# Зонная структура и свойства полиморфных модификаций низшего карбида вольфрама W<sub>2</sub>C

© Д.В. Суетин, И.Р. Шеин, А.С. Курлов, А.И. Гусев, А.Л. Ивановский

Институт химии твердого тела Уральского отделения Российской академии наук, 620041 Екатеринбург, Россия

E-mail: ivanovskii@ihim.uran.ru

(Поступила в Редакцию 22 ноября 2007 г. В окончательной редакции 24 января 2008 г.)

*Ab initio* полнопотенциальным методом FLAPW с обобщенной градиентной аппроксимацией локальной спиновой плотности (GGA) изучены структурные, электронные свойства и выполнены численные оценки относительной стабильности всех известных полиморфных модификаций ( $\alpha$ ,  $\beta$ ,  $\gamma$  и  $\varepsilon$ ) низшего карбида вольфрама W<sub>2</sub>C. Впервые в рамках единой схемы определены равновесные параметры кристаллических решеток, зонные структуры, полные и парциальные плотности состояний. На основе расчетов энергий формирования  $\alpha$ -,  $\beta$ -,  $\gamma$ - и  $\varepsilon$ -полиморфных модификаций низшего карбида вольфрама (в реакциях W<sub>2</sub>C  $\leftrightarrow$  2W + C (графит)) обсуждается их относительная стабильность.

PACS: 71.15. Nc, 71.20. Be

## 1. Введение

Карбиды переходных металлов обладают уникальным сочетанием экстремальных термомеханических свойств, радиационной стойкости, высокой химической инертности, а также имеют интересные электрофизические и магнитные характеристики, определившие исключительную научную и технологическую значимость этих соединений [1,2]. Среди них наибольшее внимание привлекают карбиды вольфрама как материалы для изготовления износостойких инструментальных сплавов, катализаторов, различных покрытий аэрокосмического назначения и т.д. (см. обзор [3]).

Как известно, отмеченный комплекс свойств карбидов *d*-металлов во многом определен особенностями их электронного строения и сложной ковалентноионно-металлической природой межатомных взаимодействий [4], которые к настоящему времени достаточно подробно (с привлечением экспериментальных и теоретических методов) исследованы лишь для простейших W–C фаз — кубического и гексагонального монокарбидов вольфрама WC [5–11].

Наряду с монокарбидом WC в системе W–C образуется низший карбид (субкарбид) W<sub>2</sub>C, который существует в виде нескольких полиморфных модификаций [1–3]. В последние годы свойства W<sub>2</sub>C и материалов на его основе привлекли к себе большое внимание. Среди них — твердость и абразивная стойкость сплавов W<sub>2</sub>C–(Co,Ni) [12], позитивное влияние добавок W<sub>2</sub>C на эксплуатационные качества WC/M-композитов и покрытий [13,14], каталитическое поведение W<sub>2</sub>C [15], эффекты атомно-вакансионного упорядочения в субкарбиде [16] и другие. Предприняты первые попытки синтеза и изучения свойств наноразмытых форм W<sub>2</sub>C [17].

В то же время данные об электронной структуре и природе межатомных взаимодействий для полиморфных модификаций W<sub>2</sub>C практически отсутствуют: по нашим

сведениям, имеется лишь одна ранняя работа [6], в которой зонная структура гексагонального субкарбида  $W_2C$  исследовалась линейным методом muffin-tin-орбиталей в приближении атомных сфер (LMTO-ASA).

В настоящей работе с использованием полнопотенциального линейного метода присоединенных плоских волн (FLAPW) с обобщенной градиентной поправкой (GGA) обменно-корреляционного потенциала предпринято систематическое изучение зонной структуры, межатомных взаимодействий, относительной стабильности и некоторых свойств всех известных ( $\alpha$ ,  $\beta$ ,  $\gamma$  и  $\varepsilon$ ) полиморфных модификаций W<sub>2</sub>C. В результате для всех модификаций W<sub>2</sub>C впервые получены и проанализированы зонные структуры, полные и парциальные плотности электронных состояний, рассчитаны равновесные параметры решетки, энергии формирования, коэффициенты низкотемпературной теплоемкости и парамагнитная восприимчивость Паули.

