14

Наномеханическое управление активностью ферментов, иммобилизованных на однодоменных магнитных наночастицах

© Ю.И. Головин,^{1,2} С.Л. Грибановский,¹ Н.Л. Клячко,² А.В. Кабанов^{2,3}

¹ Наноцентр, Тамбовский государственный университет им. Г.Р. Державина,

392000 Тамбов, Россия

² Московский государственный университет им. М.В. Ломоносова,

119991 Москва, Россия

³ Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy,

University of North Carolina at Chapel Hill, NC, USA

e-mail: golovin@tsu.tmb.ru

(Поступило в Редакцию 11 ноября 2013 г.)

Аналитически и численно проанализированы основные закономерности деформации биоактивных макромолекул, вызванные действием негреющего низкочастотного магнитного поля на однодоменные магнитные наночастицы, к поверхностям которых макромолекулы прикреплены химически.

В последнее десятилетие предприняты большие усилия в направлении оптимизации характеристик однодоменных магнитных наночастиц (ОМНЧ), предназначенных для использования в терапии раковых заболеваний методом гипертермии в радиочастотном ($\omega = 10^6 - 10^7 \text{ s}^{-1}$) магнитном поле [1–3]. ОМНЧ при этом играют роль центров диссипации энергии переменного магнитного поля (ПМП), что вызывает разогрев опухолевой ткани до температуры $T \approx 43-45^{\circ}$ С, апоптоз клеток и их последующую абляцию. Трудности дозирования и локализации перегрева, опасность повреждения и некроза здоровых тканей (при $T \ge 45^{\circ}$ С) затрудняют широкое клиническое применение магнитной гипертермии [4,5].

В [6,7] предложен и описан новый подход к дистанционному воздействию на клеточные мембраны и управлению химической активностью биомакромолекул (в частности, ферментов), иммобилизованных на ОМНЧ. Он основан на приведении ОМНЧ, входящих в состав наносуспензии, во вращательно-колебательное движение путем наложения ПМП низкой частоты ($\omega = 10^1 - 10^4 \, {\rm s}^{-1}$). Это вызывает деформацию прикрепленных к ОМНЧ макромолекул (ММ) и, как следствие, изменение их функциональных свойств в отсутствие какого-либо нагрева. Обсуждаемый подход обладает большим инновационным потенциалом в приложениях адресной доставки и дистанционного контроля активности лекарств [8-11], а также их регулируемого высвобождения из носителей [12-14], что имеет широкие перспективы практического применения в терапии различных заболеваний, в том числе раковых. Ключевая идея этого подхода восходит к представлениям о том, что деформация может привести к существенному изменению межатомных расстояний в активных центрах ММ и при достаточных приложенных силах к изменению ее вторичной и третичной структур [15,16]. Подобно влиянию света, температуры, давления, рН и т.п. деформация ММ способна вызвать радикальные перемены в биохимических функциях биокатализаторов и ингибиторов [17–19], что многократно было доказано экспериментально методами силовой спектроскопии одиночных молекул [20–22]. В этой связи актуальной становится оптимизация параметров как внешнего поля, так и управляемых им структур с целью обеспечения наиболее эффективного преобразования действия ПМП в деформацию биоактивных MM, а не в теплоту.

В работе представлены результаты анализа закономерностей продольной деформации растяжения ММ ферментов на основе численного и аналитического решений уравнений движения ОМНЧ в ПМП. В частности, рассмотрена динамика агрегатов, состоящих из двух ОМНЧ и белковой ММ, которая соединена с ними двумя линкерами (рис. 1). Эта простейшая система, способная вызвать растяжение молекулы фермента за счет вращения ОМНЧ с первоначально хаотически ори-

Рис. 1. ОМНЧ с присоединенными макромолекулами фермента через молекулярные линкеры: a — вид одиночной частицы; b — вариант расположения агрегата из двух ОМНЧ, связанных мостиком "линкер-энзим-линкер" с антипараллельными магнитными моментами в отсутствие внешнего магнитного поля; c — агрегат в движении при появлении внешнего поля **В**, относительно силовых линий которого магнитные моменты ОМНЧ ориентированы симметрично.

