Эффекты кристаллического поля в редкоземельных ферроборатах $RFe_3(BO_3)_4$, R = Nd, Tb, Dy, Er

© Д.В. Волков, А.А. Демидов*, Н.П. Колмакова*, Л.В. Такунов*

Московский государственный университет им. М.В. Ломоносова, 119992 Москва, Россия * Брянский государственный технический университет, 241035 Брянск, Россия E-mail: npk@tu-bryansk.ru

> Теоретически исследованы эффекты кристаллического поля в редкоземельных ферроборатах RFe₃(BO₃)₄ с различными редкими землями. Редкоземельный магнитоупругий гамильтониан выписан в мультипольном приближении. Рассчитаны полевые и температурные зависимости мультипольных моментов и деформационных восприимчивостей редкоземельных ионов в структуре ферробората. Проведен сравнительный анализ аномалий теплового расширения и упругих констант редкоземельных ферроборатов с ионами Tb и Dy, имеющих одинаковую магнитную структуру, но разную степень анизотропии редкоземельных ионов.

> Работа выполнена частично при поддержке гранта Президента РФ (МК-4393.2006.2) и Международного научно-технического центра (проект 3501).

PACS: 75.80.+q, 63.20.Kr, 71.70.Ch

1. Введение

В формировании физических свойств редкоземельных (РЗ) соединений важнейшую роль играет кристаллическое поле, которое в значительной степени определяет электронную структуру (энергетический спектр и волновые функции) РЗ-ионов. При низких температурах существенный вклад вносит также магнитоупругое взаимодействие, связанное с изменением асферичности 4f-оболочки РЗ-иона при изменении внешних параметров (температуры, магнитного поля и т.д.). Магнитоупругие явления (магнитострикция, аномалии параметров решетки и упругих констант) сильно зависят от РЗ-иона и симметрии его окружения. Кристаллическая структура РЗ-ферроборатов *R*Fe₃(BO₃)₄ при высоких температурах описывается пространственной группой $R32(D_3^7)$. Ее главной особенностью являются направленные вдоль тригональные оси с спиральные цепочки соединенных по ребру октаэдров FeO₆. Подсистема ионов Fe³⁺ в этих соединениях антиферромагнитно упорядочивается при температурах Нееля T_N порядка 30-40 К для любого РЗ-элемента. РЗ-подсистема подмагничена за счет f-d-взаимодействия. За магнитную анизотропию и ориентацию магнитных моментов ответственны редкие земли. На основании расчетов в модели кристаллического поля в нашей работе [1] было предсказано, что в ферроборатах с Ть и Dy все магнитные моменты ориентированы вдоль тригональной оси, а в ферроборатах с Nd и Er они должны лежать в базисной плоскости. Спектроскопические исследования [2] подтвердили этот результат. Для некоторых РЗ-ферроборатов (R = Nd, Gd) была установлена [3,4] корреляция магнитоупругих и магнитоэлектрических свойств, которая позволяет отнести их к классу мультиферроиков. В этих же соединениях были обнаружены скачки магнитострикции, составляющие величину $\sim (1\!-\!2)\cdot 10^{-5}$, в гелиевой области температур в окрестности ориентационных фазовых переходов в полях $\sim 1\,T$ [3,4].

2. Методика расчетов

Гамильтониан кристаллического поля для локальной симметрии окружения РЗ-иона с точечной группой D_3 в установке Вайборна [5] может быть записан через неприводимые тензорные операторы C_a^k в виде

$$\begin{aligned} \mathscr{H}_{CF} &= B_0^2 C_0^2 + B_0^4 C_0^4 + B_3^4 (C_{-3}^4 - C_3^4) \\ &+ B_0^6 C_0^6 + B_3^6 (C_{-3}^6 - C_3^6) + B_6^6 (C_{-6}^6 + C_6^6). \end{aligned} \tag{1}$$

