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Heat capacity of hexagonal boron nitride sheet in Holstein model
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The effects of electron-phonon interaction on the electronic heat capacity of hexagonal boron nitride plane are

investigated within the Holstein Hamiltonian model and Green’s function formalism. By using different electron-

phonon coupling constants of boron and nitrogen sublattices, it is found that the specific heat has different behaviors

in two temperature regions. In the low temperature region, the electron-phonon interaction causes the enhancement

of specific heat due to decreasing the band gap, while heat capacity reduces in the high temperature region because

of decreasing the excitation spectrum.

Boron nitride (BN) structures are fascinating low-dimen-

sional objects that offer an outstanding playground to chal-
lenge the quantum theory at the nanoscale and manifesting

novel physical phenomena. BN sheet in hexagonal form is

analogous to graphene where boron (B) and nitrogen (N)
atoms can be replaced by carbon atoms but its property is

quite different. Theoretical studies suggest that BN sheet
is a wide gap semiconductor with electronic band gap,

εg ≈ 5.5 eV [1,2]. Since the electronic property of BN sheet
is strongly connected to the delocalised electron system,

obviously any modification of these systems will influence

these properties. Consequently, by the proper choice of
the type of modification the electronic properties can be

deliberately tuned. The tuning of the electronic properties
could be referred to as electron-phonon (EP) interaction.

The interaction between electrons and phonons is actually

the correction of coulomb interaction between electrons and
ions due to vibration of ions. Conduction electrons suffer an

effective retarded interaction by propagation of phonons and
provided to the phonons react instantaneously, the effective

interaction is no longer retarded. Therefore, we see that the
maps onto an attractive Hubbard model [3].
Knowledge of EP coupling is essential for the under-

standing of many properties of nanostructures that it would
be dominated by contribution of phonons. For instance,

the heat capacity is a quantity which directly reflects the
details of the excitation spectrum. So, it is important how

the electronic specific heat capacity of the system, C, is

affected by the EP coupling strength. Therefore, it is
necessary to understand the lattice dynamics of the system

under consideration, especially in the low phonon frequency
regime. Phonons and thermodynamics properties in BN

structures have been an active area of research in recent
years [4–6]. For example, specific heat capacity has been

measured by Zhi et al. [4]. They have calculated the specific

heat capacity for multi-walled BN nanotubes (BNNTs)
synthesized by chemical vapor deposition and using boron

and metal oxide as precursor. An ab initio study of electron
mobility and EP coupling in chemically modified graphene

as well as hexagonal boron carbon nitrogen was investigated

by Bruzzone and Fiori [5].
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Lattice interaction model including short-range coupling

have been discussed in Holstein model [7,8]. In this model,

dynamics interaction is characterized by a short-range EP

interaction and tight-binding electrons couples to the optical

phonon modes locally. The key factors determining the

EP coupling strength are the EP matrix elements between

the initial and the final electronic states close to the Fermi

level. In other words, it is clear that the EP interaction

strength depends on the orbital characteristics of the initial

and final electronic states as well as the displacement pattern
of the phonon modes. Also, the optical out-of-plane modes

(ZO) are energetically smaller than in-plane vibrations due

to the hybridization of the s p2-orbitals of the system. The

purpose of this work is to study the EP interaction effects,

i. e., ZO phonon, on the DOS as well as electronic heat

capacity of BN plane using the Green’s function method.

Since the inertia of the ions is important, the interaction

between electrons which is mediated by phonons, is not

instantaneous but retarded. This makes Green’s function a

particularly useful tool for describing the effect of the EP

interaction. So, we study the DOS and the specific heat

of the system by the Green’s function approach taking to
account the EP interaction.

The Hamiltonian of model can be written as, H = He

+ Hph + He-ph, where He, Hph and He-ph are the elec-

tron, phonon and e-ph interaction terms, respectively.

In the second quantisation, the considered Hamiltonian is

as follows [9],

H = −
∑

i j αβ

tαβi j aα†
i aβ

j +
∑

iα

εα0 aα†
i aα

i

+
∑

iα

ωα
0 bα†

i bα
i +

∑

iα

gα
0

(

bα†
i + bα

i

)

aα†
i aα

i , (1)

where α and β refer to the B or N sites inside of the

graphene Bravais lattice unit cell (Fig. 1). tαβi j denotes

the amplitude for a π electrons to hop from site α in the

unit cell i to the site β in the nearest-neighbor unit cell j ;
εα0i shows the on-site energy of sub-site α in the Bravais

lattice unit cell i . It takes ε0 (−ε0) for B (N) atoms

in the systems. aα†
i (aα

i ) displays the electron creation

(annihilation) operator at the sub-site α in the Bravais
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Figure 1. Schematic presentation of BN sheet. The light dashed

lines illustrate the Bravais lattice unit cell. Each cell includes two

nonequivalent sites, which are denoted by B and N.

lattice unit cell i and bα†
i (bα

i ) describes corresponding

bosonic operator. ωα
0 exhibits dispersionless frequency of

the sub-site α in the Bravais lattice unit cell i and gα
0

indicates on-site EP coupling strength at the sub-site α in the

the Bravais lattice unit cell i . In our calculations we take the

chemical potential µ = 0, which corresponds to contribution

of one electron per pz orbital in the system. We assume the

unit such that ~ = kB = 1 (kB is Boltzmann constant).
Because of the existence of two atoms in the Bravais

lattice unit cell, the Green’s function needs to be written as

a 2× 2

G(i , j ; τ ) =

(

GBB(i , j ; τ ) GBN(i , j ; τ )

GNB(i , j ; τ ) GNN(i , j ; τ )

)

,

with Gαβ(i , j ; τ ) = −〈Taα
i (τ )aβ†

j (0)〉 where τ hints the

imaginary time and T remarks the time ordering operator.