ентированными магнитными моментами, вызываемого стремлением к магнитному упорядочению среды во внешнем ПМП. Анализ динамики этой системы также позволяет понять на качественном уровне закономерности, справедливые для более сложных агрегатов, содержащих три и более связанных магнитных частиц. В расчетах принято, что ОМНЧ содержат магнитное ядро радиусом R_m и удельной намагниченностью J_s , покрытое золотой оболочкой толщиной δ , к которой ковалентно пришиты линкеры длиной l_B . Система уравнений, описывающих движение каждой ОМНЧ под действием внешнего ПМП, имеет следующий вид:

$$m\ddot{\mathbf{r}} = \mathbf{F} - 6\pi\eta R_{HD}\dot{\mathbf{r}},\tag{1}$$

$$I\ddot{\varphi} = \mu B\sin(\omega t)\sin\theta - M - 8\pi\eta \cdot \frac{4}{3}\pi R_{HD}^3 \cdot \dot{\varphi}.$$
 (2)

Здесь r — радиус-вектор центра частицы, φ — угол ее поворота относительно первоначального положения, $\theta = \theta_0 - \phi$ — угол между векторами магнитной индукции В и магнитного момента частицы µ, $R_{\mathrm{Au}} = R_m + \delta$ — радиус золотой оболочки частицы, $R_{HD} = R_m + \delta + l_B$ — ее гидродинамический радиус, $m = \frac{4}{3}\pi \left(R_m^3 \cdot \rho_m + \left(R_{Au}^3 - R_m^3\right) \cdot \rho_{Au}\right)$ — масса ОМНЧ, $I = \frac{2}{5} \cdot \frac{4}{3}\pi \left(R_m^5 \cdot \rho_m + \left(R_{Au}^5 - R_m^5\right) \cdot \rho_{Au}\right)$ — момент инерции, $\mu = J_s \cdot \rho_m \cdot \frac{4}{3} \pi R_m^3$ — магнитный момент частицы, ρ_m и ρ_{Au} — плотности соответственно магнитного ядра и золотой оболочки, J_s — удельная намагниченность магнитного ядра ОМНЧ, В_а — амплитудное значение индукции магнитного поля, v — вязкость окружающей жидкости, $F = c\Delta l$ — сила реакции связи, где $\frac{1}{c} = \frac{2}{c_B} + \frac{1}{c_E}$ (*c*_B и *c*_E — жесткости молекул-линкеров и белковой молекулы соответственно), $\Delta l = l - l_0$ полное удлинение связи (если $\Delta l < 0$, то принимается, что F = 0), M — момент силы, действующей на частицу со стороны связи. Если имеет место наматывание связи на частицу, то $M = FR_{\mathrm{Au}}$, в ином случае $M = FR_{\mathrm{Au}}\sin\alpha$ (*а* — угол между вектором **F** и радиус-вектором из центра частицы к точке приложения этой силы).

Роль вязкого сопротивления среды при вращательном движении становится существенной, лишь когда момент сил трения и момент сил от действия ПМП, т.е. первый и третий члены в уравнении (2), становятся сопоставимыми. Отсюда для типичных размеров ОМНЧ магнетита ($R_m = 5 - 10 \,\mathrm{nm}, J_s = 80 \,\mathrm{A} \cdot \mathrm{m}^2/\mathrm{kg}$), золотой оболочки ($\delta \sim 5 \,\mathrm{nm}$) и линкеров ($l_B = 0.5 - 2 \,\mathrm{nm}$), а также ПМП с индукцией $B_a = 0.1 - 1$ Т следует характерное значение частоты $\omega_{HD} \sim (10^2 - 10^3) \eta^{-1} \, {
m s}^{-1}$, выше которой магнитомеханическое преобразование становится неэффективным. Для растворов с вязкостью, близкой к вязкости воды $\eta_{\rm H_2O} \sim 10^{-3} \, {\rm Pa} \cdot {\rm s}, \; \omega_{HD} \sim 10^5 - 10^6 \, {\rm s}^{-1}.$ Если концентрация ОМНЧ в суспензии высока и они находятся в агрегированном состоянии, эффективная вязкость среды $\eta_{\rm eff}$ может существенно превышать вязкость воды, а ω_{HD} при этом уменьшится в $\eta_{eff}/\eta_{H_{2}O}$ раз.

