09

Исследование электрофизических характеристик форменных элементов крови методом внутрирезонаторной лазерной спектроскопии. І. Моделирование светорассеяния на ансамбле биологических клеток со сложной структурой

© К.Г. Куликов

Санкт-Петербургский государственный политехнический университет, 195251 Санкт-Петербург, Россия e-mail: kulikov_kg@hotbox.ru

(Поступило в Редакцию 30 сентября 2013 г.)

Исследованы оптические характеристики ансамбля произвольно ориентированных частиц, помещенных в полость оптического резонатора. Исследования основаны на самосогласованном сопряжении по неоднородным оптическим резонаторам с результатами рассеяния на ансамбле произвольно ориентированных в пространстве сферических частиц различного размера и структуры. В итоге построена новая электродинамическая модель взаимодействия лазерного излучения с клетками крови с учетом их строения для возможного прогнозирования оптических свойств (случай *in vito*).

Введение

В последнее время лазерные технологии активно используются для решения широкого класса задач в различных областях науки и техники от физики и химии до биологии и медицины. Здесь лазерные источники используются для диагностики, терапии или хирургических операций.

Для решения этих задач в первую очередь выбирают наиболее информативные показатели, характеризующие жизнедеятельность организма. К таким показателям относятся, в частности, результаты анализа периферической крови, ибо периферическая кровь, омывающая все органы и ткани организма, несет достаточно полную информацию о его состоянии. Комплексное изучение характеристик светорассеяния и поглощения позволяет быстро, интактно обнаруживать физиологические и морфологические изменения в клетках, обусловленные температурными, химическими воздействиями и т.д.

Как известно, кровь состоит из следующих форменных элементов [1,2]: лейкоцитов, эритроцитов и тромбоцитов. Исследование оптических свойств этих биологических объектов позволяет решить ряд важных проблем для диагностики различных патологических процессов, протекающих в организме. Прежде чем разрабатывать математическую модель описания взаимодействия лазерного излучения со сложно структурированными клетками крови, необходимо рассмотреть их геометрическое строение.

Начнем с клеток, концентрация которых в крови наибольшая — эритроцитов. Эритроцит — клетка, имеющая особую форму двояковогнутого диска. В клетке нет ядра, а большую часть цитоплазмы эритроцита занимает специфический белок — гемоглобин. В норме 70-80% эритроцитов имеют сферическую двояковогнутую форму, а остальные 20-30% могут быть различной формы. Например, простая сферическая, овальная, чашеобразная и т.д. Форма эритроцитов может нарушаться при различных заболеваниях, например эритроциты в форме серпа характерны для серповидно-клеточной анемии.

Лейкоциты — большой класс клеток крови, который включает в себя несколько разновидностей, а именно лейкоциты делятся на гранулоциты (имеют зернистость, гранулы) и агранулоциты (не имеют гранул). К гранулоцитам относятся: нейтрофилы, эозинофилы, базофилы.

Нейтрофил имеет округлую форму и необычную форму ядра. Ядро его представляет собой палочку. Нейтрофил с ядром в форме палочки (палочкоядерный) — это "молодая" клетка, а с сегментарным ядром (сегментоядерный) — "зрелая" клетка. В крови большинство нейтрофилов сегментоядерные (до 65%), плоскоядерные в норме составляют лишь до 5%.

Эозинофил, как и нейтрофил, имеет округлую форму и палочковидную или сегментарную форму ядра. Гранулы, расположенные в цитоплазме данной клетки, достаточно крупные, одинакового размера и формы.

Базофил имеет округлую форму, палочкоядерное или сегментоядерное ядро. В цитоплазме содержатся различные по величине и форме гранулы.

Агранулоциты включают следующие виды клеток: моноциты, лимфоциты.

Моноцит является агранулоцитом, т. е. в данной клетке отсутствует зернистость. Это крупная клетка, близкой к треугольной формы, имеет большое ядро, которое бывает округлой или бобовидной формы и т. д.

Лимфоцит — округлая клетка различных размеров, имеющая крупное круглое ядро. Лимфоцит образуется из лимфобласта в костном мозгу, так же как и другие клетки крови, несколько раз делится в процессе созревания.

Рис. 1. Линейный резонатор с образцом биоткани, моделирующей форменные элементы крови.

Тромбоциты — маленькие клетки круглой или овальной формы, не имеющие ядра. В работе построена электродинамическая модель взаимодействия лазерного излучения с клетками крови для возможного прогнозирования их электрофизических свойств. Наиболее эффективным подходом, позволяющим исследовать процессы в сложных биосистемах, являются оптические внутрирезонаторные методы.

Пусть в некоторой окрестности оси Z в области Ω линейного резонатора расположена кювета с образцом биоткани, моделирующей форменные элементы крови (рис. 1). Мы предполагаем, что частицы, моделирующие форменные компоненты крови, в частности эритроциты, имеют сферическую форму, что можно рассматривать как первое приближение; при этом остальные элементы крови мы будем описывать сферой с неконцентрическим включением. Размеры частиц больше длины волны падающего поля, т.е. $ka^j > 1$, где a^j — радиус частицы с номером ј. Пусть при этом на группу частиц с радиусами *a^j* и с комплексным показателем преломления $N^{j} = n^{(o)j} + i\chi^{j}$, где j — номера частиц, падает плоская линейно поляризованная электромагнитная волна. Направление падающей волны произвольно. Совокупность частиц рассматривается в 3-мерной системе координат, начало которой расположено в центре частицы с некоторым номером *j*₀. Радиус-вектор любой другой *j*-частицы обозначим через **r**_{*i*₀, *j*}. В данной постановке рассматривается только простая гармоническая зависимость от времени с угловой частотой ω , причем множитель $\exp(-\omega t)$ всюду опускается.

Поле в окрестности частицы с номером *j*₀, искаженное присутствием других частиц, определяется из уравнений Максвелла

$$\operatorname{rot} \mathbf{H} = ik\mathbf{R}, \operatorname{rot} \mathbf{E} = -ik\mathbf{H}, \operatorname{div} \mathbf{E} = 0, \operatorname{div} \mathbf{H} = 0,$$

где *k* — волновое число. Требуется найти решение на собственные колебания оптического резонатора, в полости которого расположена совокупность рассеивающих частиц со сложной структурой.

Работа состоит из нескольких разделов. В первом разделе рассмотрена проблема рассеяния на частице при смещении ядра относительно центра. В виду того, что

расположение ядра в клетке не постоянное, в частности в молодых и эсбриональных клетках оно часто находится в центре, а по мере роста клетки и усиления в ней процессов обмена веществ положения ядра может измениться, при этом ядро всегда погружено в цитоплазму.

Во втором и третьем разделах решена задача многократного рассеяния на ансамбле сфер, при помощи которой моделируется биологическая среда (форменные элементы крови), которая помещена в полость оптического резонатора. При этом самосогласованно учитывается многократное рассеяние на совокупности частиц с неконцентрическим включением и соответственно предложено решение для собственных частот оптического резонатора с кюветой частиц, имеющих сложную структуру.

1. Рассеяние на частице со смещенным ядром

Особый практический интерес представляет решение задачи рассеяния на частице при смещении ядра относительно центра, так как центральное положение ядра рассмотрено в ряде работ [3–5].

Таким образом, в данном разделе рассмотрена проблема рассеяния на биологических частицах, в частности форменных элементов крови, имеющих сферическую форму со сложной структурой, ибо возможно наличие ядра и цитоплазмы. При этом наличием клеточной мембраны мы пренебрегаем, так как она очень тонкая и не оказывает значительного влияния на процесс рассеяния света.

Геометрия рассеяния представлена на рис. 2, где *а* — радиус ядра клетки, *b* — радиус цитоплазмы.

Запишем разложение падающей волны на поверхность *j*-частицы по векторным сферическим гармоникам. В ре-

Рис. 2. Рассеяние на сферической частице с неконцентрическим включением.

зультате получим

$$\mathbf{E}_{i}(j) = \sum_{n=1}^{\infty} \sum_{m=-n}^{n} E_{nm} [p_{nm}^{j} \mathbf{N}_{nm}^{1} + q_{nm}^{j} \mathbf{M}_{nm}^{1}], \qquad (1)$$

$$\mathbf{H}_{i}(j) = \frac{k}{\omega\mu} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} E_{nm} [q_{nm}^{j} \mathbf{N}_{nm}^{1} + p_{nm}^{j} \mathbf{M}_{nm}^{1}].$$
(2)

Запишем выражение для рассеянного поля на *j*-частице. Рассеянное поле на больших расстояниях от частицы должно быть сферической расходящейся волной. Поэтому используем функции $h_n^{(1)}$, где

$$h_n^{(1)} \sim (-i)^n \exp[ikr]/[ikr], \quad kr \gg n^2.$$

Тогда имеем

$$\mathbf{E}_{s}(j) = \sum_{n=1}^{\infty} \sum_{m=-n}^{n} E_{nm} [a_{nm}^{j} \mathbf{N}_{nm}^{3} + b_{nm}^{j} \mathbf{M}_{nm}^{3}],$$
$$\mathbf{H}_{s}(j) = \frac{k}{\omega \mu} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} E_{nm} [b_{nm}^{j} \mathbf{N}_{nm}^{3} + a_{nm}^{j} \mathbf{M}_{nm}^{3}].$$

Поле в окрестности центра шара *j*-частицы имеет вид

$$\mathbf{E}_{I_1}(j) = \sum_{n=1}^{\infty} \sum_{m=-n}^{n} i E_{nm} [d_{nm_1}^j \mathbf{N}_{nm}^1 + c_{nm_1}^j \mathbf{M}_{nm}^1], \quad (3)$$

$$\mathbf{H}_{I_1}(j) = \frac{k_1^j}{\omega \mu_1^j} \sum_{n=1}^{\infty} \sum_{m=-n}^n E_{nm} [c_{nm_1}^j \mathbf{N}_{nm}^1 + d_{nm_1}^j \mathbf{M}_{nm}^1].$$
(4)

Поле в области $b \le r \le a$ *j*-частицы (в системе координат $O_1 x_1 y_1 z_1$) запишется следующим образом:

$$\mathbf{E}_{I_{2}}(j) = \sum_{n=1}^{\infty} \sum_{m=-n}^{n} E_{nm} [d_{nm_{2_{o}}}^{j} \mathbf{N}_{nm}^{3} + c_{nm_{2_{o}}}^{j} \mathbf{M}_{nm}^{3} + f_{nm_{2_{o}}}^{j} \mathbf{M}_{nm}^{4} + g_{nm_{2_{o}}}^{j} \mathbf{N}_{nm}^{4}],$$
(5)

$$\mathbf{H}_{I_2}(j) = \frac{k_2^j}{\omega \mu_2^j} \sum_{n=1}^{\infty} \sum_{m=-n}^n E_{nm} [d_{nm_{2_o}}^j \mathbf{M}_{nm}^3 + c_{nm_{2_o}}^j \mathbf{N}_{nm}^3 + f_{nm_{2_o}}^j \mathbf{N}_{nm}^4 + g_{nm_{2_o}}^j \mathbf{M}_{nm}^4].$$
(6)

