Химический и фазовый состав спиновых светоизлучающих диодов GaMnAs/GaAs/InGaAs

© Д.Е. Николичев¶, А.В. Боряков, С.Ю. Зубков, Р.Н. Крюков, М.В. Дорохин, А.В. Кудрин

Нижегородский государственный университет им. Н.И. Лобачевского, 603950 Нижний Новгород, Россия

(Получена 8 октября 2013 г. Принята к печати 21 октября 2013 г.)

Методом рентгеновской фотоэлектронной спектроскопии совместно с ионным профилированием проведен количественный химический анализ структур спиновых светоизлучающих диодов со спин-инжектирующим слоем GaMnAs и квантовой ямой InGaAs. Получено распределение фаз по глубине и выявлены причины их перераспределения. В спин-инжектирующем слое количество антиферромагнитного Mn и ферромагнитного MnAs находится на одном уровне. Усовершенствована методика разделения фаз и контроля правильности определения содержания компонентов.

1. Введение

Недавно разработанные технологии молекулярнолучевой эпитаксии (МЛЭ), газофазной эпитаксии из металлоорганических соединений (ГФЭМОС) и импульсного лазерного осаждения (ИЛО) [1,2] позволяют создавать высококачественные магнитные материалы, обладающие уникальными свойствами. Среди таких систем выделяется группа соединений — ферромагнитных полупроводников (ФМП), привлекающих внимание возможностью интеграции приборов спинтроники, построенных на их основе, в планарную полупроводниковую технологию, позволяя создавать новые микро- и наноэлектронные приборы. На сегодняшний день ФМП GaMnAs является одним из наиболее перспективных спинтронных материалов. Несмотря на большое количество работ, посвященных созданию и исследованию этого соединения, остаются актуальными задачи по повышению рабочей температуры структур на основе GaMnAs, для чего необходимо увеличивать содержание Mn в них [3]. Повышению температуры Кюри препятствует низкий предел растворимости марганца в арсениде галлия, и легирование выше этого предела приводит к возникновению отдельных фаз, проявляющих как ферромагнитные (ФМ), так и антиферромагнитные (АФМ) свойства, что приводит к существенному изменению характеристик этих систем. В ходе работы методом рентгеновской фотоэлектронной спектроскопии (РФЭС) исследовались планарные структуры спиновых светоизлучающих диодов (ССИД) [4,5], в которых спин-инжектирующий слой GaMnAs позволял производить поляризацию носителей заряда и создание в квантовой яме (КЯ) InGaAs поляризованного излучения. Цель работы состояла в нахождение содержания различных фаз по глубине структуры и их влияния на магнитные и люминесцентные свойства ССИД.

2. Методика эксперимента

Структура светоизлучающих диодов изготавливалась в два этапа. Сначала на подложке *n*-GaAs (001) методом MOC-гидридной эпитаксии при атмосферном давлении и температуре 650°C выращивался буферный слой GaAs толщиной около 0.5 мкм, легированный Si ($n \approx 10^{17}$ см⁻³). Далее наращивался 3 нм слой нелегированного GaAs, квантовая яма In_xGa_{1-x}As шириной 10 нм и x = 0.27, затем 65 нм спейсерный слой GaAs. На второй стадии лазерным распылением мишени из металлического Mn и GaAs выращивался слой ФМП GaMnAs толщиной 35 нм. Температура роста спининжектирующего слоя снижалась до 350°C для уменьшения диффузии Mn в спейсер и на поверхность [6].