Параметры кристаллического поля B_q^k для некоторых ферроборатов и изоструктурных им алюмоборатов известны из спектроскопических исследований. РЗ-ферробораты, за исключением неодимового, с понижением температуры претерпевают структурный переход, но известно, что понижение симметрии от D_3 до C_2 фактически не отражается на термодинамических свойствах. Магнитоупругий гамильтониан РЗ-подсистемы должен учитывать и мультипольные операторы четвертого порядка, поскольку квадрупольное приближение, как показало наше исследование, оказывается недостаточным для соединений $RFe_3(BO_3)_4$. В симметризованных компонентах тензора деформации ε^{μ} магнитоупругий гамильтониан РЗ-подсистемы в кристалле тригональной симметрии имеет вид

$$\begin{aligned} \mathcal{H}_{ME}^{R} &= -\alpha_{J} \Big\{ B_{20}^{a1} O_{2}^{0} \varepsilon^{a1} + B_{20}^{a2} O_{2}^{0} \varepsilon^{a2} \\ &+ B_{21}^{\varepsilon} (\Omega_{2}^{1} \varepsilon^{\varepsilon_{1}} + O_{2}^{1} \varepsilon^{\varepsilon_{2}}) + B_{21}^{\xi} (O_{2}^{1} \varepsilon^{\xi_{1}} + \Omega_{2}^{1} \varepsilon^{\xi_{2}}) \\ &+ B_{22}^{\varepsilon} (O_{2}^{2} \varepsilon^{\varepsilon_{1}} + \Omega_{2}^{2} \varepsilon^{\varepsilon_{2}}) + B_{22}^{\xi} (\Omega_{2}^{2} \varepsilon^{\xi_{1}} + O_{2}^{2} \varepsilon^{\xi_{2}}) \Big\} \\ &- \beta_{J} \Big\{ (B_{40}^{a1} O_{4}^{0} + B_{43}^{a1} \Omega_{4}^{3}) \varepsilon^{a1} + (B_{40}^{a2} O_{4}^{0} + B_{43}^{a2} \Omega_{4}^{3}) \varepsilon^{a2} \\ &+ B_{41}^{\varepsilon} (\Omega_{4}^{1} \varepsilon^{\varepsilon_{1}} + O_{4}^{1} \varepsilon^{\varepsilon_{2}}) + B_{41}^{\xi} (O_{4}^{1} \varepsilon^{\xi_{1}} + \Omega_{4}^{1} \varepsilon^{\xi_{2}}) \\ &+ B_{42}^{\varepsilon} (O_{4}^{2} \varepsilon^{\varepsilon_{1}} + \Omega_{4}^{2} \varepsilon^{\varepsilon_{2}}) + B_{42}^{\xi} (\Omega_{4}^{2} \varepsilon^{\xi_{1}} + O_{4}^{2} \varepsilon^{\xi_{2}}) \\ &+ B_{44}^{\varepsilon} (O_{4}^{4} \varepsilon^{\varepsilon_{1}} - \Omega_{4}^{4} \varepsilon^{\varepsilon_{2}}) + B_{44}^{\xi} (-\Omega_{4}^{4} \varepsilon^{\xi_{1}} + O_{4}^{4} \varepsilon^{\xi_{2}}) \Big\}. \end{aligned}$$

Здесь α_J и β_J — коэффициенты Стевенса, O_n^m и Ω_n^m — эквивалентные операторы, B_{nm}^{μ} — магнитоупругие коэффициенты; выражения для ε^{μ} через декартовы компоненты тензора деформации приведены в [6].

Магнитные и магнитоупругие свойства РЗ-ферроборатов определяются обеими магнитными подсистемами: редкоземельной подсистемой и подсистемой железа. Записывая термодинамический потенциал системы $F = -k_B T \ln Z$ (Z — статсумма системы) в первом порядке теории возмущений по \mathcal{H}_{ME}^{R} и магнитоупругой энергии Fe подсистемы E_{ME}^{Fe} , которая выписана в [7] (см. также [8]), из условия минимума F можно получить, что выражения для магнитострикции имеют вид линейных комбинаций квадрупольных и мультипольных моментов РЗ-иона и параметров порядка Fe-подсистемы, индуцированных внешним полем выбранного направления. Коэффициентами перед этими характеристиками являются комбинации соответствующих магнитоупругих коэффициентов и определяемых симметрией упругих податливостей. Приведем необходимое для интерпретиации эффектов, налюдаемых в NdFe₃(BO₃)₄, выражение для продольной магнитострикции вдоль оси а, где эти комбинации обозначены через b, c, d, A, B и т.д.