#### 2. Модели и метод расчета

Кристаллические структуры всех модификаций  $W_2C$ образованы на основе ГПУ-подрешетки вольфрама, в которой половина октаэдрических междоузлий занята атомами углеродных атомов по окта-междоузлиям [1–3]. Воспользовавшись одной из существующих (см. [3]) схем классификации полиморфных модификаций  $W_2C$ , далее будем обсуждать их как  $\alpha$ -,  $\beta$ -,  $\gamma$ - и  $\varepsilon$ -субкарбиды вольфрама. Типы распределения углеродных атомов по окта-междоузлиям ГПУ-подрешетки вольфрама для этих модификаций иллюстрирует рис. 1. Так, в структуре  $\gamma$ - $W_2C$  атомы углерода статистически (с вероятностью 1/2) заполняют все узлы неметаллической подрешетки. Структура упорядоченного ромбоэдрического  $\alpha$ - $W_2C$  включает чередующиеся (вдоль оси c)

| Фаза W <sub>2</sub> C | Структурный тип                                                       | Простр. группа                       | $a, \text{ nm}^*$  | $b, nm^*$          | <i>c</i> , nm*     |
|-----------------------|-----------------------------------------------------------------------|--------------------------------------|--------------------|--------------------|--------------------|
| α                     | Анти-CdI <sub>2</sub>                                                 | <i>P</i> -3 <i>m</i> 1               | 0.3057<br>(0.2985) | _                  | 0.4697<br>(0.4717) |
| β                     | РbO <sub>2</sub> или Mo <sub>2</sub> C ( <i>ξ</i> -Fe <sub>2</sub> N) | Pbcn                                 | 0.4759<br>(0.4728) | 0.6097<br>(0.6009) | 0.5227<br>(0.5193) |
| γ                     | $W_2C$                                                                | <i>P</i> 6 <sub>3</sub> / <i>mmc</i> | 0.3033<br>(0.3002) | 0.528              | 0.474<br>(0.475)   |
| ε                     | $\epsilon$ -Fe <sub>2</sub> N                                         | P-31m                                | 0.525<br>(0.519)   | _                  | 0.477<br>(0.472)   |

Таблица 1. Структурные типы, пространственные группы и оптимизированные параметры решетки полиморфных модификаций низшего карбида вольфрама W<sub>2</sub>C согласно FLAPW-GGA расчетам

\* В скобках приводятся экспериментальные данные [3].

слои атомов углерода и вакансий. "Промежуточные" структуры ( $\beta$ -,  $\varepsilon$ -W<sub>2</sub>C) содержат углеродные атомы и вакансии, с определенным порядком размещенные по всем плоскостям неметаллической подрешетки (рис. 1). Например, для  $\varepsilon$ -W<sub>2</sub>C перпендикулярно оси *с* попеременно чередуются неметаллические атомные плоскости (00z), в которых каждая вакансия окружена шестью атомами углерода или каждый атом углерода окружен шестью вакансиями; степень заполнения этих плоскостей атомами углерода составляет 2/3 и 1/3 соответственно. В структуре  $\beta$ -W<sub>2</sub>C все неметаллические атомные плоскости (00z) имеют одинаковое упорядоченное распределение атомов углерода и вакансий, степень заполнения их атомами C равна 1/2.

Указанные типы распределения зависят, в частности, от термических условий синтеза образцов  $W_2C$ : при повышенных температурах атомы углерода расположены в междоузлиях неупорядоченно, при понижении температуры наблюдается тенденция к их упорядочению [3].

При моделировании  $\alpha$ -,  $\beta$ -,  $\gamma$ - и  $\varepsilon$ -модификаций W<sub>2</sub>C мы воспользовались приводимыми в литературе [1–3]



**Рис. 1.** Типы распределений атомов углерода (темные кружки) и вакансий (квадраты) в плоскостях неметаллической подрешетки полиморфных модификаций W<sub>2</sub>C:  $1 - \gamma$ ,  $2 - \alpha$ ,  $3 - \beta$ ,  $4 - \varepsilon$ . Серыми кружками показаны позиции неметаллической подрешетки неупорядоченного  $\gamma$ -W<sub>2</sub>C, заполняемые атомами углерода статистически (с вероятностью 1/2).

