Особенности диэлектрических аномалий Pb_{1-x}Ge_xTe(Ga) в районе сегнетоэлектрического фазового перехода

© С.В. Барышников, А.С. Барышников, А.Ф. Баранов, В.В. Маслов*

Благовещенский государственный педагогический университет, 675000 Благовещенск, Россия * Российский государственный педагогический университет им. А.И. Герцена, 191186 Санкт-Петербург, Россия

E-mail: bsv@tsl.ru

(Поступила в Редакцию 9 июля 2007 г. В окончательной редакции 11 декабря 2007 г.)

Представланы результаты исследований диэлектрических свойств $Pb_{1-x}Ge_xTe(Ga)$ для x = 0.02, 0.03, 0.05 в температурном интервале 77–150 К на частотах $10^4 - 10^6$ Нz. Обнаружено, что для $Pb_{1-x}Ge_xTe(Ga)$ не только температура сегнетоэлектрического фазового перехода T_c , но и абсолютное значение ε существенно растет с ростом содержания Ge. На температурной зависимости диэлектрического фазового перехода T_c и добавочный при $T_1 > T_c$.

PACS: 77.80.-e, 77.22.Ch

1. Введение

Соединения A^4B^6 , к которым относится $Pb_{1-x}Ge_xTe$, представляют собой полупроводники с узкой запрещенной зоной ($E_g \sim 0.2 - 0.4 \, \mathrm{eV}$), в то же время они являются сегнетоэлектриками. Особенности физических свойств Pb1-, Ge, Te вблизи сегнетоэлектрического фазового перехода были исследованы различными методами, включая измерения теплоемкости [1], электропроводности [2], диэлектрической проницаемости [3,4]. Детальное изучение фазовых переходов в сегнетоэлектриках A^4B^6 показало, что, хотя в ряде из них (SnTe, $Pb_{1-x}Ge_xTe)$ фазовые переходы могут быть удовлетворительно описаны в рамках теории, предполагающей сильное электрон-фононное взаимодействие [5,6], свойства Pb_{1-x}Ge_xTe не укладываются в рамки этой модели. Для объяснения наблюдаемых отличий в [7] было сделано предположение, что положение атомов Ge в узлах решетки РbTe неустойчиво и атомы Ge, смещаясь из узлов, становятся нецентральными. Позднее в работе [8] при изучении тонкой структуры спектров рентгеновского поглощения (EXAFS) в области К-края поглощения Ge и L-края Pb на синхронном излучении было установлено, что как ниже, так и выше Т_с атомы Ge смещены из узлов в направлении (111), а величина смещения составляет ~ 0.8 Å.

На то, что возникновение фазового перехода в $Pb_{1-x}Ge_x$ Те является следствием смещения атомов Ge, указывает целый ряд необычных свойств этого смешанного кристалла. Во-первых, в $Pb_{1-x}Ge_x$ Те резко увеличивается температура фазового перехода при увеличении концентрации Ge, достигая значений $T_c \approx 200$ К при x = 0.1; во-вторых, температурная зависимость диэлектрической проницаемости сильно отличается от закона Кюри–Вейсса [4]. Кроме того, без привлечения концепции о нецентральности Ge нельзя объяснить и особенности электропроводности [2].

В работе [1] на температурных зависимостях теплоемкости $Pb_{1-x}Ge_xTe$ (x = 0.03 - 0.08) наблюдались "двойные" аномалии. Для объяснения этих кривых в [9] была разработана теоретическая модель, согласно которой при охлаждении кристалла при некоторой температуре Т₁ в нем происходит фазовый переход первого рода с резким возрастанием концентрации нецентральной примеси. Выигрыш энергии обеспечивается за счет косвенного диполь-дипольного взаимодействия при возникновении нецентральной примеси. При более низкой температуре Т_с дипольные моменты нецентральной примеси упорядочиваются и в кристаллах происходит сегнетоэлектрический фазовый переход второго рода. Можно предположить, что подобные аномалии могут наблюдаться и на температурном ходе диэлектрической проницаемости.