$$\begin{bmatrix} \Delta l \\ l \end{bmatrix}_{[100]}^{[100]} = \Delta \Big\{ b l_z^2 + c (l_x^2 - l_y^2) + d l_y l_z + A \alpha_j \langle O_2^0 \rangle + B \beta_J \langle O_4^0 \rangle + C \beta_J \langle \Omega_4^3 \rangle + D \alpha_J \langle \Omega_2^1 \rangle + E \alpha_J \langle O_2^2 \rangle + F \beta_J \langle \Omega_4^1 \rangle + G \beta_J \langle O_4^2 \rangle + H \beta_J \langle O_4^4 \rangle \Big\}.$$
(3)

В этом выражении $\mathbf{l} = (\mathbf{M}_1 - \mathbf{M}_2)/2M_0$ — вектор антиферромагнетизма Fe-подсистемы, $\langle O_n^m \rangle$ и $\langle \Omega_n^m \rangle$ — тепловые средние соответствующих эквивалентных операторов, рассчитываемые на энергетическом спектре и волновых функциях P3-иона, формируемых кристаллическим полем, взаимодействием с Fe-подсистемой и внешним полем. Расчет изменений всех этих тепловых средних и параметров порядка дает возможность понять, какие из них определяют полевые и температурные зависимости магнитострикции.

Puc. 1. Полевые зависимости мультипольных моментов иона Nd³⁺ в NdFe₃(BO₃)₄ при **B** || **a**, T = 4.5 K: $\beta_J \langle O_4^2 \rangle$ (1), $\beta_J \langle O_4^4 \rangle$ (2), $\beta_J \langle \Omega_4^1 \rangle$ (3), $\alpha_J \langle \Omega_2^1 \rangle$ (4), $\alpha_J \langle O_2^0 \rangle$ (5), $\alpha_J \langle O_2^2 \rangle$ (6) и $\beta_J \langle \Omega_4^3 \rangle$ (7).

3. Результаты и обсуждение

Для NdFe₃(BO₃)₄ в работе [3] продольная магнитострикция была измерена в поле вдоль оси а до 10 Т в интервале температур от 4.5 до 28 К. Наблюдаемые низкотемпературные зависимости имеют куполообразную форму. При 4.5 К скачок магнитострикции порядка 10⁻⁵ К имеет место в окрестности 1 Т. Величина этого скачка быстро уменьшается с ростом температуры. При дальнейшем возрастании поля магнитострикция меняет знак. Кривые намагничивания $NdFe_3(BO_3)_4$, измеренные в работе [9] и интерпретированные в нашей работе [10], показывают, что в поле вдоль оси а вблизи 1 Т в домене с осью антиферромагнетизма вдоль поля происходит спин-флоп-переход, этот домен и два других разрешенных симметрией домена переходят во флоп-фазу. Таким образом, вблизи 1Т имеет место фазовый переход первого рода, который сопровождается скачками мультипольных моментов между начальной и флоп-фазами. Эти скачки и ответственны за наблюдаемые скачки магнитострикции. Дальнейшее поведение продольной магнитострикции во флоп-фазе определяется полевыми зависимостями мультипольных моментов. На рис. 1 рассчитанные полевые зависимости мультипольных моментов, входящих в формулу (3), приведены для $T = 4.5 \,\mathrm{K}$ и полей существования флопфазы B > 1-1.5 Т. Расчеты проведены для параметров соединения, суммированных в [10]. Видно, что моменты $\alpha_J \langle O_2^0 \rangle$, $\alpha_J \langle O_2^2 \rangle$, $\beta_J \langle \Omega_4^3 \rangle$ очень слабо зависят от поля; следовательно, не они определяют магнитострикцию. То же самое относится и к вкладу от железа. Наши расчеты показали, что изменение соответствующих компонент параметра порядка Fe-подсистемы с полем много слабее, чем изменение с полем четырех моментов РЗ-иона, которые меняют знак в поле величиной ≈ 7.5 Т. Такое поведение этих моментов находится в полном

1615

Рис. 2. Температурные зависимости полносимметричных моментов РЗ-ионов при B = 0 в TbFe₃(BO₃)₄ (1, 2) и DyFe₃(BO₃)₄ (3, 4): $\beta_J \langle O_4^0 \rangle$ (1, 3) и $-\alpha_J \langle O_2^0 \rangle$ (2, 4).