Для оценки роли инерционных сил при вращательном движении ОМНЧ найдем характерную частоту ω_1 , при

которой левая часть уравнения (2) станет соизмерима с активным действующим моментом $I\ddot{\varphi} \approx \mu B_a$. С учетом того, что $\ddot{\varphi} \cong \omega^2$, получим для типичных параметров системы $\omega_1 \sim \sqrt{\mu B_a/I} \approx 10^5 - 10^6 \text{s}^{-1}$. Таким образом, инертными свойствами частиц, так же как и вязким сопротивлением среды, в диапазоне частот $\omega \lesssim 10^4 \text{ s}^{-1}$ можно пренебречь.

Анализ уравнений (1), (2) показывает, что при любой разумной длине линкеров ($l_B \leq R_{Au}$) ОМНЧ при появлении внешнего поля быстро приходят в соприкосновение под действием сил реакции связей. Время их сближения зависит от основных параметров системы следующим образом:

$$\tau \sim \sqrt{\frac{\eta \cdot R_{\rm Au} \cdot R_{HD} \cdot s}{\omega \cdot \mu \cdot B_a \sin \theta}},\tag{3}$$

где $s \approx l_E + 2l_B$ — начальное расстояние между ОМНЧ. Величина τ , нормированная на период колебаний внешнего ПМП ($T = 2\pi/\omega$), пропорциональна $\sqrt{\omega}$. При $\omega \sim 10^4 \,\mathrm{s}^{-1} \,\tau/T \sim 10^{-2}$. Сила, вызывающая растяжение связи в этом процессе, обусловлена наличием вязкого сопротивления жидкости поступательному движению ОМНЧ. Ее максимальное значение $F_{\rm max} \sim \eta \omega \tau$ с учетом (2), также растет с частотой как $\sqrt{\omega}$ и составляет $\sim 0.1 \,\mathrm{pN}$ при $\omega \sim 10^4 \,\mathrm{s}^{-1}$.

Из вышесказанного следует, что для расчета возникающих в системе деформаций достаточно рассмотреть задачу, когда две ОМНЧ изначально находятся в соприкосновении друг с другом, а деформирующие силы возникают за счет взаимного отталкивания ОМНЧ при их вращении во внешнем поле. Тогда в пренебрежении силами вязкости и инерции уравнение (2) принимает вид

$$M = \mu B_a \sin(\omega t) \sin(\theta_0 - \varphi). \tag{4}$$

Поскольку $M \sim c R_{Au}^2$, из уравнения (4) напрямую следует, что безразмерный параметр $\lambda = \frac{\mu B_a}{c R_{Au}^2}$, отражающий соотношение характерных значений моментов сил магнитного поля и реакции связи, полностью определяет движение рассматриваемых систем при известной начальной ориентации векторов μ .

Для агрегатов с размерами отдельных компонентов, которые приводились выше, наиболее вероятна конфигурация, в которой связывающая цепь закреплена в точках, близких к оси, соединяющей центры ОМНЧ. Рассмотрим частный случай, когда магнитные моменты ОМНЧ одинаковы по абсолютной величине и в исходном состоянии ориентированы симметрично относительно силовых линий поля (рис. 1, *b*, *c*). В этом случае частицы при вращении будут катиться по поверхности друг друга без проскальзывания, а их центры останутся неподвижными. На рис. 2 приведены зависимости угла поворота ОМНЧ от времени при различных значениях параметра λ и различных начальных положениях магнитного момента θ_0 . Видно, что при $\lambda \gg 1$, когда жесткость связи можно считать исчезающе малой, ОМНЧ