Поле сферического включения *j*-частицы (в системе координат $O_2 x_2 y_2 z_2$) будет иметь вид

$$\mathbf{E}_{I_{2(inclusion)}}(j) = \sum_{n=1}^{\infty} \sum_{m=-n}^{n} E_{nm} [d_{nm_2}^{j} \mathbf{N}_{nm}^{3} + c_{nm_2}^{j} \mathbf{M}_{nm}^{3} + f_{nm_2}^{j} \mathbf{M}_{nm}^{4} + g_{nm_2}^{j} \mathbf{N}_{nm}^{4}],$$
(7)

$$\mathbf{H}_{I_{2(inclusion)}}(j) = \frac{k_{2}^{j}}{\omega \mu_{2}^{j}} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} E_{nm} [d_{nm_{2}}^{j} \mathbf{M}_{nm}^{3} + c_{nm_{2}}^{j} \mathbf{N}_{nm}^{3} + f_{nm_{2}}^{j} \mathbf{N}_{nm}^{4} + g_{nm_{2}}^{j} \mathbf{M}_{nm}^{4}].$$
(8)

Журнал технической физики, 2014, том 84, вып. 4

где

$$E_{mn} = |E_0|i^n[2n+1]\frac{(n-m)!}{(n+m)!},$$

$$\mathbf{M}_{mn}^J = \left[\frac{m}{\sin\theta}P_n^m(\cos\theta)i\mathbf{e}_{\theta} - \frac{\partial}{\partial\theta}P_n^m(\cos\theta)\mathbf{e}_{\phi}\right]z_n^J(kr)e^{im\phi},$$

$$\mathbf{N}_{mn}^J = n(n+1)P_n^m(\cos\theta)\mathbf{e}_r\frac{z_n^J(kr)}{kr}e^{im\phi}$$

$$+ \frac{\partial}{\partial\theta}P_n^m(\cos\theta)\frac{1}{kr}\frac{\partial}{\partial r}z_n^J(kr)e^{im\phi}\mathbf{e}_{\theta}$$

$$+ i\frac{m}{\sin\theta}P_n^m(\cos\theta)\frac{1}{kr}\frac{\partial}{\partial r}[rz_n^J(kr)e^{im\phi}]\mathbf{e}_{\phi}$$

и z_n^J — любая из четырех сферических функций

$$j_n(p) = \sqrt{\frac{\pi}{2p}} J_{n+\frac{1}{2}}(p), \quad y_n(p) = \sqrt{\frac{\pi}{2p}} Y_{n+\frac{1}{2}}(p), \quad (9)$$

$$h_n^{(1)} = j_n(p) + i, y_n(p), \ n_n^{(2)} = j_n(p) - iy_n(p).$$
 (10)

Для определения коэффициентов рассеяния a_{mn}^{j} , b_{mn}^{j} на сферической частице при смещении ядра относительно центра необходимо использовать теоремы сложения, основанные на рекуррентном подходе для вычисления скалярных и векторных коэффициентов, которые возникают при трансляции сферических векторных гаармоник из системы координат в центре основной сферы, в систему координат, связанную с центром сферического включения [6,7],

$$\mathbf{M}_{nm,2}^{(q)} = \sum_{n'=0}^{\infty} A_{n',n}^{m,q} \mathbf{M}_{n'm,1}^{(q)} + B_{n',n}^{m,q} \mathbf{N}_{n'm,1}^{(q)}, \qquad (11)$$

$$\mathbf{N}_{nm,2}^{(q)} = \sum_{n'=0}^{\infty} B_{n',n}^{m,q} \mathbf{M}_{n'm,1}^{(q)} + A_{n',n}^{m,q} \mathbf{N}_{n'm,1}^{(q)}, \qquad (12)$$

где q обозначает порядок сферических функций Бесселя (q = 3, 4). Это соотношение справедливо в области r > |d|, где d — расстояние между двумя центрами, при этом $A_{n'}^{n,m,q}$, $B_{n'}^{n,m,q}$ определяется следующим образом [6–8]:

$$A_{n'}^{n,m,q} = C_{n'}^{(n,m,q)} - \frac{k_1 d}{n'+1} \sqrt{\frac{(n'-m+1)(n'+m+1)}{(2n'+1)(2n'+3)}} C_{n'+1}^{(n,m,q)} - \frac{k_1 d}{n'} \sqrt{\frac{(n'-m)(n'+m)}{(2n'+1)(2n'-1)}} C_{n'-1}^{(n,m,q)},$$
(13)

$$B_{n'}^{n,m,q} = \frac{-ik_1 m d}{n'(n'+1)} C_{n'}^{(n,m,q)}, \ C_{n'}^{(0,0,q)} = \sqrt{(2n'+1)} j'_n(k_1 d),$$
$$C_{n'}^{(-1,0,q)} = -\sqrt{(2n'+1)} j'_n(k_1 d),$$
(14)

$$C_{n'}^{(n+1,0,q)} = \frac{1}{n+1} \sqrt{\frac{2n+3}{2n'+1}} \left[n' \sqrt{\frac{2n+1}{2n'-1}} C_{n'-1}^{(n,0,q)} + n \sqrt{\frac{2n'+1}{2n-1}} C_{n'}^{(n-1,0,q)} \right] - \frac{1}{n+1} \sqrt{\frac{2n+3}{2n'+1}} \times \left[(n'+1) \sqrt{\frac{2n+1}{2n'+3}} C_{n'+1}^{(n,0,q)} \right],$$
(15)

$$\begin{split} C_{n'}^{(n,m,q)} &= \\ &= \frac{\sqrt{(n'-m+1)(n'+m)(2n'+1)}}{\sqrt{(n-m+1)(n+m)(2n'+1)}} C_{n'}^{(n,m-1,q)} \\ &- k_1 d \sqrt{\frac{(n'-m+2)(n'-m+1)}{(2n'+3)(n-m+1)(n+m)(2n'+1)}} C_{n'+1}^{(n,m-1,q)} \\ &- k_1 d \sqrt{\frac{(n'+m)(n'+m-1)}{(2n'-1)(n-m+1)(n+m)(2n'+1)}} C_{n'-1}^{(n,m-1,q)}, \end{split}$$

$$C_{n'}^{(n,m,q)} = C_{n'}^{(n,-m,q)}.$$
 (16)

Из уравнений (12)–(16) следует, что

$$A_{n'}^{(n,m,3)} = A_{n'}^{(n,m,4)} = A_{n'}^{(n,-m,3)} = A_{n'}^{(n,m)},$$
$$B_{n'}^{(n,m,3)} = B_{n'}^{(n,m,4)} = B_{n'}^{(n,-m,3)} = B_{n'}^{(n,m)},$$
(17)

$$C_{n'}^{(n,m,3)} = C_{n'}^{(n,m,4)} = C_{n'}^{(n,-m,3)} = C_{n'}^{(n,m)}.$$
 (18)

Если d = 0, то в этом случае $A_{n'}^{(n,m)} = \delta_{n'n}, B_{n'}^{(n,m)} = 0.$

Подставим выражения (11), (12) в (7), (8), тогда получим

$$\begin{split} \mathbf{E}_{I_{2(inclusion)}}(j) &= \\ &= \sum_{n=1}^{\infty} \sum_{m=-n}^{n} E_{nm} \left[d_{nm_{2}}^{j} \left[\sum_{n'=0}^{\infty} A_{n'n}^{m,3} \mathbf{M}_{n'm,1}^{(3)} + B_{n'n}^{m,3} \mathbf{N}_{n'm,1}^{(3)} \right] \right] \\ &+ E_{nm} \left[c_{nm_{2}}^{j} \left[\sum_{n'=0}^{\infty} B_{n'n}^{m,3} \mathbf{M}_{n'm,1}^{(3)} + A_{n'n}^{m,3} \mathbf{N}_{n'm,1}^{(3)} \right] \right] \\ &+ E_{nm} \left[f_{nm_{2}}^{j} \left[\sum_{n'=0}^{\infty} A_{n'n}^{m,4} \mathbf{M}_{n'm,1}^{(4)} + B_{n'n}^{m,4} \mathbf{N}_{n'm,1}^{(4)} \right] \right] \\ &+ E_{nm} \left[g_{nm_{2}}^{j} \left[\sum_{n'=0}^{\infty} B_{n'n}^{m,4} \mathbf{M}_{n'm,1}^{(3)} + A_{n'n}^{m,4} \mathbf{N}_{n'm,1}^{(4)} \right] \right] \end{split}$$
(19)

$$\begin{aligned} \mathbf{H}_{I_{2(inclusion)}}(j) &= \\ &= \frac{k_{2}^{j}}{\omega \mu_{2}^{j}} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} E_{nm} \left[c_{nm_{2}}^{j} \left[\sum_{n'=0}^{\infty} A_{n'n}^{m,3} \mathbf{M}_{n'm,1}^{(3)} + B_{n'n}^{m,3} \mathbf{N}_{n'm,1}^{(3)} \right] \right] \\ &+ E_{nm} \left[d_{nm_{2}}^{j} \left[\sum_{n'=0}^{\infty} B_{n'n}^{m,3} \mathbf{M}_{n'm,1}^{(3)} + A_{n'n}^{m,3} \mathbf{N}_{n'm,1}^{(3)} \right] \right] \\ &+ E_{nm} \left[g_{nm_{2}}^{j} \left[\sum_{n'=0}^{\infty} A_{n'n}^{m,4} \mathbf{M}_{n'm,1}^{(4)} + B_{n'n}^{m,4} \mathbf{N}_{n'm,1}^{(4)} \right] \right] \\ &+ E_{nm} \left[f_{nm_{2}}^{j} \left[\sum_{n'=0}^{\infty} B_{n'n}^{m,4} \mathbf{M}_{n'm,1}^{(3)} + A_{n'n}^{m,4} \mathbf{N}_{n'm,1}^{(4)} \right] \right]. \end{aligned}$$

$$(20)$$

Запишем выражения (19), (20) в следующем виде:

$$\begin{aligned} \mathbf{E}_{I_{2(inclusion)}}(j) &= \\ &= \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \sum_{n'=0}^{\infty} E_{nm} [d_{nm_2}^{j} A_{n'n}^{m,3} + c_{nm_2}^{j} B_{n'n}^{m,3}] \mathbf{M}_{n'm,1}^{(3)} \\ &+ \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \sum_{n'=0}^{\infty} E_{nm} [c_{nm_2}^{j} A_{n'n}^{m,3} + d_{nm_2}^{j} B_{n'n}^{m,3}] \mathbf{N}_{n'm,1}^{(3)} \\ &+ \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \sum_{n'=0}^{\infty} E_{nm} [f_{nm_2}^{j} A_{n'n}^{m,4} + g_{nm_2}^{j} B_{n'n}^{m,4}] \mathbf{M}_{n'm,1}^{(4)} \\ &+ \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \sum_{n'=0}^{\infty} E_{nm} [g_{nm_2}^{j} A_{n'n}^{m,4} + f_{nm_2}^{j} B_{n'n}^{m,4}] \mathbf{N}_{n'm,1}^{(4)}, \end{aligned}$$
(21)

$$\begin{aligned} \mathbf{H}_{I_{2(inclusion)}}(j) &= \frac{k_{2}^{2}}{\omega \mu_{2}^{j}} \\ \times \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \sum_{n'=0}^{\infty} E_{nm} [d_{nm_{2}}^{j} A_{n'n}^{m,3} + c_{nm_{2}}^{j} B_{n'n}^{m,3}] \mathbf{N}_{n'm,1}^{(3)} \\ &+ \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \sum_{n'=0}^{\infty} E_{nm} [c_{nm_{2}}^{j} A_{n'n}^{m,3} + d_{nm_{2}}^{j} B_{n'n}^{m,3}] \mathbf{M}_{n'm,1}^{(3)} \\ &+ \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \sum_{n'=0}^{\infty} E_{nm} [f_{nm_{2}}^{j} A_{n'n}^{m,4} + g_{nm_{2}}^{j} B_{n'n}^{m,4}] \mathbf{N}_{n'm,1}^{(4)} \\ &+ \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \sum_{n'=0}^{\infty} E_{nm} [g_{nm_{2}}^{j} A_{n'n}^{m,4} + f_{nm_{2}}^{j} B_{n'n}^{m,4}] \mathbf{M}_{n'm,1}^{(4)}. \end{aligned}$$

$$(22)$$

Из сравнения выражений вида (21) и (5), а также (22) и (8) следует

$$\sum_{n=1}^{\infty} \sum_{m=-n}^{n} c_{nm_{2_o}}^{j} \mathbf{M}_{nm}^{3}$$
$$= \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \sum_{n'=0}^{\infty} [d_{nm_2}^{j} A_{n'n}^{m,3} + c_{nm_2}^{j} B_{n'n}^{m,3}] \mathbf{M}_{n'm}^{(3)}, \quad (23)$$

Журнал технической физики, 2014, том 84, вып. 4

$$\sum_{n=1}^{\infty} \sum_{m=-n}^{n} d_{nm_{2o}}^{j} \mathbf{N}_{nm}^{3}$$
$$= \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \sum_{n'=0}^{\infty} [c_{nm_{2}}^{j} A_{n'n}^{m,3} + d_{nm_{2}}^{j} B_{n'n}^{m,3}] \mathbf{N}_{n'm,1}^{(3)}, \quad (24)$$

$$\sum_{n=1}^{\infty} \sum_{m=-n}^{n} f_{nm_{2_o}}^{j} \mathbf{M}_{nm}^{4}$$
$$= \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \sum_{n'=0}^{\infty} [f_{nm_{2}}^{j} A_{n'n}^{m,4} + g_{nm_{2}}^{j} B_{n'n}^{m,4}] \mathbf{M}_{n'm,1}^{(4)}, \quad (25)$$

$$\sum_{n=1}^{\infty} \sum_{m=-n}^{n} g_{nm_{2_{o}}}^{j} \mathbf{N}_{nm}^{4}$$
$$= \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \sum_{n'=0}^{\infty} [g_{nm_{2}}^{j} A_{n'n}^{m,4} + f_{nm_{2}}^{j} B_{n'n}^{m,4}] \mathbf{N}_{n'm,1}^{(4)}, \quad (26)$$

$$\sum_{n=1}^{\infty} \sum_{m=-n}^{n} c_{nm_{2_{o}}}^{j} \mathbf{N}_{nm}^{3}$$
$$= \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \sum_{n'=0}^{\infty} [d_{nm_{2}}^{j} A_{n'n}^{m,3} + c_{nm_{2}}^{j} B_{n'n}^{m,3}] \mathbf{N}_{n'm}^{(3)}, \quad (27)$$

$$\sum_{n=1}^{\infty} \sum_{m=-n}^{n} d_{nm_{2_{o}}}^{j} \mathbf{M}_{nm}^{3}$$
$$= \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \sum_{n'=0}^{\infty} [c_{nm_{2}}^{j} A_{n'n}^{m,3} + d_{nm_{2}}^{j} B_{n'n}^{m,3}] \mathbf{M}_{n'm,1}^{(3)}, \quad (28)$$

$$\sum_{n=1}^{\infty} \sum_{m=-n}^{n} f_{nm_{2_{o}}}^{j} \mathbf{N}_{nm}^{4}$$
$$= \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \sum_{n'=0}^{\infty} [f_{nm_{2}}^{j} A_{n'n}^{m,4} + g_{nm_{2}}^{j} B_{n'n}^{m,4}] \mathbf{N}_{n'm,1}^{(4)}, \quad (29)$$

$$\sum_{n=1}^{\infty} \sum_{m=-n}^{n} g_{nm_{2_{o}}}^{j} \mathbf{M}_{nm}^{4}$$
$$= \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \sum_{n'=0}^{\infty} [g_{nm_{2}}^{j} A_{n'n}^{m,4} + f_{nm_{2}}^{j} B_{n'n}^{m,4}] \mathbf{M}_{n'm,1}^{(4)}.$$
 (30)

Умножим скалярно выражение (23) слева и справа на \mathbf{M}_{ki}^3 и проинтегрируем (при этом используя соотношения ортогональности для сферических гармоник), получим

$$c_{ki_{2_o}}^{j} = \sum_{n=0}^{\infty} [d_{ni_2}^{j} A_{nk}^{i,3} + c_{ni_2}^{j} B_{n,k}^{i,3}].$$
 (31)

Выражение (31) мы моем переписать в следующем виде:

$$c_{nm_{2_o}}^{j} = \sum_{n'=0}^{\infty} [d_{n'm_2}^{j} A_{n'n}^{m,3} + c_{n'm_2}^{j} B_{n'n}^{m,3}].$$
(32)

8 Журнал технической физики, 2014, том 84, вып. 4

Аналогичные уравнения запишем для остальных выражений вида (24)–(26)

$$c_{nm_{2_{o}}}^{j} = \sum_{n'=0}^{\infty} [d_{n'm_{2}}^{j} A_{n'n}^{m,3} + c_{n'm_{2}}^{j} B_{n'n}^{m,3}],$$

$$d_{nm_{2_{o}}}^{j} = \sum_{n'=0}^{\infty} [c_{n'm_{2}}^{j} A_{n'n}^{m,3} + d_{n'm_{2}}^{j} B_{n'n}^{m,3}],$$

$$f_{nm_{2_{o}}}^{j} = \sum_{n'=0}^{\infty} [f_{n'm_{2}}^{j} A_{n'n}^{m,4} + g_{n'm_{2}}^{j} B_{n'n}^{m,4}],$$

$$g_{nm_{2_{o}}}^{j} = \sum_{n'=0}^{\infty} [g_{n'm_{2}}^{j} A_{n'n}^{m,4} + f_{n'm_{2}}^{j} B_{n'n}^{m,4}].$$
(34)

С учетом (17), (18) уравнения (33), (34) запишутся в виде

$$d_{nm_{2_o}}^{j} = \sum_{n'=0}^{\infty} [d_{n'm_2}^{j} A_{n'n}^{m} + c_{n'm_2}^{j} B_{n'n}^{m}],$$

$$c_{nm_{2_o}}^{j} = \sum_{n'=0}^{\infty} [c_{n'm_2}^{j} A_{n'n}^{m} + d_{n'm_2}^{j} B_{n'n}^{m,3}],$$

$$f_{nm_{2_o}}^{j} = \sum_{n'=0}^{\infty} [f_{n'm_2}^{j} A_{n'n}^{m} + g_{n'm_2}^{j} B_{n'n}^{m,4}],$$

$$\infty$$
(35)

$$g_{nm_{2_o}}^{j} = \sum_{n'=0}^{\infty} [g_{n'm_2}^{j} A_{n'n}^{m} + f_{n'm_2}^{j} B_{n'n}^{m}].$$
(36)

Соотношения вида (35), (36) связывают коэффициенты для сферы, которая находится в центре системе координат, для сферы, смещенной на некоторое расстояние относительно центра.

Запишем граничные условия:

$$\begin{aligned} [\mathbf{E}_{I_1}(j) - \mathbf{E}_{I_2}(j)]|_{r_2=b} \times \mathbf{e}_r &= 0, \\ [\mathbf{H}_{I_1}(j) - \mathbf{H}_{I_2}(j)]|_{r_2=b} \times \mathbf{e}_r &= 0, \\ [\mathbf{E}_i(j) + \mathbf{E}_s(j) - \mathbf{E}_{I_1}(j)]|_{r_1=a} \times \mathbf{e}_r \end{aligned}$$
(37)

$$= [\mathbf{H}_i(j) + \mathbf{H}_s(j) - \mathbf{H}_{I_1}(j)]|_{r_1=a} \times \mathbf{e}_r$$
(38)

или

$$E_{I_{1\theta}}(j)|_{r_{2}=b} = E_{I_{2\theta}}(j)|_{r_{2}=b}, E_{I_{1\phi}}(j)|_{r_{2}=b} = E_{I_{2\phi}}(j)|_{r_{2}=b},$$
(39)
$$H_{I_{1\theta}}(j)|_{r_{2}=b} = H_{I_{2\theta}}(j)|_{r_{2}=b}, H_{I_{1\phi}}(j)|_{r_{2}=b} = H_{I_{2\phi}}(j)|_{r_{2}=b},$$
(40)
$$E_{i\theta}(j)|_{r_{1}=a} + E_{s\theta}(j)|_{r_{1}=a} = E_{I_{1\theta}}(j)]|_{r_{1}=a},$$

$$E_{i\phi}(j)|_{r_{1}=a} + E_{s\phi}(j)|_{r_{1}=a} = E_{I_{1\phi}}(j)]|_{r_{1}=a},$$
(41)

$$\begin{aligned} H_{i\theta}(j)|_{r_1=a} + H_{s\theta}(j)|_{r_1=a} &= H_{I_{1\theta}}(j)]|_{r_1=a}, \\ H_{i\phi}(j)|_{r_1=a} + H_{s\phi}(j)|_{r_1=a} &= H_{I_{1\phi}}(j)]|_{r_1=a}. \end{aligned}$$
(42)

Подставим выражения для полей, которые разложены по вектор-сферическим гармоникам с учетом (35), (36) в граничные условия (39)–(42) и используя соотношения ортогональности для сферических гармоник, получим

систему уравнений для нахождения неизвестных коэффициентов. При этом коэффициенты рассеяния, найденные из этой системы, будут иметь следующий вид:

$$a_{mn}^{j} = a_{n_{1p}}^{j} p_{mn}^{j} + a_{n_{1q}}^{j} q_{mn}^{j}, \quad b_{mn}^{j} = b_{n_{1p}}^{j} p_{mn}^{j} + b_{n_{1q}}^{j} q_{mn}^{j},$$

где $a_{n_{1p}}^{j}, a_{n_{1q}}^{j}, b_{n_{1p}}^{j}$ и $b_{n_{1q}}^{j}$ даны в приложении, коэффициенты падающего поля p_{mn}^{j}, q_{mn}^{j} определены в [9].