качественном согласии с экспериментальной полевой зависимостью магнитострикции [3]. Поскольку мультипольные моменты являются адекватной характеристикой асферичности 4f-оболочки РЗ-иона, изменение их знака можно трактовать, например, как изменение ее формы от вытянутой в данном направлении до сплюснутой. Однако величина поля, в котором РЗ-подсистема изменяет знак своего вклада в магнитострикцию, по данным [3] составляет ≈ 5.6 Т. Наши расчеты показывают, что величина этого поля определяется расщеплением основного дублета вследствие *f*-*d*-взаимодействия и соответствующей компонентой g-тензора, т.е. кристаллическим полем. Обе эти величины были взяты нами из спектроскопических исследований [11]. Отметим, кроме того, что расчеты мультипольных моментов при более высоких температурах показали их уменьшение с температурой, что согласуется с соответствующим уменьшением величины магнитострикции в [3].

Температурные зависимости мультипольных моментов РЗ-ионов и проекций вектора антиферромагнетизма l обусловливают температурные зависимости параметров решетки, т.е. тепловое расширение. В частности, понятно, что при $T > T_N$, когда l = 0, только РЗ-подсистема вносит магнитоупругий вклад в тепловое расширение. Возможность наблюдения этого вклада зависит от температуры Дебая соединения и соответствующего поведения фононов. В низкотемпературной области (T < 100 K), где фононы в основном выморожены, РЗ-вклад в тепловое расширение определяется энергетическим спектром РЗ-иона, формируемым кристаллическим полем. Например, в TbFe₃(BO₃)₄ при $T < T_N = 40 \,\mathrm{K}$ два нижних уровня иона Tb³⁺ расщеплены на величину $\approx 32 \, {\rm cm}^{-1}$ из-за f - d-взаимодействия, а следующие уровни находятся выше $\approx 150 \, \mathrm{cm}^{-1}$. Соответственно отсутствуют аномалии полносимметричных мультипольных моментов в этом интервале температур (рис. 2), и аномалий для теплового расширения не ожидается. В DyFe₃(BO₃)₄, напротив, два нижних крамерсовских дублета иона Dy³⁺, расщепленных f-d-взаимодействием, образуют более сложную структуру уровней, соответствующие мультипольные моменты зависят от температуры (рис. 2), и аномалии теплового расширения можно наблюдать.

Одним из эффектов кристаллического поля в РЗ-соединениях являются низкотемпературные аномалии упругих констант, которые проявляются для многих РЗ-соединений. Записав термодинамический потенциал системы во втором порядке теории возмущений по магнитупругому взаимодействию, можно рассчитать вклад РЗ-подсистемы в упругие константы соединения. Полученные выражения показывают, что изменения упругих констант определяются температурными зависимостями соответствующих деформационных восприимчивостей $\chi^{\mu\nu}$ (выписанных, например, в [7]), которые в свою очередь определяются энергетическим спектром и волновыми функциями РЗ-иона в рассматриваемом соединении. В качестве примера приведем выражения для магнитоупругого вклада для двух из шести в случае тригональной симметрии упругих констант (обозначения соответствуют общепринятым для симметризованной формы записи [6])

$$C^{\alpha 1} = C_0^{\alpha 1} - (B_{20}^{\alpha 1})^2 \chi^{\alpha \alpha},$$

$$C^{\varepsilon} = C_0^{\varepsilon} - \left[(B_{22}^{\varepsilon})^2 \chi^{\varepsilon 1 \varepsilon 1} + (B_{21}^{\varepsilon})^2 \chi^{\xi 1 \xi 1} + 2B_{22}^{\varepsilon} B_{21}^{\varepsilon} \chi^{\varepsilon 1 \xi 2} \right],$$

(4)

где C_0^{μ} — симметризованные упругие константы без магнитных взаимодействий. Мы рассчитали температурные зависимости деформационных восприимчивостей РЗ-ферроборатов RFe₃(BO₃)₄ с разными редкими землями, чтобы предсказать возможные эффекты. В ферроборатах с R = Nd, Ег магнитокристаллическая анизотропия и Fe- и P3-подсистем такова, что стабилизирует ориентацию магнитных моментов обеих подсистем в базисной плоскости. Из-за тригональной симметрии могут существовать три типа антиферромагнитных доменов, и это препятствует наблюдению возможных магнитоупругих аномалий упругих констант. В ферроборатах с R = Tb, Dy все магнитные моменты ориентированы вдоль тригональной оси при B = 0 благодаря огромной анизотропии этих РЗ-ионов в тригональном кристаллическом поле. На рис. 3 изображены температурные зависимости отличных от нуля при B = 0 деформационных восприимчивостей этих соединений. Большой рост (почти на порядок величины) полносимметричной деформационной восприимчивости $\chi^{\alpha\alpha}$ в интервале температур от 50 до 150 К может привести к возможности наблюдения смягчения модуля Юнга даже в поликристаллическом TbFe₃(BO₃)₄ при условии, что фононный вклад не слишком велик в этом температурном интервале. Для DyFe₃(BO₃)₄ возможность наблюдения смягчения модуля Юнга для *T* < 100 К зависит от знака соответствующих магнитоупругих коэффициентов. Как

