + |J_i M|)$ заполнен, а уровень "спин вниз" с энергией $-(|\varepsilon_i| - |J_i M|)$ пуст. Приближение локального интерфейсного уровня обосновано, если ширина пика $W_i \ll (W, |J_i, M|)$.

4. Асимптотическое поведение обменных интегралов

Интегралы (17)–(19) могут быть рассчитаны аналитически и записаны в форме крайне громоздких выражений, содержащих специальные функции и пригодных только для численного анализа. Далее ограничимся рассмотрением качественных особенностей влияния примесного рассеяния на МОС в асимптотическом пределе толстой прослойки и проанализируем некоторые предельные случаи.

Слагаемое (17), которое описывает АФМ-суперобмен в системе с чистой невырожденной прослойкой, было рассчитано в работе [8], и асимптотическое поведение функции $I_i(L)$ имеет вид

$$I_1(L) \approx \frac{J_i^2 \gamma^2 n_i^2 m^2}{16\pi (J_i M)^2} \frac{1}{(|\varepsilon_i| + |J_i M|)} \exp(-L/L_i)$$
(20)

при $L/L_i \gg 1$, где $L_i = \left(2\sqrt{2m(|\varepsilon_i| + |J_iM|)}\right)^{-1}$ — характерный масштаб затухания интерфейсного состояния в глубь прослойки, m — эффективная масса электрона. Вклад (20) возникает благодаря взаимодействию намагниченностей соседних ФМ-слоев через виртуальные переходы электронов с интерфейсных состояний (один

электрон от каждой границы, но с различной спиновой поляризацией) в зону проводимости полупроводника. Вследствие гибридизации с зонными состояниями прослойки интерфейсные состояния, изначально локализованные на длине нескольких монослоев вдоль оси роста структуры, частично делокализуются, а их волновые функции приобретают "хвосты" длиной $\sim L_i/2$, сравнимые с толщиной прослойки. При этом в меру перекрытия этих "хвостов" возникает длинноволновый вклад в межслоевой обмен, затухающий на масштабе, значительно превышающем параметр решетки полупроводника, $L_i \gg a$, и отличный от нуля даже в отсутствие свободных носителей в прослойке. Напомним, что формальный переход $|J_i M| \to 0$ в формуле (20) некорректен, так как условием ее применимости является соотношение $|J_iM| \gg W_i$.

Слагаемые (18) и (19), пропорцильнальные концентрации дефектов х, описывают соответственно виртуальные одночастичные и двухчастичные переходы между интерфейсными и зонными состояниями через промежуточные примесные состояния. Как нетрудно видеть, вклад двухчастичных процессов (9) всегда дает усиление АФМ-компоненты МОС, так как $I_3(L) > 0$, но характер вклада одночастичных процессов (18), т.е. знак $I_2(L)$, определяется положением примесного уровня Е0 по отношению к интерфейсным уровням $\varepsilon_i \pm J_i M$ и уровню Ферми μ . В нашей модели считаем величину $\mu = -|\mu| < 0$ фиксированным параметром, задаваемым внешним "резервуаром" (металлическими обкладками железа) и лежащим в интервале $-|\varepsilon_i| - |J_iM| < \mu < -|\varepsilon_i| + |J_iM|$. Если уровень E_0 пуст $(E_0 > \mu)$, то вклад слагаемого (18) в интеграл МОС положителен, т.е. происходит усиление АФМ-компоненты МОС. Если же уровень E_0 занят ($E_0 < \mu$), знак слагаемого (18) меняется на противоположный, т.е. возникает ФМ-компонента МОС.

Вначале обсудим ситуацию, когда примесный уровень пуст и лежит гораздо ближе к краю разрешенной зоны, чем занятый уровень "спин вверх" интерфейсных состояний, т. е. $|E_0| \ll |\varepsilon_i| + |J_iM|$. Для оценки интеграла $I_2(L)$ в асимптотическом приближении по толщине прослойки $(L/L_i \gg 1)$ можно получить

$$I_2(L) \approx x \, \frac{J_i^2 \gamma^2 n_i^2 m^2}{64\pi (J_i M)^2} \, \frac{|E_0|(L/L_i)}{N_0(|\varepsilon_i| + |J_i M|)^3} \, \exp(-L/L_i). \tag{21}$$

Таким образом, происходит усиление АФМ-компоненты МОС, пропорциональное концентрации дефектов.

Далее рассмотрим случай, когда примесный уровень занят и лежит гораздо дальше от края разрешенной зоны, чем уровень "спин вверх" интерфейсных состояний, т. е. $|E_0| \gg |\varepsilon_i| + |J_iM|$. При условии $L/L_i \gg 1$ имеем

$$I_2(L) \approx -x \frac{J_i^2 \gamma^2 n_i^2 m^2}{64\pi N_0 (J_i M)^2} \frac{L/L_i}{(|\varepsilon_i| + |J_i M|)^2} \exp(-L/L_i),$$
(22)

т.е. добавка к интегралу МОС по сравнению с (21) меняет знак с АФМ на ФМ, но характерная длина обмена L_i остается прежней.