Если мы рассматриваем случай тела вращения, то тогда вектор-сферические гармоники запишутся следующим образом [10]:

$$\begin{split} \mathbf{M}_{nm,2}^{(q)} &= \sum_{n'=0}^{\infty} D_{m'}^{(nm)} \mathbf{M}_{nm,1}^{(q)}, \ \mathbf{N}_{nm,2}^{(q)} = \sum_{n'=0}^{\infty} D_{m'}^{(nm)} \mathbf{N}_{nm,1}^{(q)}, \\ D_{m'}^{(n,m)} &= e^{[i(m'\alpha+my)]} \left[\frac{(n+m')!(n-m')!}{(n+m)!(n-m)!} \right]^{1/2} \\ &\times \sum_{\sigma} \left(\frac{n+m}{n-m'-\sigma} \right) \binom{n-m}{\sigma} (-1)^{n+m-\sigma} \\ &\times \left[\cos \left[\frac{\beta}{2} \right] \right]^{2\sigma+m'+m} \left[\sin \left[\frac{\beta}{2} \right] \right]^{2n-2\sigma-m-m}, \end{split}$$

где α, β и γ — углы Эйлера.

2. Рассеяние на группе сферических тел

Электромагнитное поле, падающее на поверхность *j*-частицы, состоит из двух частей — исходного падающего поля и поля, рассеянного группой других частиц, расположенных в окружающей среде с показателем N. Тогда можно записать следующее выражение [9]:

$$\mathbf{E}_i(j) = \mathbf{E}_0(j) + \sum_{l \neq j} \mathbf{E}_s(l, j), \qquad (43)$$

$$\mathbf{H}_{i}(j) = \mathbf{H}_{0}(j) + \sum_{l \neq j} \mathbf{H}_{s}(l, j), \qquad (44)$$

где $\mathbf{E}_{s}(l, j)$, $\mathbf{H}_{s}(l, j)$ — сумма рассеянных полей на *j*-частице, $\mathbf{E}_{i}(j)$, $\mathbf{E}_{0}(j)$ и $\mathbf{E}_{s}(l, j)$ определены в [9].

Система линейных алгебраических уравнений для нахождения коэффициентов a_{mn}^{J}, b_{mn}^{J} с учетом многократного рассеяния для *j*-частиц с неконцентрическим включением находится аналогично методу, рассмотренному в [9,11], и имеет следующий вид:

$$\begin{aligned} a_{mn}^{j} &= \\ &= a_{n_{1p}}^{j} \left[p_{mn}^{j,j} - \sum_{l \neq j}^{L} \sum_{\nu=1}^{\infty} \sum_{\mu=-\nu}^{\nu} \left[a_{\mu\nu}^{l} A_{mn}^{\mu\nu}(l,j) + b_{\mu\nu}^{l} B_{mn}^{\mu\nu}(l,j) \right] \right] \\ &+ a_{n_{1q}}^{j} \left[q_{mn}^{j,j} - \sum_{l \neq j}^{L} \sum_{\nu=1}^{\infty} \sum_{\mu=-\nu}^{\nu} \left[a_{\mu\nu}^{l} B_{mn}^{\mu\nu}(l,j) + b_{\mu\nu}^{l} A_{mn}^{\mu\nu}(l,j) \right] \right], \end{aligned}$$

$$(45)$$

 $b_{mn}^j =$

$$= b_{n_{1q}}^{j} \left[q_{mn}^{j,j} - \sum_{l \neq j}^{L} \sum_{\nu=1}^{\infty} \sum_{\mu=-\nu}^{\nu} \left[a_{\mu\nu}^{l} A_{mn}^{\mu\nu}(l,j) + b_{\mu\nu}^{l} B_{mn}^{\mu\nu}(l,j) \right] \right] + b_{n_{1p}}^{j} \left[p_{mn}^{j,j} - \sum_{l \neq j}^{L} \sum_{\nu=1}^{\infty} \sum_{\mu=-\nu}^{\nu} \left[a_{\mu\nu}^{l} B_{mn}^{\mu\nu}(l,j) + b_{\mu\nu}^{l} A_{mn}^{\mu\nu}(l,j) \right] \right], n = 1, 2, 3, 4, 5, \dots, \quad m = 0, 1, 2, 3, 4, 5, \dots n.$$

Систему (45) можно записать в матричном виде

$$\begin{pmatrix} a^{j} \\ b^{j} \end{pmatrix} = T_{1}^{j} \begin{bmatrix} \begin{pmatrix} p^{j,j} \\ q^{j,j} \end{pmatrix} + \sum_{l \neq j} \begin{pmatrix} A(l,j) & B(l,j) \\ B(l,j) & A(l,j) \end{pmatrix} \begin{pmatrix} a^{j} \\ b^{j} \end{pmatrix} \end{bmatrix}$$
$$+ (T)_{2}^{j} \begin{bmatrix} \begin{pmatrix} p^{j,j} \\ q^{j,j} \end{pmatrix} + \sum_{l \neq j} \begin{pmatrix} A(l,j) & B(l,j) \\ B(l,j) & A(l,j) \end{pmatrix} \begin{pmatrix} a^{j} \\ b^{j} \end{pmatrix} \end{bmatrix}$$
(46)

или

$$\begin{pmatrix} a^{j} \\ b^{j} \end{pmatrix} = (T)_{12}^{j} \left[\begin{pmatrix} p^{j,j} \\ q^{j,j} \end{pmatrix} + \sum_{l \neq j} \begin{pmatrix} A(l,j) & B(l,j) \\ B(l,j) & A(l,j) \end{pmatrix} \begin{pmatrix} a^{j} \\ b^{j} \end{pmatrix} \right],$$

$$(47)$$

$$T^{j} = T^{j} + T^{j} = T^{j} - \begin{pmatrix} a^{j}_{n_{12}} & 0 \\ 0 \end{pmatrix} = T^{j} - \begin{pmatrix} 0 & a^{j}_{n_{13}} \end{pmatrix}$$

$$T_{12}^{j} = T_{1}^{j} + T_{2}^{j}, \ T_{1}^{j} = \begin{pmatrix} a_{n_{1p}} & 0 \\ 0 & b_{n_{1q}}^{j} \end{pmatrix}, \ T_{2}^{j} = \begin{pmatrix} 0 & a_{n_{1q}} \\ b_{n_{1p}}^{j} & 0 \end{pmatrix},$$

где B(l, j), A(l, j) — коэффициенты трансляции, которые определены в [6], $p^{j,j}$ и $q^{j,j}$ даны в [9].

Систему (47) необходимо решать методом редукции, оставляя в алгебраической системе конечное число уравнений и конечное число неизвестных [11], с использованием устойчивого алгоритма бисопряженных градиентов [12–14]. после того как из системы (47) найдены коэффициенты a_{mn}^{J}, b_{mn}^{J} , мы можем записать в основной системе координат выражения для рассеянного поля

$$\mathbf{E}_{s} = \sum_{n=1}^{\infty} \sum_{m=-n}^{n} i E_{mn} [a_{mn} \mathbf{N}_{mn}^{3} + b_{mn} \mathbf{M}_{mn}^{3}], \qquad (48)$$

$$\mathbf{E}_{s} = \frac{k}{\omega\mu} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} i E_{mn} [b_{mn} \mathbf{N}_{mn}^{3} + a_{mn} \mathbf{M}_{mn}^{3}], \qquad (49)$$

гле

(45)

$$a_{mn} = \sum_{l=1}^{L} \sum_{\nu=1}^{\infty} \sum_{\mu=-\nu}^{\nu} [a_{\mu\nu}^{l} A_{mn}^{\mu\nu}(l, j_{0}) + b_{\mu\nu}^{l} B_{mn}^{\mu\nu}(l, j_{0})],$$

$$b_{mn} = \sum_{l=1}^{L} \sum_{\nu=1}^{\infty} \sum_{\mu=-\nu}^{\nu} [a_{\mu\nu}^{l} B_{mn}^{\mu\nu}(l, j_{0}) + b_{\mu\nu}^{l} A_{mn}^{\mu\nu}(l, j_{0})].$$

Система для нахождения a_{mn}^{j}, b_{mn}^{j} может быть упрощена, если рассматривать ту часть рассеянного частицами поля (вперед и назад), которая сосредоточена в малоугловой окрестности оси Z.

Журнал технической физики, 2014, том 84, вып. 4

Запишем выражения для рассеянного поля в дальней зоне

$$E_{s\theta} \sim E_0 \frac{e^{ikr}}{-ikr} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} (2n+1) \frac{(n-m)!}{(n+m)!} \times [a_{mn} \tau_{mn} + b_{mn} \pi_{mn}] e^{im\phi},$$
 (50)

$$E_{s\phi} \sim E_0 \frac{e^{ikr}}{-ikr} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} (2n+1) \frac{(n-m)!}{(n+m)!} \times [a_{mn} \pi_{mn} + b_{mn} \tau_{mn}] e^{im\phi}, \qquad (51)$$

где

$$au_{mn} = rac{\partial}{\partial heta} P_n^m(\cos heta), \quad \pi_{mn} = rac{m}{\sin heta} P_n^m(\cos heta)$$

Символ (\sim) означает, что выражения (50) и (51), вытекающие из (48) при $kr \gg 1$), понимаются в асимптотическом смысле. В виду того, что рассматривается рассеяние на больших расстояниях от *j*-частицы, электрические векторы рассеянного поля будут параллельны электрическому вектору падающего поля, таким образом в дальней зоне будет отлична от нуля только θ -компонента. Отметим, что здесь мы рассматриваем ту часть рассеянного поля, которая не вышла из резонатора.