2. Эксперимент и результаты

Для исследования диэлектрических свойств вблизи фазового перехода наиболее перспективны твердые растворы $Pb_{1-x}Ge_x$ Te с содержанием 1–1.5 at.% Ga. B [10] было показано, что легирование Pb_{1-x}Ge_xTe галлием приводит к возникновению глубокого примесного уровня ян-теллеровского типа, расположенного примерно на 70 meV ниже дна зоны проводимости, что приводит к значительному падению проводимости в области низких температур. Низкая проводимость и высокие значения диэлектрической проницаемости вблизи фазового перехода позволяют определять диэлеткрическую проницаемость непосредственно из емкости образца. Это дает возможность провести измерения диэлектрических свойств $Pb_{1-x}Ge_xTe(Ga)$ на частотах $10^{6} - 10^{7}$ Hz [3]. Современные цифровые микропроцессорные измерители импеданса типа LCR-819 фирмы Good Will Instrument Co., Ltd, имея базовую точ-

Рис. 1. Температурная зависимость диэлектрической проницаемости Pb_{0.98}Ge_{0.02}Te(Ga) на частотах 10⁴ (*I*), 10⁵ (*2*) и 10⁶ Hz (*3*). T_c — температура сегнетоэлектрического фазового перехода, T_1 — температура аномалии в поведении $\varepsilon'(T)$ при $T > T_c$.

Рис. 2. Температурная зависимость диэлектрической проницаемости Pb_{0.97}Ge_{0.03}Te(Ga) на частотах 10^3 (*1*), 10^4 (*2*), 10^5 (*3*) и 10^6 Hz (*4*).

ность 0.02%, позволяют производить измерения ε на частоте $10^3 - 10^5$ Hz даже при tg $\delta \sim 10^3$.

В эксперименте использовались поликристаллические составы $Pb_{1-x}Ge_xTe(Ga)$ с содержанием Ge 2, 3 и 5 at.%. Образцы имели размеры $8 \times 8 \times 1$ mm, в качестве электродов использовалась индий-галлиевая паста. Измерения проводились при медленном отогреве образца после охлаждения до 77 К. Температура фиксировалась медь-константановой термопарой, вторая (опорная) термопара находилась при температуре тающего льда. Точность измерения температуры составляла ~ 0.5 К. Для измерения электрических параметров образцов использовались цифровые измерители импеданса: на частотах $10^3 - 10^5$ Hz — LCR-819 и на частоте 10^6 Hz — E7-12.

Как показали измерения, для Pb_{0.98}Ge_{0.02}Te с добавкой 1 at.% Ga концентрация носителей, определенная из постоянной Холла, составляла $1.8 \cdot 10^{16}$ cm⁻³ при 300 K и $3 \cdot 10^{14}$ cm⁻³ при 90 K. Температура фазового перехода соответствовала ~ 62 K. Выше фазового перехода в интервале 65–90 K $\varepsilon(T)$ на частоте 10^6 Hz можно описать законом Кюри–Вейсса с постоянными $C = 1.1 \cdot 10^5$ K и $T_0 = 56$ K (данные получены на тех же образцах в работе [3]). При температуре порядка 135-140 K на низких частотах диэлектрическая проницаемость имеет максимум, с ростом частоты она уменьшается и максимум расплывается, выше 150 K tg δ резко растет и измерение ε затруднительно (рис. 1).

Для Pb_{0.97}Ge_{0.03}Te с добавкой 1 at.% Ga концентрация носителей, определенная из постоянной Холла, составляла $1.8 \cdot 10^{16}$ cm⁻³ при 300 K и $2 \cdot 10^{13}$ cm⁻³ при 77 K. При температуре 90 K наблюдается сегнетоэлектрический фазовый переход (рис. 2). Выше фазового перехода в интервале 93–105 K $\varepsilon(T)$ на частоте 10^{6} Hz можно описать законом Кюри–Вейсса с постоянными $C = 2.2 \cdot 10^{5}$ K и $T_0 = 79$ K. Отличие температуры Кюри–Вейсса T_0 от температуры фазового перехода T_c свидетельствует о переходе первого рода. Для температур выше 105 K наблюдается значительное отклонение от закона Кюри–Вейсса. Как и для Pb_{0.98}Ge_{0.02}Te, ε имеет сильную частотную зависимось: при увеличении частоты в интервале от 10^3 до 10^6 Hz диэлектрическая проницаемость монотонно уменьшается.