Исследование химического состава методом РФЭС проводилось на базе сверхвысоковакуумного комплекса Omicron Multiprobe RM. Давление остаточных газов в аналитической камере в процессе измерений составляло не более 10^{-10} мбар, таким образом, не происходило загрязнение и оксидирование поверхности образца в процессе эксперимента. Эмиссия фотоэлектронов происходила под воздействием рентгеновского излучения с характеристическими линиями MgK_{α} (1253.6 эВ) или AlK_{α} (1486.7 эВ). Развертка спектра вторичных электронов по энергии осуществлялась с использованием полусферического анализатора энергий радиусом 125 мм. Диаметр области сбора вторичных электронов с поверхности образца составлял 1.5 мм. Анализатор энергий работал в режиме постоянной энергии пропускания (50 эВ) с абсолютным разрешением не хуже 0.3 эВ, которое достигалось при использовании круглой входной диафрагмы с диаметром 6 мм и пяти прямоугольных выходных щелей 5 × 10 мм. Регистрация фотоэлектронов производилась с применением блока детекторов из пяти вторичноэлектронных умножителей. Для послойного профилирования структур производилось ионное распыление материала образца с помощью источника ионов Ar⁺ при ускоряющем напряжении 1 кВ. Пучок с диаметром 20 мм имел однородное радиальное распределение тока ионов. Средняя скорость травления составила ~ 0.4 мм/мин.

[¶] E-mail: nikolitchev@phys.unn.ru

Данная величина была получена в результате измерения методом атомно-силовой микроскопии высоты ступеньки, сформировавшейся под держателем образца после ионного травления калибровочной структуры.

Для определения состава записывались фотоэлектронные линии Ga $(2p_{3/2})$, Ga (3s), As $(2p_3)$, As (3p), As (3d), Mn $(2p_3)$, In $(3d_5)$, O (1s) и C (1s). Концентрация элементов в слоях определялась методом факторов относительной чувствительности [7]. Проверка зарядового сдвига фотоэлектронных линий проводилась сравнением энергетического положения пяти-шести пиков, лежащих в различных областях спектра, с положением эталонных линий из атласов [8,9] и статей [10,11]. Тонкая структура фотоэлектронных линий, обусловленная химическими сдвигами (энергиями связей), анализировалась с использованием математического пакета для обработки спектральных данных Spectral Data Processor v. 4.3 [12].

3. Результаты и их обсуждение

Используемые в ходе исследований факторы относительной чувствительности (ФОЧ) были взяты из [13]: $S_{\text{Ga}(2p3)} = 46.0$, $S_{\text{Ga}(3s)} = 3.4$, $S_{\text{As}(2p3)} = 36.6$, $S_{\text{As}(3p)} = 1.2$, $S_{\text{As}(3d)} = 0.8$, $S_{\text{Mn}(2p3)} = 2.8$, $S_{\text{In}(3d5)} = 3.0$ и $S_{O(1s)} = S_{C(1s)} = 1.9$. Значения ФОЧ были получены в результате исследования спектров калибровочных образцов, имеющих известный элементный состав. Тестовые структуры и исследуемый образец изучались на той же установке и при тех же условиях. Для исследуемых ССИД был проведен весь спектр аналитических измерений, заключавшийся в проведении элементного и химического анализов.

3.1. Элементный анализ

Для определения концентрации указанные ФЭ-линии ограничивались снизу фоном, вычисленным по методу Ширли, рассчитывалась общая площадь спектральной линии и нормированная интенсивность как отношение площади к ФОЧ этой линии. Результаты измерения содержания компонентов представлены на рис. 1. Из профиля видно, что кислород на поверхности образца имеет наибольшую концентрацию на уровне $\sim 45 \, {\rm at}\%$, что связано с выдерживанием структуры в нормальных условиях в течение 3 месяцев. Далее эта концентрация плавно снижается и спадает до нуля на глубине ~ 50 нм. Высокая концентрация кислорода наблюдается по всей толщине слоя, где присутствует марганец, что объясняется формированием устойчивого соединения марганца и кислорода с последующим затягиванием кислорода в глубину структуры ввиду высокой подвижности атомов Mn. Образование кислородных фаз с участием всех компонентов системы (Mn, Ga и As) в спин-инжектирующем слое возможно определить при проведении химического анализа методом РФЭС.

Рис. 1. Распределение концентрации элементов по глубине структуры ССИД.

Квантовая яма InGaAs четко детектируется на глубинах 90–130 нм по возрастанию концентрации индия. Провал концентрации галлия связан с замещением атомов элемента третьей группы (Ga) в кристаллической матрице GaAs с образованием соединения InAs. Из профиля распределения индия можно сказать, что границы КЯ не являются резкими, что иногда приводит к ухудшению фотолюминесцентных свойств светоизлучающих систем. Максимальный уровень содержания индия в квантовой яме оказался ниже предполагаемого (6 at%), а ее ширина больше (~ 20 нм), что связано с размытием КЯ в процессе эпитаксиального роста и процессом ионного перемешивания при профилировании структуры.