Выражения (50) и (51) упростятся:

$$E_{s\theta} \sim E_0 \frac{e^{ikr}}{-ikr} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \frac{(2n+1)}{n(n+1)} [a_{mn}\tau_n + b_{mn}\pi_n],$$
$$E_{s\phi} \sim E_0 \frac{e^{ikr}}{-ikr} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \frac{(2n+1)}{n(n+1)} [a_{mn}\pi_n + b_{mn}\tau_n], \quad (52)$$

где

$$au_n = rac{\partial}{\partial heta} P_n(\cos heta), \quad \pi_n = rac{1}{\sin heta} P_n(\cos heta).$$

Аналогично получаются выражения для магнитного поля *H*.

В дальнейшем нам понадобятся элементы матрицы рассеяния, связывающей параметры Стокса [3] падающего и рассеянного полей:

$$L_s = SL_i,$$

где L_i — вектор Стокса падающего поля, L_s — вектор Стокса рассеянного поля, S — матрица рассеяния 4 × 4, элементы которой выражаются через элементы матрицы 2 × 2, связывающей взаимно перпендикулярные компоненты электрического вектора прошедшей электромагнитной волны $E_{\parallel s}$, $E_{\perp s}$ и падающей волны $E_{\parallel i}$, $E_{\perp i}$:

$$\begin{pmatrix} E_{\parallel s} \\ E_{\perp s} \end{pmatrix} = \begin{pmatrix} E_{s\theta} \\ -E_{s\phi} \end{pmatrix} = \frac{e^{-ikr - ikz}}{-ikr} \begin{pmatrix} S_2 & S_3 \\ S_4 & S_1 \end{pmatrix} \begin{pmatrix} E_{\parallel i} \\ E_{\perp i} \end{pmatrix}.$$
 (53)

Для описания рассеяния поля вперед (назад) в малоугловой окрестности направления распространения полн достаточно ограничиться диагональным представлением матрицы Мюллера S:

$$\begin{pmatrix} S_{11} & 0 & 0 & 0 \\ 0 & S_{22} & 0 & 0 \\ 0 & 0 & S_{33} & 0 \\ 0 & 0 & 0 & S_{44} \end{pmatrix},$$

где

$$S_{11} = \frac{1}{2}[|S_2|^2 + |S_1|^2] = S_{22},$$

$$S_{33} = \frac{1}{2}[S_1S_2^* + S_2S_1^*] = S_{44}.$$

Здесь звездочка (*) обозначает комплексное сопряжение, а выражения для амплитуд рассеяния S_1 и S_2 для прошедшей волны ($\theta = 0$) и для отраженной волны ($\theta = \pi$) имеют вид [9]

$$S_{2}(0) = S_{1}(0) = \frac{1}{2} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} (2n+1)[a_{mn} + b_{mn}],$$

$$S_{2}(\pi) = -S_{1}(\pi) = \frac{1}{2} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} (2n+1)(-1)^{n}[a_{mn} - b_{mn}].$$

(54)

Выражения (54) будут использованы в дальнейшем для расчета частот собственных колебаний оптического резонатора, в полости которого расположена совокупность сферических частиц.

Собственные частоты оптического резонатора с кюветой сферических частиц

Так как собственные колебания в кольцевых и линейных резонаторах при внесении неоднородностей в полость резонатора перестраиваются по-разному, то рассмотрим для определенности более простой случай линейного резонатора. Схема резонатора изображена на рис. 1. При этом будем предполагать, что резонатор обладает плоскостью симметрии, в которой лежит его оптический контур. Это предположение необходимо для того, чтобы оправдать последующее разделение переменных в уравнениях поля и малость деполяризации поля после прохождения волной слоя сферических частиц. Замкнутую систему уравнений для поля E в некотором ортогональном оптическому контуру сечения двух зеркального резонатора можно записать в виде

$$E^{\pm} = (I + R_1 R_2) E^{\pm}, \tag{55}$$

где I и R_1, R_2 — некоторые матричные операторы, описывающие собственные колебания резонатора без среды и со средой соответственно. В развернутом виде интегральное уравнение для одного из координатных сомножителей скалярной компоненты U поля собственных колебаний на одном из зеркал рассматриваемого резонатора после разделения переменных в (55) имеет вид

$$U(\xi) = \sqrt{\frac{\mp i}{2\pi B}} \exp[\pm ikL] \int_{-\infty}^{\infty} \exp\left[\ln[R_1(x_1)R_2(x_1)]\right]$$

× $\exp[(\pm i(Ax_1^2 + D\xi^2 - 2\xi x_1)/(2B)]U(x_1)dx_1,$ (56)

знак (-) соответствует полю на левом зеркале резонатора, знак (+) — на правом, а R_1 и R_2 — здесь скалярные функции, которые имеют вид

$$R_{1} = S(0) \exp\left[-\frac{i}{z_{11}} + \frac{1}{2}\frac{x_{1}^{2}}{z_{11}^{2}}\right],$$

$$R_{2} = S(\pi) \exp\left[\frac{i}{z_{22}} - \frac{1}{2}\frac{x_{1}^{2}}{z_{22}^{2}}\right],$$
(57)

 $x_1 = \sqrt{kx}, z_{11} = z_1k, z_{22} = z_2k, S(0), S(\pi)$ — амплитуды рассеяния (54) для прошедшей и отраженной волн соответственно, *A*, *B*, *C*, *D* — элементы волновой матрицы резонатора без частиц (возмущение резонатора слоем частиц учитывают коэффициенты R_1R_2), z_{11}, z_{22} — расстояния от слоя сферических частиц вдоль оптической оси резонатора, начиная с которых справедливы асимптотические формулы (52) для рассеянного частицами поля. Выражения (57) получаются путем разложения расстояния (*r*) от начала координат до точки наблюдения в (53) в ряд Тейлора при условии, что

$$\frac{x^2}{z^2} \ll 1$$

(малолугловое приближение). Распределение поля на зеркалах оптического резонатора со средой, состоящей из совокупности частиц в области Ω (рис. 1), получается из решения интегрального уравнения (56) и имеет вид

$$U_n(x_1)^{\pm} = \frac{1}{2^n n! \varpi \pi} H_n\left(\frac{x_1}{\varpi}\right) \exp\left[\mp i(n+1)/2)\tilde{g} + (\epsilon - \delta) + \ln(\rho_1) \pm ikL + \ln[S(0)S(\pi)] \pm \frac{ix_1^2}{q}\right].$$

Собственные частоты резонатора при этом выражаются формулой

$$\omega_n = c \frac{2\pi q + (n+1/2)\tilde{g} - i(\epsilon - \delta) + \ln(\rho_1) + \ln[S(0)S(\pi)])}{LN},$$
(58)

где c — скорость света в вакууме, q — номер продольной моды, n — номер поперечной моды, $q \gg n$, L — длина резонатора, N — показатель преломления окружающей среды

$$\varpi = \sqrt{\frac{\sin \tilde{g}}{B}}, \quad \tilde{g} = \arccos\left[\frac{\tilde{A}+D}{2}\right], \quad \epsilon = \frac{i}{z_{22}}, \quad \delta = -\frac{i}{z_{11}},$$

$$\tilde{A} = \left[A + \frac{i}{2z_{zz}^2} - \frac{i}{2z_{11}^2}\right],$$
$$\frac{1}{q} = \left[\frac{\tilde{A} + D}{2} + i\sqrt{1 - \frac{(\tilde{A} + D)^2}{4}} - \tilde{A}\right](2B)^{-1},$$

 $\rho_1 = \rho k$ — безразмерная толщина слоя частиц, H_n — полиномы Эрмита. Формула (58) достаточно сложным образом в неявной форме связывает частоты собственных колебаний оптического резонатора. Нагруженного слоем частиц, с электрофизическими параметрами этих частиц, такими как действительные и мнимые части их показателей преломления, размеры и т.д.

Выводы

Модель была реализована в виде комплекса программ, что позволяет в автоматическом режиме варьировать на одной установке совокупности результатов измерения реальной и мнимой частей показателя преломления, размеров частиц. Этот подход позволяет обнаружить наличие корреляции между электрофизическими параметрами форменных элементов крови и их биологическими свойствами. При этом знания об оптических свойствах клеток крови должны стать основой и существенно дополнить информативность углубленного общего анализа крови за счет более тонкой характеризации клеток.

Таким образом, предлагаемая модель оценки показателя преломления и размеров форменных компонентов крови в сочетании с внутрирезонаторным экспериментов может оказаться более информативной и точной, чем существующие методы, использующие безрезонаторные модели.

Приложение

Выражение для коэффициентов $a_{n_{1p}}^{j}, a_{n_{1q}}^{j}, b_{n_{1p}}^{j}, b_{n_{1q}}^{j}$

$$b_{n_{1p}}^{j}=rac{b_{n_{11p}}^{j}}{b_{n_{21}}^{j}}, \hspace{0.2cm} b_{n_{1q}}^{j}=rac{b_{n_{11q}}^{j}}{b_{n_{21}}^{j}},$$

где

$$\begin{split} b_{n_{11p}}^{j} &= (A_{n'n}^{m})^{(2)} \psi_{n}((ka)^{j}) \xi_{n}^{\prime(2)}((ka)^{j}) \xi_{n}^{(1)}((k_{1}a)^{j}) \\ &\times F_{21} \xi_{n}^{\prime(1)}((k_{1}a)^{j}) \\ &+ (A_{n'n}^{m})^{2} \psi_{n}((ka)^{j}) F_{12} \xi_{n}^{\prime(1)}((k_{1}a)^{j}) \xi_{n}^{(1)}((ka)^{j}) \xi_{n}^{\prime(2)}((k_{1}a)^{j}) \\ &+ (A_{n'n}^{m})^{2} \psi_{n}((ka)^{j}) F_{12} (\xi_{n}^{\prime(1)}((k_{1}a)^{j}))^{2} \xi_{n}^{(1)}((ka)^{j}) F_{21} \\ &- (A_{n'n}^{m})^{2} \psi_{n}((ka)^{j}) \xi_{n}^{\prime(2)}((k_{1}a)^{j}) \xi_{n}^{\prime(1)}((ka)^{j}) F_{21} \xi_{n}^{(1)}((k_{1}a)^{j}) \\ &- (A_{n'n}^{m})^{2} \psi_{n}((ka)^{j}) F_{12} \xi_{n}^{\prime(1)}((k_{1}a)^{j}) \xi_{n}^{\prime(1)}((ka)^{j}) \xi_{n}^{(2)}((k_{1}a)^{j}) \end{split}$$