ведет себя как свободная частица. При этом периодически она совершает скачкообразный поворот на угол, при котором векторы μ и **В** становятся коллинеарными. При $\lambda \leq 1$ (жесткая связь) поворот ОМНЧ происходит на небольшой угол, пропорциональный мгновенному значению *B*. Как видно из рис. 3, максимальные силы F_{max} и деформации Δl_{max} в системе достаточны для индуцирования конформационных изменений в ММ [21].

Увеличение толщины золотой оболочки δ приводит к падению F_{max} , а также уменьшению Δl_{max} при $B_a/c \lesssim 3 \text{ T} \cdot \text{m/N}$ и увеличению Δl_{max} при $B_a/c \gtrsim 3 \text{ T} \cdot \text{m/N}$.

В более общих случаях, чем описано выше, расчет деформаций усложняется вследствие возникновения вращательного движения системы в целом. Растяжение ММ при этом также будет иметь место, однако его величина и длительность уменьшатся и будут определяться соотношением характерных релаксационных времен системы и отдельных ОМНЧ, входящих в ее состав. При определенных начальных положениях магнитных моментов, когда обе ОМНЧ вращаются в одну сторону, ММ может оказаться зажатой между ними. В этом случае, помимо продольных деформаций растяжения, возможны иные виды деформаций (сжатия, сдвига, кручения), которые также могут привести к существенным изменениям

Рис. 2. Зависимость угла поворота одной ОМНЧ в составе агрегата под действием внешнего магнитного поля **В** в зависимости от времени при симметричной относительно силовых линий поля начальной ориентации магнитных моментов μ ОМНЧ с начальным углом θ_0 , равным: $a - 90^\circ$, $b - 135^\circ$. Значения параметра λ : I - 0.01, 2 - 0.1, 3 - 1/3, 4 - 1, 5 - 3, 6 - 10, 7 - 100.

Рис. 3. Сила и деформация связи "линкер-фермент-линкер", вызванные воздействием ПМП в зависимости от основных параметров системы: a — зависимость максимально достижимой силы, приложенной к связи, от магнитного радиуса ОМНЧ при следующих значениях амплитуды магнитного поля, Т: I = 0.03, 2 = 0.1, 3 = 0.3, 4 = 0.6, 5 = 1 Т, b — зависимость максимальной деформации связи от соотношения B_a/c при значениях магнитного радиуса, nm: I = 3, 2 = 5, 3 = 7, 4 = 10, 5 = 15 ($\delta = 5$ nm, $\theta_0 = 90^\circ, l_B = 0.5$ nm).

внутренней структуры ММ, однако рассмотрение таких случаев выходит за рамки нашей работы.

Таким образом, в работе показано, что:

• использование ОМНЧ в качестве преобразователей действия низкочастотного негреющего ПМП в деформацию прикрепленных к их поверхности ММ позволяет при правильном подборе параметров системы получить силы, прикладываемые к ММ, достаточные для изменения топологии ее активных центров и вторичной/третичной структуры [21,22],

• при частотах $\omega \lesssim 10^4 \, {\rm c}^{-1}$ влиянием инерции и вязкости на динамику процесса растяжения можно пренебречь,

• пара ОМНЧ, связанная цепью "линкер-ферментлинкер", приходит в контакт за время, не превышающее 10^{-2} периода колебаний внешнего ПМП (при $\omega \lesssim 10^4 \, {\rm c}^{-1}$),

• общая деформация связи между двумя ОМНЧ полностью определяется безразмерным параметром

 $\lambda = \frac{\mu B_a}{c R_{Au}^2}$, отражающим соотношение магнитных сил и сил реакции связи,

• для эффективного деформирования ММ необходимо применять короткие линкеры, жесткость которых значительно превышает жесткость ММ.