Профили распределения концентрации на рис. 1 свидетельствуют о встраивании большей части атомов марганца в кристаллическую решетку GaAs с замещением атомов Ga, что соответствует данным, приведенным в [14]. При этом Mn в матрице является не только источником локального магнитного момента, но и электрически активной примесью. Наблюдается сегрегация высокоподвижных атомов Mn в приповерхностной области и диффузия марганца в спейсерную область, что объясняет неравномерное распределение содержания Mn в слое $Ga_{1-x}Mn_x$ As от x = 0.54 на поверхности до x = 0.04на границе со спейсером GaAs (приведены значения x без учета сигнала от кислорода и углерода). За счет большой толщины спейсерного слоя GaAs атомы Mn не проникают в слой КЯ, поэтому дополнительного гашения фотолюминесценции из-за примеси марганца не происходит.

3.2. Анализ химического состояния элементов

Был проведен химический анализ ССИД-структуры, который показал распределение фаз по глубине структуры, представленное на рис. 2 и 4. Задача усложнялась

Рис. 2. Распределение концентрации фаз марганца по глубине.

Рис. 3. Зависимость сопротивления Холла от магнитного поля при низких температурах: АЭХ (1), переходящий в линейную характеристику (2) определяет температуру Кюри как 50 К.

Рис. 4. Распределение концентрации фаз галлия и мышьяка по глубине. На вставке — два приповерхностных оксида мышьяка.

Физика и техника полупроводников, 2014, том 48, вып. 6

тем, что линии марганца имеют мультиплетную структуру [15]. Проблема была решена заменой линий, относящихся к одному фазовому состоянию, одним гауссовым колоколом с коэффициентом асимметрии, равным 21.2%, полученным эмпирически путем подбора его величины по эталонному спектру [16,17].

Марганец (рис. 2) находится в трех фазовых состояниях: металлический марганец (Mn^0), арсенид (MnAs) и оксид марганца (Mn_2O_3). Характерный провал в концентрации металлического марганца на 6 нм в приповерхностной области отвечает процессу его сегрегации. Оксид марганца детектируется на глубинах вплоть до 40 нм и является доминирующей фазой вплоть до глубины 12 нм, до которой преимущественно проникает кислород, образуя устойчивую связь Mn_2O_3 . Концентрация пниктида на достаточно больших глубинах остается в пределах 3–4 ат%. Соотношение АФМ фазы чистого марганца и ФМ арсенида марганца будет определять магнитные и, как следствие, оптоэлектронные свойства (степень спиновой поляризации) спиновых светоизлучающих диодов.

Сложность в интерпретации магнитных свойств ССИД заключается в многообразии фаз в структурах, полученных при варьировании параметров роста. Наряду с Mn₂O₃, РФЭС выявила наличие в светоизлучающих диодах других оксидных форм марганца (MnO, MnO₂), и они, согласно [18-20], могут проявлять как ферромагнитные, так и антиферромагнитные свойства. Переход нелинейного поведения зависимости сопротивления Холла от магнитного поля, проявляющегося при разных температурах и связанного с аномальным эффектом Холла (АЭХ), к линейной зависимости определяет температуру Кюри системы (рис. 3). Определено, что различие в температурах для различных структур составляет не более 10–15 К, а различие в содержании ФМ и АФМ фаз не более 5 ат%, что не может достоверно связывать соотношение ФМ и АФМ фаз с изменением точки Кюри ферромагнитных полупроводников.

На поверхности помимо оксида марганца есть оксидные формы других элементов: мышьяка и галлия (рис. 4). Оксид галлия прослеживается до глубины 40 нм при перераспределении кислорода между ним и марганцем. Высокая концентрация кислорода в приповерхностных слоях приводит к образованию оксидных фаз мышьяка. As_2O_5 наблюдается только на поверхности в количестве 3 ат%. Концентрация As_2O_3 на поверхности составляет 7 ат% и она резко спадает до нуля на глубине 6 нм.