Журнал технической физики, 2014, том 84, вып. 4

 $-(B_{n'n}^m)^2\psi_n((ka)^j)F_{21}\xi_n'^{(2)}((k_1a)^j)\xi_n^{(1)}((ka)^j)\xi_n'^{(1)}((k_1a)^j)$ $-(B_{n'n}^m)^2\psi_n((ka)^j)F_{12}\xi_n^{\prime(1)}((k_1a)^j)\xi_n^{(2)}((ka)^j)\xi_n^{\prime(1)}((k_1a)^j)$ $-(B_{n'n}^m)^2\psi_n((ka)^j)F_{12}F_{21}(\xi'_n^{(1)}((k_1a)^j))^2\xi_n^{(1)}((ka)^j)$ $+ (B_{n'n}^{m})^{2} \psi_{n}((ka)^{j}) F_{21} \xi_{n}^{(2)}((k_{1}a)^{j}) \xi_{n}^{\prime(1)}((ka)^{j}) \xi_{n}^{\prime(1)}((k_{1}a)^{j})$ $+ (B_{n'n}^{m})^{2} \psi_{n}((ka)^{j}) F_{12} \xi_{n}^{(1)}((k_{1}a)^{j}) \xi_{n}^{(1)}((ka)^{j}) \xi_{n}^{\prime (2)}((k_{1}a)^{j})$ $-(A_{n'n}^m)^2\psi_n'((ka)^j)F_{21}\xi_n^{(2)}((k_1a)^j)\xi_n^{(1)}((ka)^j)\xi_n'^{(1)}((k_1a)^j)$ $-(A_{n'n}^m)^2\psi_n'((ka)^j)F_{12}\xi_n^{(1)}((k_1a)^j)\xi_n^{(1)}((ka)^j)\xi_n'^{(2)}((k_1a)^j)$ $+ (A_{n'n}^m)^2 \psi'_n((ka)^j) F_{21} \xi_n^{(2)}((k_1a)^j) \xi'_n^{(1)}((ka)^j) \xi_n^{(1)}((k_1a)^j)$ $+ (A_{n'n}^{m})^{2} \psi_{n}'((ka)^{j}) F_{12} \xi_{n}^{(1)}((k_{1}a)^{j}) \xi_{n}'^{(1)}((ka)^{j}) \xi_{n}'^{(2)}((k_{1}a)^{j})$ $+ (A_{n'n}^m)^2 \psi_n'((ka)^j) F_{12} F_{21}(\xi_n^{(1)}((k_1a)^j))^2 \xi_n'^{(1)}((ka)^j)$ $+ (B_{n'n}^m)^2 \psi_n'((ka)^j) F_{12} \xi_n^{(1)}((ka)^j) \xi_n^{(2)}((k_1a)^j) \xi_n'^{(1)}((k_1a)^j)$ $+ (B_{n'n}^m)^2 \psi_n'((ka)^j) F_{21} \xi_n^{(1)}((ka)^j) \xi_n^{(1)}((k_1a)^j) \xi_n'^{(2)}((k_1a)^j)$ $-(B_{n'n}^m)^2\psi_n'((ka)^j)F_{21}\xi_n^{(2)}((k_1a)^j)\xi_n'^{(1)}((ka)^j)\xi_n^{(1)}((k_1a)^j)$ $-(B_{n'n}^m)^2\psi'_n((ka)^j)F_{21}\xi_n^{(2)}((k_1a)^j)\xi'_n^{(1)}((ka)^j)\xi_n^{(1)}((k_1a)^j)$ $-(B_{n'n}^m)^2\psi_n'((ka)^j)F_{12}\xi_n^{(1)}((k_1a)^j)\xi_n'^{(1)}((ka)^j)\xi_n^{(2)}((k_1a)^j)$ $-(B_{n'n}^m)^2\psi_n'((ka)^j)F_{12}F_{21}(\xi_n^{(1)}((k_1a)^j))^2\xi_n'^{(1)}((ka)^j)$ + $[(A_{n'n}^m)^2 - (B_{n'n}^m)^2]\psi_n((ka)^j)(\xi_n^{(2)}((k_1a)^j))^2\xi_n^{(1)}((ka)^j)$ + $[(A_{n'n}^m)^2 - (B_{n'n}^m)^2]\psi'_n((ka)^j)(\xi_n^{(2)}((k_1a)^j))^2\xi'_n^{(1)}((ka)^j)$ $-(A_{n'n}^m)^2\psi_n((ka)^j)(\xi'_n^{(2)}((k_1a)^j))^2\xi'_n^{(1)}((ka)^j)\xi_n^{(2)}((k_1a)^j)$ $+ (B_{n'n}^m)^2 \psi_n((ka)^j) (\xi'_n^{(2)}((k_1a)^j))^2 \xi'_n^{(1)}((ka)^j) \xi_n^{(2)}((k_1a)^j)$ $+ (A_{n'n}^m)^2 \psi'_n((ka)^j) (\xi_n^{(2)}((k_1a)^j))^2 \xi_n^{(1)}((ka)^j) \xi'_n^{(2)}((k_1a)^j)$ $+ (B_{n'n}^{m})^{2} \psi_{n}'((ka)^{j})(\xi_{n}^{(2)}((k_{1}a)^{j}))\xi_{n}^{(1)}((ka)^{j})(\xi_{n}'^{(2)}((k_{1}a)^{j}))$ $-(A_{n'n}^m)^2\psi_n((ka)^j)F_{12}F_{21}(\xi'_n^{(1)}((k_1a)^j))\xi'_n^{(1)}((ka)^j)$ $\times (\xi_n^{(1)}((k_1a)^j))$ $+ (B_{n'n}^m)^2 \psi_n((ka)^j) F_{12} F_{21}(\xi_n^{\prime(1)}((k_1a)^j)) \xi_n^{\prime(1)}((ka)^j)$ $\times (\xi_n^{(1)}((k_1a)^j))$ $-(A_{n'n}^m)^2\psi_n'((ka)^j)F_{12}F_{21}(\xi_n^{(1)}((k_1a)^j))\xi_n^{(1)}((ka)^j)$ $\times (\xi'_{n}^{(1)}((k_{1}a)^{j}))$ $+ (B_{n'n}^m)^2 \psi_n'((ka)^j) F_{12} F_{21}(\xi_n^{(1)}((k_1a)^j)) \xi_n'^{(1)}((k_1a)^j)$

 $\times (\xi_n^{(1)}((ka)^j)),$

 $b_{n_{11q}}^{j} =$

 $-(A_{n'n}^m)(B_{n'n}^m)F_{21}\psi_n((ka)^j)(\xi_n^{(2)}((k_1a)^j))^2\xi_n'^{(1)}((ka)^j)\xi_n'^{(1)}((k_1a)^j)$ $-(A_{n'n}^m)(B_{n'n}^m)F_{12}\psi_n((ka)^j)(\xi_n^{(1)}((k_1a)^j))\xi_n'^{(1)}((ka)^j)\xi_n'^{(2)}((k_1a)^j)$ $+ (A_{n'n}^m)(B_{n'n}^m)F_{21}\psi_n'((ka)^j)(\xi_n^{(2)}((k_1a)^j))\xi_n^{(1)}((ka)^j)\xi_n'^{(1)}((k_1a)^j)$ $+ (A_{n'n}^m)(B_{n'n}^m)F_{12}\psi_n'((ka)^j)(\xi_n^{(1)}((k_1a)^j))\xi_n^{(1)}((ka)^j)\xi_n'^{(2)}((k_1a)^j)$ $-(A_{n'n}^m)(B_{n'n}^m)F_{12}\psi_n'((ka)^j)(\xi_n^{(1)}((ka)^j))\xi_n^{(2)}((k_1a)^j)\xi_n'^{(1)}((k_1a)^j)$ $-(A_{n'n}^m)(B_{n'n}^m)F_{12}\psi_n'((ka)^j)(\xi_n^{(1)}((ka)^j))\xi_n^{(2)}((k_1a)^j)\xi_n'^{(1)}((k_1a)^j)$ $-(A_{n'n}^m)(B_{n'n}^m)F_{21}\psi_n'((ka)^j)(\xi_n^{(1)}((ka)^j))\xi_n^{(1)}((k_1a)^j)\xi_n'^{(2)}((k_1a)^j)$ $+ (A_{n'n}^m)(B_{n'n}^m)F_{21}\psi_n((ka)^j)(\xi'_n^{(2)}((k_1a)^j))\xi'_n^{(1)}((ka)^j)\xi_n^{(1)}((k_1a)^j)$ $+ (A_{n'n}^m)(B_{n'n}^m)F_{12}\psi_n((ka)^j)({\xi'}_n^{(1)}((k_1a)^j)){\xi'}_n^{(1)}((ka)^j){\xi}_n^{(2)}((k_1a)^j),$ $b_{n_{21}}^{j} = -\xi_{n}^{(1)}((ka)^{j})(A_{n'n}^{m})^{2}\xi_{n'}^{\prime(1)}((ka)^{j})\xi_{n'}^{\prime(2)}((k_{1}a)^{j})\xi_{n}^{(1)}((k_{1}a)^{j})F_{21}$ $-\xi_n^{(1)}((ka)^j)(A_{n'n}^m)^2\xi'_n^{(1)}((ka)^j)\xi'_n^{(1)}((k_1a)^j)\xi_n^{(2)}((k_1a)^j)F_{12}$ $-\xi_{n}^{\prime(1)}((ka)^{j})(A_{n'n}^{m})^{2}\xi_{n}^{(1)}((ka)^{j})\xi_{n}^{(2)}((k_{1}a)^{j})\xi_{n}^{\prime(1)}((k_{1}a)^{j})F_{21}$ $-\xi_{n}^{\prime(1)}((ka)^{j})(A_{n'n}^{m})^{2}\xi_{n}^{(1)}((ka)^{j})\xi_{n}^{\prime(2)}((k_{1}a)^{j})\xi_{n}^{(1)}((k_{1}a)^{j})F_{12}$ $+\xi_{n}^{\prime(1)}((ka)^{j})(A_{n'n}^{m})^{2}\xi_{n}^{\prime(1)}((ka)^{j})\xi_{n}^{(2)}((k_{1}a)^{j})\xi_{n}^{(1)}((k_{1}a)^{j})F_{21}$ $+\xi_{n}^{\prime(1)}((ka)^{j})(A_{n'n}^{m})^{2}\xi_{n}^{(1)}((ka)^{j})\xi_{n}^{\prime(2)}((k_{1}a)^{j})\xi_{n}^{(1)}((k_{1}a)^{j})F_{12}$ $+ \xi_{n}^{\prime (1)}((ka)^{j})(A_{n'n}^{m})^{2} \xi_{n}^{\prime (1)}((ka)^{j})(\xi_{n}^{(1)}((k_{1}a)^{j}))^{2} F_{12}F_{21}$ $+\xi_{n}^{(1)}((ka)^{j})(B_{n'n}^{m})^{2}\xi_{n'}^{(1)}((ka)^{j})\xi_{n'}^{(2)}((k_{1}a)^{j})\xi_{n}^{(1)}((k_{1}a)^{j})F_{21}$ $+\xi_{n}^{(1)}((ka)^{j})(B_{n'n}^{m})^{2}\xi_{n'}^{\prime(1)}((ka)^{j})\xi_{n}^{(2)}((k_{1}a)^{j})\xi_{n'}^{\prime(1)}((k_{1}a)^{j})F_{12}$ $-\xi_{n}^{\prime(1)}((ka)^{j})(B_{n'n}^{m})^{2}\xi_{n}^{\prime(1)}((ka)^{j})\xi_{n}^{(2)}((k_{1}a)^{j})\xi_{n}^{(1)}((k_{1}a)^{j})F_{21}$ $-\xi_{n}^{\prime(1)}((ka)^{j})(\mathcal{B}_{n'n}^{m})^{2}\xi_{n}^{\prime(1)}((ka)^{j})\xi_{n}^{\prime(2)}((k_{1}a)^{j})\xi_{n}^{(1)}((k_{1}a)^{j})F_{12}$ $-\xi_{n}^{\prime(1)}((ka)^{j})(B_{n'n}^{m})^{2}\xi_{n}^{\prime(1)}((ka)^{j})(\xi_{n}^{(1)}((k_{1}a)^{j}))^{2}F_{21}F_{12}$ $+ {\xi'}_n^{(1)}((ka)^j)(B^m_{n'n})^2 \xi_n^{(1)}((ka)^j) \xi_n^{(2)}((k_1a)^j) {\xi'}_n^{(1)}((k_1a)^j) F_{21}$ $+\xi_{n}^{\prime(1)}((ka)^{j})(B_{n'n}^{m})^{2}\xi_{n}^{(1)}((ka)^{j})\xi_{n}^{\prime(2)}((k_{1}a)^{j})\xi_{n}^{(1)}((k_{1}a)^{j})F_{12}$ $-\xi_n^{(1)}((ka)^j)(A_{n'n}^m)^2\xi_n'^{(1)}((ka)^j)\xi_n'^{(1)}((k_1a)^j)\xi_n^{(1)}((k_1a)^j)F_{21}F_{12}$ $-\xi_{n'(1)}^{\prime(1)}((ka)^{j})(A_{n'n}^{m})^{2}\xi_{n}^{(1)}((ka)^{j})\xi_{n'(1)}^{\prime(1)}((k_{1}a)^{j})\xi_{n}^{(1)}((k_{1}a)^{j})F_{21}F_{12}$ $+\xi_{n}^{(1)}((ka)^{j})(B_{n'n}^{m})^{2}\xi_{n}^{\prime(1)}((ka)^{j})\xi_{n}^{\prime(1)}((k_{1}a)^{j})\xi_{n}^{(1)}((k_{1}a)^{j})F_{21}F_{12}$ $+ \xi_{n}^{\prime(1)}((ka)^{j})(B_{n'n}^{m})^{2}\xi_{n}^{(1)}((ka)^{j})\xi_{n}^{\prime(1)}((k_{1}a)^{j})\xi_{n}^{(1)}((k_{1}a)^{j})F_{21}F_{12}$ $+ [(A_{n'n}^m)^2 - (B_{n'n}^m)^2] (\xi'_n^{(1)}((ka)^j))^2 (\xi_n^{(2)}((k_1a)^j))^2$ $+ [(A_{n'n}^m)^2 - (B_{n'n}^m)^2](\xi_n^{(1)}((ka)^j))^2(\xi'_n^{(2)}((k_1a)^j))^2$ + $(\xi_n^{(1)}((ka)^j))^2 (A_{n'n}^m)^2 \xi'_n^{(2)}((k_1a)^j) \xi'_n^{(1)}((k_1a)^j) F_{21}$ $+ (\xi_n^{(1)}((ka)^j))^2 (A_{n'n}^m)^2 \xi'_n^{(1)}((k_1a)^j) \xi'_n^{(2)}((k_1a)^j) F_{12}$