данными об их вероятных кристаллографических типах и группах симметрии (табл. 1). Нужно отметить следующее: 1) большинство имеющихся сведений о структурах полиморфных модификаций W2C получено с привлечением методов рентгеновской дифракции (где точное определение позиций углерода невозможно), поэтому выводы таких работ не всегда находят подтверждение в нейтронографических исследованиях, см. [3]; 2) субкарбид W<sub>2</sub>C имеет достаточно широкую область гомогенности (от 25 до 33 at.% углерода), которая зависит также от температуры, поэтому принятые в "идеальных" моделях типы распределений атомов и вакансий углерода (степени заполнения узлов неметаллической подрешетки атомами С) могут значительно отклоняться от реальной ситуации; 3) упорядоченные и неупорядоченные модификации W2C часто сосуществуют друг с другом, а также с металлическим вольфрамом и высшим карбидом вольфрама WC.

Исходя из имеющихся данных, в наших расчетах принималось, что для ромбоэдрической модификации α-W<sub>2</sub>C (структурный тип анти-CdI<sub>2</sub>) два атома W занимают позиции 2 (d) с координатами (1/3; 2/3; 1/4) и (2/3; 1/3; 3/4), атом углерода — позицию 1 (*a*): (0; 0; 0), а позиция 1 (b): (0; 0; 1/2) вакантна. Для гексагональной модификации у-W<sub>2</sub>C (структурный тип  $W_2C$ ) атомы вольфрама располагаются в позициях 2 (c), а атомы углерода заполняют половину позиций (2) (а) в каждой из атомных плоскостей z = 0 и z = 1/2, перпендикулярных оси с, т.е. рассматривается равномерное чередование вакансий и атомов углерода. Промежуточная орторомбическая модификация β-W<sub>2</sub>C (структурный тип Mo<sub>2</sub>C или *ξ*-Fe<sub>2</sub>N) содержит атомы вольфрама в позициях 8 (d): (1/4; ~ 1/8; ~ 1/12), углерода — в позициях 4 (c): (0;  $\sim 3/8$ ; 1/4). Наконец, для тригональной модификации *ε*-W<sub>2</sub>C (структурный тип *ε*-Fe<sub>2</sub>N) атомы вольфрама занимают позиции 6k: (1/3; 0; 1/4), углерода — позиции 1 (*a*): (0; 0; 0) и 2 (*d*): (1/3; 2/3; 1/2), а позиции 1 (b): (0; 0; 1/2) и 2 (c): (1/3; 2/3; 0) остаются вакантными.

| W <sub>2</sub> C                                       | $E_{ m form}$ .         | Плотность состояний на уровне Ферми                                 |                         |                         | 12                   | γ                       |
|--------------------------------------------------------|-------------------------|---------------------------------------------------------------------|-------------------------|-------------------------|----------------------|-------------------------|
|                                                        |                         | C 2 <i>p</i>                                                        | W 5 <i>d</i>            | полная                  | · · ·                | λ                       |
| $egin{array}{c} lpha \ eta \ eta \ \gamma \end{array}$ | $0.19 \\ -0.02 \\ 0.02$ | 0.030<br>0.038<br>0.041                                             | 0.378<br>0.386<br>0.423 | 0.693<br>0.736<br>0.826 | 1.63<br>1.73<br>1.94 | 0.224<br>0.238<br>0.267 |
| ε                                                      | -0.04                   | $\begin{array}{c} 0.017(1); \ 0.037(2) \\ 0.018(3)^{*} \end{array}$ | 0.463                   | 0.892                   | 2.10                 | 0.289                   |

**Таблица 2.** Энергии формирования ( $E_{\text{form}}$ , eV/f.u.), полная и парциальные плотности на уровне Ферми ( $N(E_F)$ , states/eV · f.u.), коэффициенты низкотемпературной теплоемкости ( $\gamma$ , mJ/mol · k<sup>2</sup>) и величины парамагнитной восприимчивости Паули ( $\chi$ , 10<sup>-4</sup> emu/mol) полиморфных модификаций низшего карбида вольфрама W<sub>2</sub>C согласно FLAPW–GGA расчетам

\* Для трех типов неэквивалентных атомов (1-3) в структуре  $\varepsilon$ -W<sub>2</sub>C.