Список литературы

- Magnetic Nanoparticles. From Fabrication to Clinical Application (Ed. N.T.K. Thanh). CRC Press, Boca Raton. 2012. 584 p.
- [2] Reddy L., Areas J.L., Nicolas J., Couvreur P. // Chem. Rev. 2012. Vol. 112. P. 5818–5878.
- [3] Yoo D., Jeong H., Preihs C., Choi J., Shin T.-H., Sessler J.L., Cheon J. // Angewand. Chem. Int. Ed. 2012. Vol. 51. P. 12482-12485.
- [4] Jeyadevan B. // J. Ceram. Societ. J. 2010. Vol. 118. N 6. P. 391–401.
- [5] Milani V., Lorenz M., Weinkauf M., Rieken M., Pastore A., Dreyling M., Issels R. // Int. J. Hyperthermia. 2009. Vol. 25. N 4. P. 262–272.
- [6] Klyachko N.L., Sokolsky-Papkov M., Pothayee N., Efremova M.V., Gulin D.A., Kuznetsov A.A., Majouga A.G., Riffle J.S, Golovin Y.I., Kabanov A.V. // Angewand. Chem. Int. Ed. 2012. Vol. 51. P. 12016–12019.
- [7] Головин Ю.И., Клячко Н.Л., Головин Д.Ю., Ефремова М.В., Самодуров А.А., Сокольски-Папков М., Кабанов А.В. // Письма в ЖТФ. 2013. Т. 39. № 5. С. 24–32.
- [8] Mahmoudi M., Sant S., Wang B., Laurent S., Sen T. // Advanced Drug Delivery Rev. 2011. Vol. 63. P. 24–46.
- [9] Veiseh O., Gunn I.W., Zhang M. // Advanced Drug Delivery Rev. 2010. Vol. 62. P. 284–304.
- [10] Lacroix L.-M., Ho D., Sun S. // Current Topics in Medical Chem. 2010. Vol. 10. N 12. P. 1184–1197.
- [11] Cherukuri P, Glazer E.S., Curley S.A. // Advanced Drug Delivery Rev. 2010. Vol. 62. P. 339–345.
- [12] Amstad E., Kohlbrecher J., Muller E., Schweizer T., Textor M., Reimhult E. // Nano Lett. 2011. Vol. 11. N 4. P. 1664–1670.
- [13] Domenech M., Marrero-Berrios I., Torres-Lugo M., Rinaldi C. // ACS Nano. 2013. Vol. 7. P. 5091–5101.
- [14] Hanus J., Ullrich M., Dohnal J., Singh M., Stepanek F. // Langmuir. 2013. Vol. 29. N 13. P. 4381–4387.
- [15] Berezin I.V., Klibanov A.M., Martinek K. // Biochim. Biophys. Acta. 1974. Vol. 364. P. 193–198.
- [16] Klibanov A.M., Samokhin G.P., Martinek K., Berezin I.V. // Biochim. Biophys. Acta. 1976. Vol. 438. N 1. P. 1–12.
- [17] Puchner E.M., Gaub H.E. // Annu. Rev. Biophys. 2012. Vol. 41. P. 497–518.
- [18] Herschlag D., Natarajan A. // Biochemistry. 2013. Vol. 52.
 P. 2050–2067.
- [19] Danielsson J., Awad W., Saraboji K., Kurnik M., Lang L., Leinartaite L., Marklund S.L., Derek T., Logan D.T., Oliveberg M. // PNAS. 2013. Vol. 110. P. 3829–3834.
- [20] Single Molecule Dynamics in Life Science / Eds by T. Yanagida, Y. Ishii. Wiley VCH Verlag, Wienheim, 2009. 328 p.
- [21] Handbook of molecular Force Spectroscopy / Ed. by A. Noy. Springer, 2008. 326 p.
- [22] Neuman K.E., Nagy A. // Rev. Nature Methods. 2008. V. 5. N 6. P. 491–505.