Наконец, когда примесный уровень занят и лежит гораздо ближе к краю разрешенной зоны, чем уровень "спин вверх" интерфейсный состояний, т.е. $|E_0| \ll |\varepsilon_i|$ + $|J_iM|$, при больших толщинах прослойки получаем

$$I_2(L) \approx -x \; \frac{J_i^2 \gamma^2 n_i^2 m^2}{8\pi N_0 (\varepsilon_i^2 - (J_i M)^2)^2} \; \exp(-L/L_0), \qquad (23)$$

где $L/L_0 \gg 1$, а $L_0 = (2\sqrt{2m|E_0|})^{-1}$ — характерная длина затухания примесного состояния в прослойке, причем $L_0 \gg L_i$. В итоге самая длинноволновая компонента МОС оказывается ФМ-типа, что формально может привести к смене знака полного интеграла межслоевого обмена (16) при $L \gg L_0 \gg L_i$.

Пользуясь формулами (14), можно показать, что вклад в МОС слагаемого (19) мал по сравнению со слагаемым (18) в меру параметра $\frac{N(|E_0|)}{N_0} \approx \sqrt{|E_0|/W} \ll 1$. Конечно, малость данного параметра довольно условна, но все же можно надеяться, что для качественных оценок допустимо пренебречь вкладом (19) в интеграл МОС по сравнению с (18).

5. Заключение

В настоящее время отсутствуют надежные данные туннельных, магнитотранспортных и магнитооптических измерений в структурах железо-кремний с сильно неоднородными прослойками, для описания которых предназначена наша модель. Нам, строго говоря, неизвестны ни распределение дефектов внутри прослойки, ни положение интерфейсных и примесных уровней. Поэтому анализ соотношения различных вкладов в МОС (17)-(19) для обсуждаемых структур может быть выполнен лишь косвенным образом. Можно предположить, например, следующий простой сценарий изменения межслоевого обмена в зависимости от расстояния между слоями железа. При толщине прослойки $L > L^* = 2l^*$, где l^* характерная ширина переходного слоя, когда эффектами интердиффузии и перетекания заряда вблизи интерфейса можно пренебречь, преобладающую роль в МОС играет АФМ-суперобмен между интерфейсными состояниями через широкую зону (20), возможно усиленный за счет непрямого туннелирования через незаполненные примесные состояния (21). С уменьшением толщины прослойки при L < L* важную роль в МОС могут начать играть примесные состояния в переходной области вблизи интерфейсов, занятые вследствие перетекания заряда между металлом и полупроводником, и тогда возникает конкуренция между АФМ- (20) и ФМ- (22), (23) компонентами суперобмена, что может привести, особенно в ситуации (23), к смене знака МОС.

Из предложенной выше схемы следует, что в образцах типа [3] происходило формирование значительного по толщине и обогащенного дефектами переходного слоя, соответствующего $L^* \approx 18-20$ Å. В то же время в образцах типа [1,2] толщина такого слоя, судя по

Список литературы

- D.E. Bürgler, M. Buchmeier, S. Cramm, S. Eisbitt, R.R. Gareev, P. Grünberg, C.L. Jia, L.L. Pohlmann, R. Schreiber, M. Siegel, Y.L. Qin, A. Zimina. J. Phys.: Cond. Matter 15, S 443 (2003).
- [2] B.K. Kuanr, M. Buchmeier, R.R. Garrev, D.E. Bürgler, R. Schreiber, P. Grünberg. J. Appl. Phys. 93, 3427 (2003).
- [3] Г.С. Патрин, С.Г. Овчинников, Д.А. Великанов, В.П. Кононов. ФТТ 43, 1643 (2001).
- [4] J.J. de Vries, J.T. Kohlhepp, F.J.A. den Broeder, R. Coehoorn, R. Jungblut, A. Reinders, W.J.M. de Jonge. Phys. Rev. Lett. 78, 3023 (1997); M. Schleberger, P. Walser, M. Hunziker, M. Landolt. Phys. Rev. B 60, 14 360 (1999); G. Strijkers, J.T. Kohlhepp, H.G. Swagten, W.J.M. de Jonge. Phys. Rev. Lett. 84, 1812 (2000).
- [5] R.R. Gareev, D.E. Bürgler, M. Buchmeier, R. Schreiber, P. Grünberg. Appl. Phys. Lett. 81, 1264 (2002); R.R. Gareev, M. Weides, R. Schreiber, U. Poppe. Appl. Phys. Lett. 88, 172 105 (2006).
- [6] J.C. Slonczewsky. Phys. Rev. B 39, 6995 (1989); P. Bruno. Phys. Rev. B 52, 411 (1995).
- [7] M.Ye. Zhuralev, E.Y. Tsymbal, A.V. Vedyaev. Phys. Rev. Lett. 94, 026 806 (2005).
- [8] В.Н. Меньшов, В.В. Тугушев. ЖЭТФ 130, 89 (2006).
- [9] J. Inoue, S. Nonoyama, H. Itoh. Phys. Rev. Lett. 85, 4610 (2000).
- [10] J. Inoue. Phys. Rev. B 67, 125 302 (2003).
- [11] А.А. Абрикосов, Л.П. Горьков, И.Е. Дзялошинский. Методы квантовой теории поля в статистической физике. Наука, М. (1962). 443 с.
- [12] Г. Эренрейх, Л. Шварц. Электронная структура сплавов. Мир, М. (1979). 200 с.
- [13] С.Н. Варнаков, Ж. Бартоломе, Ж. Сесе, С.Г. Овчинников, С.В. Комогорцев, А.С. Паршин, Г.В. Бондаренко. ФТТ 49, 1401 (2007).