Таблица 3. Параметры зонного спектра (ширины зон, в eV) для полиморфных модификаций низшего карбида вольфрама W<sub>2</sub>C согласно FLAPW-GGA расчетам

| W <sub>2</sub> C | Тип зоны                    |                   |                                                    |                                           |  |
|------------------|-----------------------------|-------------------|----------------------------------------------------|-------------------------------------------|--|
|                  | общая ширина $(C 2s - E_F)$ | зона С 2 <i>s</i> | щель<br>С 2 <i>s</i> – С 2 <i>p</i> + W 5 <i>d</i> | валентная зона $C  2p + W  5d  (до  E_F)$ |  |
| α                | 14.77                       | 2.29              | 3.14                                               | 9.34                                      |  |
| β                | 14.83                       | 3.01              | 3.22                                               | 8.60                                      |  |
| γ                | 14.72                       | 2.88              | 3.28                                               | 8.56                                      |  |
| ε                | 14.89                       | 3.38              | 3.01                                               | 8.50                                      |  |

Фрагменты кристаллических решеток рассчитанных нами  $\alpha$ -,  $\beta$ -,  $\gamma$ - и  $\varepsilon$ -модификаций W<sub>2</sub>C представлены на рис. 2.

Расчеты зонной структуры всех модификаций W<sub>2</sub>C проведены полнопотенциальным методом присоединен-



**Рис. 2.** Фрагменты кристаллических структур рассчитанных полиморфных модификаций низшего карбида вольфрама W<sub>2</sub>C:  $\alpha$  (*a*),  $\beta$  (*b*),  $\gamma$  (*c*) и  $\varepsilon$  (*d*).

ных плоских волн (FLAPW, код WIEN2k) [18] с обобщенной градиентной поправкой (GGA) обменнокорреляционного потенциала [19]. Использованы исходные атомные конфигурации: W–[Xe] ( $6s^25d^4$ ), C–[He] ( $2s^22p^2$ ). Радиусы атомных сфер вольфрама и углерода приняты равными 1.96 и 1.74 а.u. соответственно. Точность расчета полной энергии кристаллов ( $E_{tot}$ ) при оптимизации геометрии систем была не хуже 0.001 mRy, число k точек в неприводимой части зоны Бриллюэна составляло около 100 — в зависимости от типа симметрии конкретной модификации. Плотности электронных состояний получены методом тетраэдров [20].

## 3. Результаты и обсуждение

Результаты расчетов суммированы в табл. 1-3 и на рис. 3, 4. Как видно из данных табл. 1, оптимизированные структурные параметры всех модификаций W<sub>2</sub>C, полученные в наших FLAPW-GGA вычислениях, разумно согласуются с имеющимися экспериментальными данными [3]; расхождение не превышает 2.5%.

Одним из важнейших является вопрос о взаимосвязи типа распределений атомов углерода в неметаллической подрешетке субкарбида вольфрама и относительной стабильности разных модификаций W<sub>2</sub>C. Проведенные FLAPW-GGA расчеты позволяют дать такого рода оценки. Для этого вычисляли энергии формирования субкарбидов W<sub>2</sub>C (*E*<sub>form</sub>) из простых реагентов (метал-

1368



Рис. 3. Энергетические зоны полиморфных модификаций низшего карбида вольфрама  $W_2C: \alpha(a), \beta(b), \gamma(c)$  и  $\varepsilon(d)$ .

лического ОЦК-вольфрама и углерода в форме графита  $(C^g)$ ) по формальным реакциям  $2W + C^g \rightarrow W_2C$  как

$$E_{\text{form}}(W_2C) = E_{\text{tot}}(W_2C) - \{2E_{\text{tot}}(W) + E_{\text{tot}}(C^g)\},\$$