Разложение спектральных линий галлия, марганца и мышьяка приведено на рис. 5. Для этого рассматривались ФЭ-линии с различных глубин с характерными химическими сдвигами.

В слое GaMnAs предполагается наличие фаз чистого мышьяка и марганец-галлиевых соединений различной стехиометрии. Задача их нахождения пока не решена, так как линия $Ga(2p_3)$ является очень интенсивной, и корректное разложение ее на гауссианы представляется

Рис. 5. Разложение линий: Ga2*p*₃,(GaAs — 116.8 эВ, Ga₂O — 117.8 эВ); Mn2*p*₃ (Mn⁰ — 638.5 эВ, MnAs — 639.5 эВ, Mn₂O₃ — 640.7 эВ, сателлит встряски — 645.3 эВ); As3*d* (GaAs — 41.3 эВ, MnAs — 40.5 эВ, As₂O₃ — 44.1 эВ, As₂O₅ — 44.7 эВ).

крайне сложным. Работа с линией Ga(3s) затруднена изза перекрытия этой линии плазмоном от соседней линии As(3p) (рис. 6).

Рис. 6. Синтез линии Ga(3s). Видно как на линию от Ga, находящегося в соединении GaAs, накладывается плазмон от рядом лежащей линии As(3p).

Для подтверждения правильности химического анализа был проведен ряд проверок. Первая (рис. 7) заключалась в сопоставлении распределения концентраций марганца и мышьяка, входящих в соединение стехиометричного арсенида марганца. Как видно из рисунка, равное содержание Mn и As подтверждается совпадением этих двух кривых, что в свою очередь подтверждает корректность полученного решения задачи определения фазового состава слоя ФМП.

В рамках второй проверки проводилось сопоставление распределения концентраций кислорода, полученных независимо в ходе элементного и химического анализа. Кислород был выбран исходя из того, что он всегда находится в химической связи с другими элементами ССИД-структуры. На первом этапе определялись элементы, находящиеся в оксидированном состоянии: галлий, марганец и мышьяк. Далее определялись концентрации этих элементов, находящиеся в соединении с кислородом: Ga₂O, Mn₂O₃, As₂O₅, и, исходя из стехиометрии формул, определялось распределение суммы концентраций кислорода, находящегося в том или ином оксиде. Например, для соединения Ga₂O, где на два атома галлия приходится один атом кислорода, атомный процент галлия нужно разделить на два, чтобы получить

Рис. 7. Сопоставление концентраций марганца и мышьяка, входящих в соединение MnAs.

Рис. 8. Сравнение концентраций кислорода. О_{elem} — концентрация кислорода, полученная в ходе элементного анализа; О_{phase} — концентрация кислорода, полученная в ходе фазового анализа.

концентрацию кислорода. В результате суммирования было получено распределение (O_{phase}), представленное на рис. 8. Второе распределение на этом рисунке — профиль содержания кислорода (O_{elem}) из рис. 1. Кривые хорошо совпадают, что говорит о правильности определения оксидных форм и точном определении их концентраций. Расхождение линий вблизи поверхности обусловлено высокой концентрацией кислорода (~ 45 ат%), что неизбежно приводит к ошибке в методе разделения фаз.

4. Заключение

Метод рентгеновской фотоэлектронной спектроскопии совместно с ионным профилированием позволил получить профили распределения фаз по глубине в планарных твердотельных структурах спинтроники с наноразмерными слоями на основе GaAs, GaMnAs и InMnAs. Разрешение метода РФЭС по глубине делает возможным контроль качества получаемых структур ССИД (распределение концентрации, резкость гетерограниц).

Показано, что длительное выдерживание образцов со спин-инжектирующим слоем GaMnAs в нормальных условиях приводит к существенному его оксидированию. Наблюдается диффузия марганца в спейсер ССИД и его сегрегация на поверхность. Слой ФМП содержит три марганецсодержащих фазы: металлический марганец, оксид марганца и арсенид марганца. При этом различие в содержании антиферромагнитных и ферромагнитных соединений на уровне 5 ат% не дает возможности достоверно связать химические состояния в структуре с ее магнитными и люминесцентными свойствами.