Для Pb_{0.95}Ge_{0.05}Te с добавкой 1 at.% Ga концентрация носителей, определенная из постоянной Холла, составляла 2.7 · 10¹⁶ cm⁻³ при 300 K и 1.5 · 10¹⁴ cm⁻³ при 90 K. Из рис. 3 следует, что увеличение содержания Ge приводит к повышению T_c и увеличению абсолютного значения ε . В данном случае максимум в температурной зависимости $\Delta\varepsilon$, обусловленный примесью Ge, и максимум, соответствующий сегнетоэлектрическому переходу ($T_c = 124$ K [3]), сливаются, и говорить о выполнении закона Кюри–Вейсса уже не приходится.

Рис. 3. Температурная зависимость диэлектрической проницаемости $Pb_{0.95}Ge_{0.05}Te(Ga)$ на частотах 10^4 (1), 10^5 (2) и 10^6 Hz (3).

3. Обсуждение результатов

Полученные экспериментальные данные позволяют сделать следующие выводы: во-первых, не только температура сегнетоэлектрического фазового перехода T_c , но и ε существенно растет с ростом содержания Ge; во-вторых, для диэлектрической проницаемости наблюдаются два пика — при основной температуре сегнетоэлектрического фазового перехода T_c и добавочный при $T_1 > T_c$.

Возрастание ε' с ростом *x* в составах $Pb_{1-x}Ge_xTe$ хорошо согласуется с общими представлениями о вкладе нецентральной примеси в диэлектрическую проницаемость кристалла, полученными, в частности, для щелочно-гадоидных кристаллов (KCl:Li, NaBr:F, KC1:OH, RbC1:OH) в работе [11]. При введении нецентральной примеси диэлектрическая проницаемость увеличивается и приобретает сильную частотную зависимость. При этом є уменьшается с увеличением частоты. Зависимость избыточной диэлектрической проницаемости $\Delta \varepsilon = \varepsilon - \varepsilon_0$ (где ε_0 — диэлектрическая проницаемость чистого кристалла) прямо пропорциональна концентрации нецентральных примесей. Подобная зависимость наблюдается и для Pb_{1-x}Ge_xTe(Ga). На рис. 4 приведена зависимость максимальных значений диэлектрической проницаемости в точке Т_с от концентрационного содержания Ge, что подтверждает тот факт, что в области температур 77-150 К существенный вклад в ε' дает смещение Ge²⁺ относительно положения равновесия.

Роль Ga рассматривалась в ряде работ (см. [12,13] и ссылки в них). Элементы третьей группы в кристаллах A^4B^6 образуют метастабильные примесные центры, электронная структура которых модифицируется при изменении зарядового состояния. Легирование $Pb_{1-x}Ge_x$ Те неизоэлектронными примесями элементов III группы приводит к понижению температуры сегнетоэлектрического фазового перехода [12]. (Сравнение наших резуль-

Рис. 4. Зависимость максимальных значений диэлектрической проницаемости от содержания Ge. I — при $T = T_c$ на частоте 10^6 Hz; 2 — при $T = T_1$ на частоте 10^4 Hz.

татов T_c для $Pb_{1-x}Ge_xTe(Ga)$ с обобщенными результатами $Pb_{1-x}Ge_xTe$ [14] дает снижение $\Delta T_c \sim 8$ K/at.% для x = 0.02; ~ 15 K/at.% для x = 0.03; ~ 20 K/at.% для x = 0.05). Предполагается, что снижение T_c связано с появлением хаотически замороженных поляризованных дефектов, обладающих случайно ориентированными дипольными моментами, роль которых могут играть атомы галлия или комплексы с их участием [15]. Можно предположить, что благодаря поляризации ими некоторого объема кристалла эти дефекты могут ослаблять молекулярное поле и понижать температуру фазового перехода, а также вносить вклад в низкочастотную дисперсию. Однако ввиду того, что процентное содержание Ga одинаково во всех образцах, а величина $\varepsilon'(T)$ в области 135-145 К явным образом зависит от содержания Ge, он не может напрямую явиться причиной обнаруженных аномалий.

Наличие двух максимумов в поведении $\varepsilon'(T)$, по-нашему мнению, можно интерпретировать на основе теории, предложенной для объяснения поведения теплоемкости в [9]. Согласно этим представлениям, при $T = T_1$ происходит фазовый переход "суперионного типа", т.е. возбуждение большого числа ионов Ge²⁺ в одно из восьми нецентральных положений в ячейке кубической симметрии вдоль направлений (111). Нецентральные ионы Ge рассматриваются как дефекты Френкеля, число которых зависит от температуры и определяется из условия минимума свободной энергии. В отличие от обычных нецентральных примесей для возбуждения френкелевского дефекта нужно преодолеть энергию активации $\omega > 0$ (разность энергий нецентрального и центрального положений катиона).