где  $E_{tot}(W_2C)$ ,  $E_{tot}(W)$  и  $E_{tot}(C^g)$  — полные энергии субкарбидов вольфрама, металлического вольфрама и графита, полученные в самосогласованных FLAPW–GGA расчетах. При таком подходе отрицательные величины  $E_{form}$  указывают на энергетическую выгодность образования субкарбида вольфрама относительно механической смеси исходных реагентов; наоборот, при  $E_{form} > 0$ соответствующая модификация W<sub>2</sub>C должна быть отнесена к нестабильным системам. Как видно из полученных данных (табл. 2), двумя наиболее стабильными модификациями являются  $\varepsilon$ -W<sub>2</sub>C и  $\beta$ -W<sub>2</sub>C, энергии формирования которых (-0.04 и -0.02 eV/f.u. соответственно) близки по величине. Для  $\alpha$ -W<sub>2</sub>C  $E_{\text{form}} = +0.19 \text{ eV/f.u.}$  и эта кристаллическая модификация неустойчива. Для неупорядоченного субкарбида вольфрама  $\gamma$ -W<sub>2</sub>C  $E_{\text{form}} \sim 0$ , и, следовательно, этот субкарбид при низкой температуре является метастабильным. Действительно, согласно литературным данным [3], неупорядоченный карбид  $\gamma$ -W<sub>2</sub>C термодинамически равновесен при температуре от  $\sim 2300$  K вплоть до температуры плавления, а при температуре ниже 2000–2300 K  $\gamma$ -W<sub>2</sub>C испытывает последовательные



Рис. 4. Полные и парциальные плотности состояний полиморфных модификаций низшего карбида вольфрама W<sub>2</sub>C:  $\alpha$  (*a*),  $\beta$  (*b*),  $\gamma$  (*c*) и  $\varepsilon$  (*d*).

превращения беспорядок-порядок и порядок-порядок, образуя субкарбиды ε-W<sub>2</sub>C и β-W<sub>2</sub>C.

Таким образом, по нашим оценкам наиболее энергетически выгодными являются модификации W2C, отвечающие вариантам упорядочения атомов углерода и вакансий, которые реализуются: 1) в структуре є-W<sub>2</sub>C (последовательное чередование неметаллических атомных плоскостей (00z), когда каждая вакансия окружена шестью атомами углерода (или же каждый атом углерода — шестью вакансиями)); 2) в структуре  $\beta$ -W<sub>2</sub>C (равномерное, с вероятностью 1/2, распределение атомов углерода и вакансий во всех неметаллических атомных плоскостях (00z)). Максимально неустойчива кристаллическая структура *а*-W<sub>2</sub>C, включающая чередующиеся сетки атомов углерода и "сетки" вакансий. Очевидно, для *а*-W<sub>2</sub>C в равновесных условиях вполне вероятным будет процесс превращения по схеме  $\alpha$ -W<sub>2</sub>C  $\rightarrow$  W + WC.

Для оценки возможностей таких превращений субкарбида вольфрама необходимо выяснить устойчивость его полиморфных модификаций относительно высшего карбида WC. Поэтому в рамках единого метода (FLAPW–GGA) мы также провели расчеты обеих (гексагональной и кубической) модификаций монокарбида вольфрама (WC<sup>(h)</sup> и WC<sup>(c)</sup>) и по схеме реакции W + C<sup>g</sup>  $\rightarrow$  WC рассчитали энергии их формирования как

$$E_{\text{form}}(\text{WC}) = E_{\text{tot}}(\text{WC}) - \{E_{\text{tot}}(\text{W}) + E_{\text{tot}}(\text{C}^g)\}.$$

Согласно полученным данным, WC<sup>(h)</sup> является наиболее устойчивым карбидом вольфрама:  $E_{\rm form}(WC^{(h)}) = -0.339 \, {\rm eV/f.u.}$ , тогда как кубическая модификация монокарбида ( $E_{\rm form}(WC^c) = +0.562 \, {\rm eV/f.u.}$ ) наиболее нестабильна. В целом, полученные результаты позволяют расположить полиморфные модификации карбидов вольфрама (по уменьшению их устойчивости — по отношению к смеси вольфрама и графита) в следующий ряд:

$$WC^{(h)} > \varepsilon W_2C > \beta W_2C > \gamma W_2C > \alpha W_2C > WC^{(c)},$$

причем первые три карбида можно считать стабильными ( $E_{\rm form} < 0$ ), карбид  $\gamma$ -W<sub>2</sub>C — метастабильным ( $E_{\rm form} \sim 0$ ), тогда как  $\alpha$ -W<sub>2</sub>C и WC<sup>(c)</sup> оказываются нестабильными ( $E_{\rm form} > 0$ ). Следует учесть, что расчеты  $E_{\rm form}$  выполнены при нулевых внешних давлении и температуре (P = T = 0).