Разработанная методика проверки правильности проведенного количественного химического анализа позволяет производить коррекцию метода разделения фаз на каждом его этапе и обеспечивать сходимость результатов.

Исследование выполнено при поддержке Министерства образования и науки Российской Федерации (соглашения № 14.В37.21.0818, № 14.В37.21.0346), и гранта Президента РФ (МК-2708.2013.2).

Список литературы

- [1] А.Г. Багмут, И.А. Багмут, В.А. Жучков, Г.П. Николайчук, А.Н. Красников. ФИП, **8**, 36 (2010).
- [2] В.Н. Неволин, В.Ю. Фоминский, А.Г. Гнедовец, Р.И. Романов. ЖТФ, 79, 120 (2009).
- [3] H.S. Kim, Y.J. Cho, K.J. Kong, C.H. Kim, K.B. Chung, J. Park, J.-Y. Kim, J. Yoon, M.-H. Jung, Y. Jo, B. Kim, J.-P. Ahn. Chem. Mater., 21, 1137 (2009).
- [4] А.В. Огнев, А.С. Самардак. Вестник ДВО РАН, № 4, 70 (2006).
- [5] Ю.А. Данилов. Журн. "Вестн. Нижегород. ун-та", № 5, 339 (2010).
- [6] Б.Н. Звонков, О.В. Вихрова, Ю.А. Данилов, Е.С. Демидов, П.Б. Демина, М.В. Дорохин, Ю.Н. Дроздов, В.В. Подольский, М.В. Сапожников. Оптич. журн., 75, 56 (2008).
- [7] М.П. Сих. В сб.: Анализ поверхности методами оже- и рентгеновской фотоэлектронной спектроскопии, / под ред. Д. Бриггса, М.П. Сиха.М. (Мир, М., 1987) с. 203
- [8] Handbooks of monochromatic XPS spectra. Vol. 1. The elements and native oxides, ed. by B.V. Crist (XPS International Inc., 1999).
- [9] Handbooks of monochromatic XPS spectra. Vol. 2. Commercially pure binary oxides and a few common carbonates and hydroxides, ed by B.V. Crist (XPS International LLC, 2005).
- [10] J.L. Hilton, B.D. Schultz, C.J. Palmstrom. J. Appl. Phys., 102, 063 513 (2007).

- [11] M. Oshima, M. Mizuguchi, K. Ono, H. Akinaga, M. Sugiyama. J. Electron Spectrosc. and Rotated Phenomena, 124, 165 (2002).
- [12] XPS/AES software. http://www.xpsdata.com/
- [13] Д.Е. Николичев, А.В. Боряков, С.Ю. Зубков, М.В. Дорохин, А.В. Кудрин, А.В. Здоровейщев, М.Н. Дроздов, С.И. Суродин. Журн. "Вестн. Нижегород. ун-та", № 1, 48 (2013).
- [14] X. Liu, J.K. Furdyna, J. Phys.: Condens. Matter, 18, R245 (2006).
- [15] H.W. Nesbitt, D. Banerjee. Amer. Mineralogist, 83, 305 (1998).
- [16] P.W. Huang, J.H. Huang, C.H. Yen, C.Y. Cheng, F. Xu, H.C. Ku, S.F. Lee. J. Phys.: Condens. Matter, 23, 415 801 (2011).
- [17] B. Schmid, A. Muller, M. Sing, R. Claessen, J. Wenisch, C. Gould, K. Brunner, L. Molenkamp, W. Drube. J. Phys. Rev. Soc., 78, 075 319 (2008).
- [18] К.М. Херд. УФН, **142**, 331 (1984).
- [19] B. Boucher, R. Buhl, M. Perrin. J. Appl. Phys., 42, 1615 (1971).
- [20] H.J. Kim, J.B. Lee, Y.-M. Kim, M.-H. Jung, Z. Jagličić, P. Umek, J. Dolinšek. Nanoscale Res Lett., 2, 81 (2007).

Редактор Т.А. Полянская