Равновесное число дефектов определяется минимумом свободной энергии [9]

$$F = \omega n + E_{\text{int}} - nT \ln \chi - T \ln \left[\frac{N_1! z^n}{(N_1 - n)! n!} \right], \quad (1)$$

где E_{int} — энергия притяжения между дефектами, $\ln \chi$ — вклад в энтропию образования дефекта за счет изменения частот колебаний смещенного атома, а статистический вес подсчитан с учетом числа способов размещения *n* дефектов в N_1 ячейках, содержащих слабо связанные атомы, и двукратного вырождения нецентрального положения в ячейке. При плавлении упорядоченной подрешетки в суперионном кристалле предполагается, что $E_{\text{int}} = -\lambda^2/2$, λ — константа притяжения между дефектами [16]. В этом случае dF/dn = 0 и температура фазового перехода имеет вид

$$T_1 = \frac{\omega - \lambda y/2}{\ln \chi z},\tag{2}$$

где $y = N_1/N$, N — число ячеек в кристалле.

Фазовый переход первого рода происходит при равенстве свободных энергий фаз с разными x, и при температуре перехода выполняются соотношения dF/dx = 0, $dF^2/\partial x^2 = 0$. От обычного суперионного перехода рассмариваемая задача отличается в двух основных пунктах, плавлению подвержена неупорядоченная подрешетка, компоненты твердого раствора и дефекты являются диполями, взаимодействующими через мягкие поперечные оптические фононы параэлектрической матрицы PbTe.

Фазовый переход по описанной выше схеме состоит в резком увеличении при $T = T_1$ числа ионов Ge²⁺ в нецентральном положении в ячейке в области $T > T_c$ (T_c — температура сегнетоэлектрического перехода в кристалле без дефектов). Необходимым условием перехода при T_1 является неравенство

$$\frac{\omega}{1+0.5\ln\chi} < \frac{\lambda y}{2} < \omega, \tag{3}$$

с которым можно связать ограниченный интервал составов, где наблюдается особенность в диэлектрической проницаемости при $T = T_1$. В сильно поляризуемых кристаллах, к которым относится $Pb_{1-x}Ge_xTe$, возможна аномально малая активная ω по отношению к смещению Ge^{2+} вдоль направления $\langle 111 \rangle$.

Авторы выражают благодарность И.А. Драбкину за предоставленные образцы.

Список литературы

- H. Yaraneri, A.D.C. Grassie, J.W. Loram. Lect. Notes Phys. 152, 270 (1982).
- [2] Yu.N. Epifanov, L.A. Pevanyuk, G.M. Levanyuk. Ferroelectrics 35, 199 (1981).
- [3] V.V. Maslov, S.V. Baryshnikov, Ya.V. Copelevich. Ferroelectrics 45, 51 (1982).
- [4] S. Katayama, K. Murase. Solid State Commun. 36, 707 (1980).
- [5] Я.Г. Гиршберг, В.И. Тамарченко. ФТТ 18, 1016 (1976).
- [6] K. Sakai. Phys. Rev. B 34, 8019 (1986).
- [7] Ю.А. Логачев, Б.Я. Мойжес. ФТТ 19, 1793 (1977).
- [8] Q.T. Islam, B.A. Bunker. Phys. Rev. Lett. 59, 2701 (1987).
- [9] В.И. Литвинов. ФТТ 26, 1184 (1984).
- [10] Г.С. Бушмарина, Б.Ф. Грузинов, И.А. Драбкин, Е.Я. Лев, И.В. Нельсон. ФТП 11, 1874 (1977).
- [11] G. Lombardo, R.O. Pohl. Phys. Rev. Lett. 15, 291 (1965).
- [12] Д.Е. Онопко, А.И. Рыскин. ФТП 34, 270 (2000).
- [13] А.И. Лебедев, И.А. Случинская. ФТТ 35, 629 (1993).
- [14] S. Takaoka, K. Murase. Phys. Rev. B 20, 2823 (1979).
- [15] А.И. Лебедев, Х.А. Абдуллин. ФТП 18, 624 (1984).
- [16] Ю.Я. Гуревич, Ю.И. Харкац. УФН 136, 553 (1982).