Обратимся к описанию электронных свойств  $\alpha$ -,  $\beta$ -,  $\gamma$ - и  $\varepsilon$ -модификаций W<sub>2</sub>C, зонные структуры которых представлены на рис. 3. Видно, что характерным элементом спектров всех модификаций W<sub>2</sub>C является группа низкоэнергетических зон, расположенных в энергетическом интервале от -15 до -12 eV ниже уровня Ферми ( $E_{\rm F} = 0$  eV), составленных в основном 2*s*-состояниями углерода. Эти квазиостовные C2*s*-зоны отделены от группы занятых зон, примыкающих к уровню Ферми, в составе которых доминируют C 2*p*- и W 5*d*-состояния.

Верхние занятые и нижние вакантные зоны образованы преимущественно вкладами W 5*d*-состояний с незначительными примесями C 2*p*-состояний. Уровень Ферми расположен в области W 5*d*-подобных зон, определяя металлоподобные свойства всех модификаций W<sub>2</sub>C.

Параметры электронного спектра  $\alpha$ ,  $\beta$ ,  $\gamma$  и  $\varepsilon$  W<sub>2</sub>C представлены в табл. 3, откуда видно, что тип упорядочения атомов углерода довольно слабо влияет на ширины отдельных полос их спектров. Так, общая ширина заполненной зоны (от нижнего края C 2*s*-полосы до  $E_F$ ) в зависимости от типа упорядочения атомов углерода меняется не более чем на 0.17 eV, ширина запрещенной щели (между C 2*s*- и гибридной C 2*p*-W 5*d*-зонами) — не более чем на 0.27 eV.

Более детально электронные состояния  $\alpha$ -,  $\beta$ -,  $\gamma$ - и  $\varepsilon$ -субкарбидов обсудим, учитывая их плотности состояний, рис. 4. Видно, что в область С 2*s*-зон (в интервале от -15 до -12 eV ниже  $E_F$ ) незначительный вклад вносят валентные *s*-, *p*-, *d*-состояния вольфрама. Общая гибридная *p*-*d*-полоса (расположенная в интервале от -9 eV до  $E_F$ ) по своему составу отчетливо делится на две части: нижняя (от -9 до -4.5 eV) содержит преобладающие вклады С 2*p*-состояний, ответственные за ковалентные *p*-*d*-связи W-C, тогда как верхняя часть (от -4.5 eV до  $E_F$ ) включает в основном вклады W 5*d*-состояний, организующие W–W-связи в металлической подрешетке W<sub>2</sub>C.

Как отмечалось, для всех модификаций W2C уровень Ферми пересекает W 5d-подобные зоны, т.е. субкарбиды обладают металлической проводимостью. В табл. 2 приводятся величины полных и парциальных плотностей состояний на уровне Ферми  $N(E_F)$ . Видно, что максимальные вклады в  $N(E_F)$  всех модификаций  $W_2C$ обеспечивают W 5*d*-состояния. Для рассмотренных α-, β-, γ- и ε-субкарбидов тип распределения углеродных атомов оказывает заметное влияние на величины  $N(E_F)$ , различия между которыми достигают 30%. Максимальное значение  $N(E_F)$  установлено для наиболее устойчивого *є*-W<sub>2</sub>C. В этой же таблице приведены результаты расчетов характеристик субкарбидов, непосредственно связанных с величной  $N(E_F)$ , — коэффициентов низкотемпературной теплоемкости (у, константы Зоммерфельда) и парамагнитной восприимчивости Паули  $\chi$  в модели свободных электронов:  $\gamma = (\pi^2/3)N(E_F)k_B^2$  и  $\chi = \mu_{\rm B}^2 N(E_F)$ . Видно, что оба параметра ( $\gamma$  и  $\chi$ ) уменьшаются в ряду  $\varepsilon$ -W<sub>2</sub>C >  $\gamma$ -W<sub>2</sub>C >  $\beta$ -W<sub>2</sub>C >  $\alpha$ -W<sub>2</sub>C.