 $+F_{21}\xi_{n}^{\prime(1)}((k_{1}a)^{j}),$

$$-(B_{n'n}^m)^2\psi'_n((ka)^j)F_{21}\xi_n^{(2)}((k_1a)^j)\xi'_n^{(1)}((ka)^j)\xi_n^{(1)}((k_1a)^j)$$

$$-(B^{m}_{\ell})^{2}\psi'((ka)^{j})F_{12}\xi_{\tau}^{(2)}((k_{1}a)^{j})\xi'_{\tau}^{(1)}((ka)^{j})\xi_{\tau}^{(1)}((k_{1}a)^{j})$$

 $+ (B_{n'n}^{m})^{2} \psi_{n'}'((ka)^{j}) F_{12} \xi_{n}^{(1)}((ka)^{j}) \xi_{n'}^{(1)}((k_{1}a)^{j}) \xi_{n'}'^{(2)}((k_{1}a)^{j})$

$$-(B^m)^{2}b'((ka)^j)E_{2}E_{2}\xi'^{(1)}((ka)^j)(\xi^{(1)}((ka)^j))^2$$

$$-(B_{n'n}^m)^2\psi_n'((ka)^j)F_{12}F_{21}\xi_n'^{(1)}((k_1a)^j)(\xi_n^{(1)}((ka)^j))^2$$

$$-(A_{\ell}^{m})^{2}\psi_{n}^{\prime}((ka)^{j})F_{21}(\xi_{n}^{(1)}((ka)^{j}))(\xi_{n}^{\prime}((ka)^{j}))\xi_{n}^{(1)}((k_{1}a)^{j})$$

 $+ (B_{n'n}^m)^2 \psi_n((ka)^j) F_{21} \xi'_n^{(1)}((ka)^j) \xi_n^{(1)}((k_1a)^j) \xi_n^{(2)}((k_1a)^j)$ $+ (B_{n'n}^m)^2 \psi_n'((ka)^j) F_{12} \xi_n'^{(1)}((ka)^j) \xi_n'^{(1)}((k_1a)^j) \xi_n^{(2)}((k_1a)^j)$ $-(B_{n'n}^m)^2\psi_n((ka)^j)F_{21}\xi_n^{(1)}((ka)^j)\xi_n^{\prime(2)}((k_1a)^j)\xi_n^{\prime(1)}((k_1a)^j)$ $-(B_{n'n}^m)^2\psi_n((ka)^j)F_{12}\xi_n^{(1)}((k_1a)^j)\xi_n^{\prime(1)}((k_1a)^j)\xi_n^{\prime(2)}((k_1a)^j)$ $+ (B_{n'n}^m)^2 \psi_n((ka)^j) F_{12} F_{21}(\xi_n^{(1)}((ka)^j)) (\xi'_n^{(1)}((k_1a)^j))^2$ $+ (B_{n'n}^m)^2 \psi_n'((ka)^j) F_{21} \xi_n^{(2)}((k_1a)^j) \xi_n^{(2)}((k_1a)^j) \xi_n'^{(1)}((k_1a)^j)$

$$-(A_{n'n}^m)^2\psi_n((ka)^j)F_{12}\xi'_n^{(1)}((ka)^j)\xi_n^{(1)}((k_1a)^j)\xi'_n^{(2)}((k_1a)^j)$$

$$-(A_{n'n}^m)^2\psi_n((ka)^j)F_{21}\xi_n^{(2)}((k_1a)^j)\xi'_n^{(1)}((k_1a)^j)\xi'_n^{(1)}((k_1a)^j)$$

$$+ (A^m_{n'n})^2 \psi_n((ka)^j) F_{12} F_{21}((\xi'^{(1)}_n((k_1a)^j))^2 \xi^{(1)}_n((ka)^j)$$

+
$$(A_{n'n}^m)^2 \psi_n((ka)^j) F_{12} {\xi'}_n^{(1)}((ka)^j) {\xi'}_n^{(2)}((k_1a)^j)$$

$$-\left[(B^{m}_{n'n})^{2}-(A^{m}_{n'n})^{2}\right]\psi_{n}'((ka)^{j})\xi_{n}'^{(1)}((ka)^{j})(\xi_{n}^{(2)}((k_{1}a)^{j}))^{2}$$

$$+ [(A_{n'n}^m)^2 - (B_{n'n}^m)^2]\psi_n((ka)^j)({\xi'}_n^{(2)}((k_1a)^j))^2(\xi_n^{(1)}((ka)^j))^2$$

$$-(A_{n'n}^{m})^{2}\psi_{n}'((ka)^{j})\xi_{n}^{(1)}((ka)^{j}){\xi'}_{n}^{(2)}((k_{1}a)^{j})\xi_{n}^{(2)}((k_{1}a)^{j})$$

$$+ (B_{n'n}^m)^2 \psi_n'((ka)^j) \xi_n'^{(2)}((k_1a)^j) \xi_n^{(1)}((ka)^j) \xi_n^{(1)}((ka)^j) \xi_n^{(2)}((k_1a)^j)$$

$$+ (B_{n'n}^m)^2 \psi_n((ka)^j) \xi_n'^{(1)}((k_1a)^j) \xi_n'^{(2)}((ka)^j) \xi_n^{(2)}((k_1a)^j)$$

$$-(A^m_{n'n})^{(2)}\psi_n((ka)^j)\xi'^{(1)}_n((ka)^j)\xi'^{(2)}_n((k_1a)^j)\xi^{(2)}_n((k_1a)^j)$$

 $a_{n_{11q}}^{j} =$

$$a_{n_{1p}}^{j} = rac{a_{n_{11p}}^{j}}{a_{n_{21}}^{j}}, \ a_{n_{1q}}^{j} = rac{a_{n_{11q}}^{j}}{a_{n_{21}}^{j}},$$

$$+\,\xi'^{(1)}_n((ka)^j)(B^m_{n'n})^2\xi^{(1)}_n((ka)^j)\xi'^{(2)}_n((k_1a)^j)\xi^{(2)}_n((k_1a)^j)$$

$$-\,(\xi_n^{(1)}((ka)^j))^2(A_{n'n}^m)^2(\xi'_n^{(1)}((ka)^j))^2F_{12}F_{21}$$

$$-(\xi_n^{(1)}((ka)^j))^2(B_{n'n}^m)^2\xi'_n^{(1)}((k_1a)^j)\xi'_n^{(2)}((k_1a)^j)F_{12}$$

$$-(\xi_n^{(1)}((ka)^j))^2(B^m_{n'n})^2\xi'_n^{(2)}((ka)^j)\xi'_n^{(1)}((k_1a)^j)F_{21}$$

$$+\xi_n^{(1)}((ka)^j)(B_{n'n}^m)^2\xi'_n^{(1)}((ka)^j)\xi'_n^{(2)}((k_1a)^j)\xi_n^{(2)}((k_1a)^j)$$

$$-\xi_{n}^{\prime(1)}((ka)^{j})(A_{n'n}^{m})^{2}\xi_{n}^{(1)}((ka)^{j})\xi_{n}^{\prime(2)}((k_{1}a)^{j})\xi_{n}^{(2)}((k_{1}a)^{j})$$

$$-\xi_n^{(1)}((ka)^j)(A_{n'n}^m)^2\xi_n'^{(1)}((ka)^j)\xi_n'^{(2)}((k_1a)^j)\xi_n^{(2)}((k_1a)^j)$$

$$+ (\xi_n^{-1} ((ka)^{-1}))^{-} (A_{n'n}^{-1})^{-} (\xi_n^{-1} ((k_1a)^{-1}))^{-} F_{12}F_{21}$$