Рис. 3. Температурные зависимости деформационных восприимчивостей РЗ-иона $\chi^{\alpha\alpha}(1), \chi^{\xi^{1\xi_1}}(2)$ и $\chi^{\varepsilon^{1\varepsilon_1}}(3)$ при B = 0 для TbFe₃(BO₃)₄ (*a*) и DyFe₃(BO₃)₄ (*b*).

видно из рис. 3 и формул (4), изменения деформационных восприимчивостей могут усиливать или компенсировать друг друга в поликристаллических образцах. В монокристаллах низкотемпературные аномалии упругих констант C^{ε} , $C^{\varepsilon\xi}$, $C^{\varepsilon\xi}$, по-видимому, наблюдаемы, поскольку фононный вклад при T < 50 K обычно выморожен.

4. Заключение

Таким образом, особености электронной структуры РЗ-ионов *R*Fe₃(BO₃)₄, формируемой кристаллическим полем тригональной симметрии и взаимодействием с Fe-подсистемой и изменяющейся при изменении магнитного поля и температуры, обусловливают разнообразные эффекты в РЗ-ферроборатах. Теоретическое рассмотрение, основанное на модели кристаллического поля, приближении молекулярного поля и теории возмущений по магнитоупругому взаимодействию, позволило интерпретировать известные экспериментальные данные и предсказать некоторые возможные эффекты в ферроборатах с различными редкими землями.

Авторы благодарят М.Н. Попову и А.Н. Васильева за интерес к работе.

Список литературы

- A.A. Demidov, N.P. Kolmakova, E.A. Popova, A.N. Vasiliev, D.V. Volkov. In: Abstracts of Moscow Int. Symp. on Magnetism. M. (2005). P. 668.
- [2] М.Н. Попова, Е.П. Чукалина, Т.Н. Станиславчук, Л.Н. Безматерных. Изв. РАН. Сер. физ. 70, 1652 (2006).
- [3] А.К. Звездин, Г.П. Воробьев, А.М. Кадомцева, Ю.Ф. Попов, А.П. Пятаков, Л.Н. Безматерных, А.В. Кувардин, Е.А. Попова. Письма в ЖЭТФ 83, 600 (2006).
- [4] А.К. Звездин, С.С. Кротов, А.М. Кадомцева, Г.П. Воробьев, А.П. Пятаков, Л.Н. Безматерных, Е.А. Попова. Письма в ЖЭТФ 81, 335 (2005).
- [5] B.J. Wybourne. Spectroscopic properties of rare earths. J. Wiley&Sons, USA (1965). P. 171.
- [6] E. de Lacheisserie. Ann. Phys. 5, 267 (1970).
- [7] A.A. Demidov, N.P. Kolmakova, L.V. Takunov, D.V. Volkov. Physica B **398**, 78 (2007).
- [8] В.В. Леманов. Магнитоупругие взаимодействия. В кн.: Физика магнитных диэлектриков / Под ред. Г.А. Смоленского. Л. (1974).
- [9] Е.А. Попова, Н. Тристан, Х. Хесс, Р. Клингелер, Б. Бюхнер, Л.Н. Безматерных, В.Л. Темеров, А.Н. Васильев. ЖЭТФ 132, 121 (2007).
- [10] Д.В. Волков, А.А. Демидов, Н.П. Колмакова. ЖЭТФ 131, 1030 (2007).
- [11] E.P. Chukalina, D.Yu. Kuritsin, M.N. Popova, L.N. Bezmaternykh, S.A. Kharlamova, V.L. Temerov. Phys. Lett. A. 322, 239 (2004).