## 4. Заключение

Впервые в рамках единого неэмпирического зонного метода FLAPW-GGA проведены систематические исследования электронного строения и ряда свойств всех известных полиморфных модификаций ( $\alpha$ ,  $\beta$ ,  $\gamma$  и  $\varepsilon$ ) низшего карбида вольфрама W<sub>2</sub>C.

Установлено, что все модификации W<sub>2</sub>C являются немагнитными металлами. Плотность состояний на уровне Ферми, а также коэффициенты низкотемпературной теплоемкости и парамагнитная восприимчивость Паули субкарбидов уменьшаются в ряду  $\varepsilon$ -W<sub>2</sub>C >  $\gamma$ -W<sub>2</sub>C >  $\beta$ -W<sub>2</sub>C >  $\alpha$ -W<sub>2</sub>C.

Валентные спектры всех субкарбидов вольфрама подобны и содержат две разделенные запрещенной щелью группы C 2s- и C 2p-W 5*d*-зон; состояния последней ответственны за образование связей C-W и W-W.

Выполненные оценки энергий формирования показали, что стабильность полиморфных модификаций субкарбидов вольфрама уменьшается в ряду  $\varepsilon$ -W<sub>2</sub>C >  $\beta$ -W<sub>2</sub>C >  $\gamma$ -W<sub>2</sub>C >  $\alpha$ -W<sub>2</sub>C, причем для двух последних ( $\gamma$ -W<sub>2</sub>C и  $\alpha$ -W<sub>2</sub>C) энергии формирования положительны, что указывает на нестабильность этих модификаций относительно механической смеси исходных реагентов (вольфрама и углерода).

Работа выполнена при поддержке РФФИ, проект 08-08-00034.

#### Список литературы

- [1] Дж. Гольдшмидт. Фазы внедрения. Мир, М. (1971). Т. 1.
- [2] Свойства, получение и применение тугоплавких соединений. Справочник / Под ред. Т.Я. Косолаповой. Наук. думка, Киев (1986).
- [3] А.С. Курлов, А.И. Гучев. Успехи химии 75, 687 (2006).
- [4] А.Л. Ивановский, В.П. Жуков, В.А. Губанов. Электронное строение тугоплавких карбидов и нитридов переходных металлов. Наука, М. (1990).
- [5] L.F. Mattheiss, D. Hamann. Phys. Rev. B 30, 1731 (1984).
- [6] V.P. Zhukov, V.A. Gubanov. Solid State Commun. 56, 51 (1985).
- [7] A.Y. Liu, R.M. Wentzcovitsh, L.M. Cohen. Phys. Rev. B 38, 9483 (1988).
- [8] D.L. Price, B.R. Cooper. Phys. Rev. B 39, 4945 (1989).
- [9] M. Rajagopalan, P. Saigeetha, G. Kalpana, B. Palanivel. Jpn. J. Appl. Phys. 33, 1847 (1994).
- [10] A.L. Ivanovskii, N.I. Medvedeva. Mendeleev Commun. 1, 10 (2001).
- [11] Н.И. Медведева, А.Л. Ивановский. ФТТ 43, 469 (2001).
- [12] A. Klimpel, L.A. Dobrzanski, A. Lisiecki, D. Janicki. J. Mater. Process. Technol. 164, 1068 (2005).
- [13] T. Li, Q. Li, J.Y.H. Fuh, P.C. Yu, C.C. Wu. Mater. Sci. Eng. A 430, 113 (2006).
- [14] M.F. Morks, Y. Gao, N.F. Fahim, F.U. Yinquing. Mater. Lett. 60, 1049 (2006).
- [15] Y. Ishikawa, H. Jinbo, H. Yamanaka. Jpn. J. Appl. Phys. 45, L 50 (2006).
- [16] А.И. Гусев, А.С. Курлов. Письма в ЖЭТФ 85, 34 (2007).
- [17] C.H. Liang, F.P. Tian, Z.B. Wei, Q. Xin, C. Li. Nanotechnology 14, 955 (2003).
- [18] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz. WIEN2k. An augmented plane wave plus local orbitals program for calculation crystal properties. Tech. Univ. Wien, Wien (2001).
- [19] J.P. Perdew, S. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3965 (1996).
- [20] P.E. Blochl, O. Jepsen, O.K. Anderson. Phys. Rev. B 49, 16 223 (1994).