 $(\varepsilon^{(1)}(1-\varepsilon)i)^{2}(Am)^{2}(\varepsilon^{(1)}(1-\varepsilon)i)^{2}E$

 $-(A_{n'n}^{m})^{2}\psi_{n}((ka)^{j})F_{12}F_{21}(\xi'_{n}^{(1)}((ka)^{j}))\xi'_{n}^{(1)}((k_{1}a)^{j})(\xi_{n}^{(1)}((k_{1}a)^{j}))$ $+ (B_{n'n}^m)^2 \psi_n((ka)^j) F_{12} F_{21}(\xi'_n^{(1)}((ka)^j)) \xi'_n^{(1)}((k_1a)^j)(\xi_n^{(1)}((k_1a)^j)),$ $a_{n_{11n}}^{j} =$ $-(A_{n'n}^m)(B_{n'n}^m)F_{21}\psi_n'((ka)^j)(\xi_n^{(2)}((k_1a)^j))^2\xi_n'^{(1)}((ka)^j)\xi_n^{(1)}((ka)^j)$ $+ (B_{n'n}^m)^2 F_{12} \psi'_n((ka)^j) (\xi_n^{(1)}((ka)^j)) {\xi'_n}^{(1)}((ka)^j) \xi_n^{(1)}((ka)^j)$ $-(A_{r'r}^m)^2 F_{21} \psi_n'((ka)^j) (\xi_n'^{(1)}((k_1a)^j)) \xi_n^{(1)}((ka)^j) \xi_n^{(1)}((k_1a)^j)$ $-(A_{n'n}^m)(B_{n'n}^m)F_{12}\psi_n((ka)^j)(\xi'_n^{(1)}((k_1a)^j))\xi'_n^{(1)}((ka)^j)\xi_n^{(2)}((k_1a)^j)$ + $(A_{n'n}^m)(B_{n'n}^m)F_{21}\psi'_n((ka)^j)(\xi_n^{(1)}((ka)^j))\xi'_n^{(2)}((k_1a)^j)\xi_n^{(1)}((k_1a)^j)$ $+ (A_{n'n}^m)(B_{n'n}^m)F_{12}\psi_n'((ka)^j)(\xi_n^{(1)}((ka)^j))\xi_n^{(2)}((k_1a)^j)\xi_n'^{(1)}((k_1a)^j),$ $a_{n_{21}}^{j} = (-\xi_{n}^{(1)}((ka)^{j}))^{2}(A_{n'n}^{m})^{2}(\xi_{n'}^{\prime(2)}((k_{1}a)^{j}))^{2}$ $+F_{12}\xi_{n}^{\prime(1)}((k_{1}a)^{j})\xi_{n}^{(2)}((k_{1}a)^{j})$ $+F_{21}\xi_{n}^{\prime(1)}((k_{1}a)^{j})+((A_{n'n}^{m}))^{2}\xi_{n}^{(1)}((ka)^{j})\xi_{n}^{\prime(2)}((k_{1}a)^{j})$ + $F_{12}\xi_{n}^{\prime(1)}((k_{1}a)^{j})\xi_{n}^{\prime(1)}((ka)^{j})[(\xi_{n}^{(2)}((k_{1}a)^{j}))]$ $+\xi_n^{(1)}(k_1a)^j)F_{21}]+\xi'_n^{(1)}((ka)^j)(A_{n'n}^m)^2\xi_n^{(1)}((ka)^j)$ + $F_{12}\xi'_{n}^{(1)}((k_{1}a)^{j})\xi_{n}^{(1)}((ka)^{j})\xi'_{n}^{(2)}((k_{1}a)^{j})$ $+F_{21}\xi_{n}^{\prime(1)}((ka)^{j})-(A_{n'n}^{m})^{2}\xi_{n}^{\prime(1)}((ka)^{j})\xi_{n}^{(2)}((ka)^{j})$ + $F_{12}\xi_{n}^{\prime(1)}((ka)^{j})\xi_{n}^{(1)}((k_{1}a)^{j})[\xi_{n}^{(2)}((k_{1}a)^{j})]$ $+\xi_{n}^{(1)}((k_{1}a)^{j})F_{21}]-\xi_{n}^{\prime(1)}((ka)^{j})(B_{n'n}^{m})^{2}\xi_{n}^{\prime(1)}((k_{1}a)^{j})$ + $F_{12}\xi'_{n}^{(1)}((ka)^{j})\xi'_{n}^{(1)}((k_{1}a)^{j})\xi_{n}^{(2)}((k_{1}a)^{j})$ $+F_{21}\xi_n^{(1)}((k_1a)^j)+(B_{n'n}^m)^2\xi_n^{\prime(1)}((k_1a)^j)\xi_n^{(1)}((ka)^j)^2$ $+F_{12}\xi_{n}^{\prime(1)}((k_{1}a)^{j})\xi_{n}^{\prime(2)}((ka)^{j})^{2}$ $+F_{21}\xi_{n}^{\prime(1)}((k_{1}a)^{j})+(B_{n'n}^{m})^{2}\xi_{n}^{\prime(1)}((ka)^{j})$ + $F_{12}\xi_n^{(1)}((k_1a)^j)\xi_n^{\prime(1)}((ka)^j)^2\xi_n^{(2)}((k_1a)^j)$ $+F_{21}\xi_{n}^{(1)}((k_{1}a)^{j})-\xi_{n}^{\prime(1)}((ka)^{j})(B_{n'n}^{m})^{2}$ $-F_{12}\xi_n^{(1)}((k_1a)^j)\xi_n^{(1)}((ka)^j)\xi'_n^{(2)}((k_1a)^j)^2$

 $+ (A_{n'n}^m)^2 \psi_n'((ka)^j) \xi_n^{(1)}((ka)^j) \xi_n^{(1)}((k_1a)^j) \xi_n^{(2)}((k_1a)^j) F_{21}$

 $+ (A_{n'n}^m)^2 \psi_n'((ka)^j) \xi_n^{(1)}((ka)^j) \xi_n^{(1)}((k_1a)^j) \xi_n^{(2)}((k_1a)^j) F_{12}$

 $+ (A_{n'n}^{m})^{2} \psi_{n}((ka)^{j}) (\xi_{n}'^{(2)}((k_{1}a)^{j})\xi_{n}^{(1)}((ka)^{j}) (\xi_{n}'^{(1)}((k_{1}a)^{j}))$

 $+ (A_{n'n}^m)^2 \psi'_n((ka)^j) (\xi_n^{(1)}((k_1a)^j))^2 \xi'_n^{(1)}((ka)^j) F_{21}F_{12}$

 $-(A_{n'n}^m)^2\psi_n'((ka)^j)F_{12}\xi_n^{(2)}((k_1a)^j)\xi_n^{(1)}((ka)^j)\xi_n^{(1)}((k_1a)^j)$

где

 $F_{12} =$

$$=\frac{m_1^j\xi'_n^{(2)}((k_1b)^j)\psi_n((k_2b)^j)-m_2^j\xi_n^{(2)}((k_1b)^j)\psi_n'((k_2b)^j)}{m_2^j\xi_n^{(1)}((k_1b)^j)\psi_n'((k_2b)^j)-m_1^j\xi'_n^{(1)}((k_1b)^j)\psi_n((k_2b)^j)}$$

 $F_{21} =$

$$=\frac{m_{2}^{j}\xi_{n}^{\prime(2)}((k_{1}b)^{j})\psi_{n}((k_{2}b)^{j})-m_{1}^{j}\xi_{n}^{(2)}((k_{1}b)^{j})\psi_{n}^{\prime}((k_{2}b)^{j})}{m_{1}^{j}\xi_{n}^{(1)}((k_{1}b)^{j})\psi_{n}^{\prime}((k_{2}b)^{j})-m_{2}^{j}\xi_{n}^{\prime(1)}((k_{1}b)^{j})\psi_{n}((k_{2}b)^{j})}$$

 $\psi_n(\rho) = \rho j_n(\rho), \ \xi_n^{(1)}(\rho) = \rho h_n^{(1)}(\rho), \ \xi_n^{(2)}(\rho) = \rho h_n^{(2)}(\rho)$ — функции Риккати–Бесселя, "штрих" означает операцию дифференцирования, $k = kn_o, \ k_1 = m_1^j, \ k_2 = km_2^j, \ m_1^j, \ m_2^j$ — комплексный показатель преломления цито-плазмы и ядра соответственно, n_o — показатель преломления окружающей среды, a^j — радиус ядра клетки, b^j — радиус цитоплазмы *j*-частицы, *k* — волновое число.

Список литературы

- [1] Смирнов А.Н. Болезни крови. Серия справочник практического врача. М., 2008.
- [2] *Marlies M.* Basics Hämatologie. Elsevier GmbH, München, 2011.
- [3] Борен К., Хафман Д. Поглощение и рассеяние света малыми частицами / Пер. с англ. З.И. Фейзулина, А.Г. Виноградова, Л.А. Персяна. М., 1986.
- [4] Sloot P.M.A., Figdor C.G. // Appl. Optics. 1986. Vol. 25. N 19.
 P. 3559–3565.
- [5] Aden A., Kerker V // J. Appl. Phys. 1951. Vol. 22. P. 1242.
- [6] Cruzan O.R. // Quart. Appl. Math. 1962. Vol. 20. P. 33-40.
- [7] Stein S. // Quart. Appl. Math. 1961. Vol. 19. P. 15-24.
- [8] Robbert P.A. // Physica. A. 1986. Vol. 137. N 1. P. 209-341.
- [9] *Куликов К.Г., Радин А.М.* // Опт. и спектр. 2002. Т. 92. № 2. С. 228–236.
- [10] Videen G., Ngo D., Chylek P., Pinnick R.G. // J. Opt. Soc. Am. 1995. Vol. 12. N 5. P. 922–928.
- [11] Куликов К.Г. // ЖТФ. 2012. Т. 82. Вып. 12. С. 24–28.
- [12] Баландин М.Ю., Шурина Э.П. // Методы решения СЛАУ большой размерности. Новосибирск, 2000.
- [13] *Saad Y.* Iterative methods for sparse linear systems. SIAM, 2003.
- [14] Vorst van der H. Iterative Krylov methods for large linear systems. Cambridge, 2003.