Here, 〈· · · 〉 plays as ensemble averaging on the ground state

of the system. Using the Hamiltonian in Eq. (1), Heisen-
berg equation, ∂aα

i (τ )/∂τ = [aα
i (τ ),H(τ )] and calculating

∂Gαβ(i , j ; τ )/∂τ , the equation of motion for the electron

and phonon operators can be obtained as,

aα†
i aα

i =
1

gα
0

∂bα
i

∂τ
− ωα

0

gα
0

bα
i , (3)

so, the equation of motion gets the shape,

∑

l

{

−δi l

[

I
∂

∂τ
+ ε0i + Ŵi (τ )

]

+ ti l

}

G(l , j ; τ )

= δ(τ )δi j I, (4)

where δi l (δi j ) presents the Kronecker symbol, I serves as a

2× 2 unit matrix, a Dirac δ-function is introduced by δ(τ ).

Also, ε0i , Ŵi (τ ) and ti l matrixes are defined by,

ε0i =

(

εB
0i 0

0 εN
0i

)

, (5)

Ŵi (τ ) =

(

ηB〈aB†
i (τ )aB

i (τ )〉 0

0 ηN〈aN†
i (τ )aN

i (τ )〉

)

, (6)

and

ti l =

(

tBB
il tBN

il

tNB
il tNN

il

)

(7)

respectively. In the Eq. (6), ηα ≡ 2(gα
0 )

2/ωα
0 . Using an

imaginary time Fourier transformation,

f(τ ) =
1

β

∑

m

e−ıωmτ f(ıωm), (8)

and following relation,

1

β

∫ β

0

dτ eı(ωm−ωm′ )τ = δmm′, (9)

we obtain that,
∑

l

{

[ıωmI + ε0i + Ŵi (ıωm)] δi l + ti l

}

G(l , j ; ıωm) = δi j I,

(10)

in which β = T−1 performs as the inverse of temperature,
ωm = π(2m+ 1)T are the fermionic Matsubara frequencies
and {m, m′} denote integer numbers. Analytical continua-
tion, ıωm → E = E + ı0+, of Eq. (10) leads to the following
equation,
∑

l

[

EI + ε0i + f (E, T)η + ti l

]

G(l , j ;E) = Iδi j , (11)

so that f (E, T) = [1 + exp(E/T)]−1 notifies the Fermi-
Dirac distribution function and η matrix is defined as,

η =

(

ηB 0

0 ηN

)

(12)

The k-space Fourier transformation of Eq. (11) leads to the
following relation,

G(i , j ;E) =
1

N

∑

k

eık.ri j [EI + ε0 + f (E, T)η − ǫk]
−1

,

(13)
in which N presents number of the Bravais lattice unit
cell, k = (kx, ky) refers to two-dimensional wave vector in
the first Brillouin zone, ri j are three vectors that connect
a B (N) site to it’s nearest neighbors N (B) sites and ǫk
plays the Fourier transformation of ti j ,

ǫk = t

×
(

0 eıkxa0+ 2e−ıkx
a0
2 cos(

√
3ky

a0

2
)

e−ıkxa0 + 2eıkx
a0
2 cos(

√
3ky

a0

2
) 0

)

,

(14)
where t ≡ tBN

〈i j 〉 = tNB
〈i j 〉, 〈i j 〉 implies the nearest neighbor

sites in the Bravais lattice unit cell i and j and a0 expresses
interatomic distance. The DOS of system can written by

Физика и техника полупроводников, 2014, том 48, вып. 5



638 Hamze Mousavi

following relation,

D(E) = − 1

2π
ℑ
[

GBB(i , i ;E) + GNN(i , i ;E)
]

, (15)

where Gαα(i , i ;E) can be obtained from Eq. (13). Also, the
electronic specific heat capacity reads as [10],

C =

∫ +∞

−∞

dED(E)E
∂ f (E, T)

∂T
. (16)

In summary, we want to consider how the DOS and

electronic heat capacity of hexagonal BN sheet affected by

EP. We used the Green’s function technique, Holstein model

and standard mean field theory. We set coupling strength

of B and N sublattices as ηB = 0.50ηN, ηB = 1.0ηN and

ηB = 2.0ηN in which ηN = 0.15t and hopping integral to

the first nearest neighbors is t = 2.9 eV [11–13]. We also

set the on-site energy of B and N atoms as, ε0 = +0.80t
and −0.80t [11–15]. We note that coupling constant is small

due to the low DOS in the system. Figs. 2 and 3 illustrate

the results. In Fig. 2, the DOS of the system is plotted in

the cases of without EP interaction and with EP. We see

that the band gap of BN plane decreases with increasing

EP interaction. It is independent from individual values of
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Figure 2. DOS of BN plane without EP interaction (solid line)
and with EP coupling (dashed lines). The band gap decreases with

increase of coupling strength.
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Figure 3. The specific heat of BN sheet in terms of temperature

without EP (solid line) and with EP interaction (dashed lines).
The specific heat changes with the strength of EP coupling in two

temperature regions.

ηB or ηN but depends on total value of coupling strength.
In semiconductors, the EP coupling causes the increasing
quasiparticle weight and band gap decreases. This is in
contrast to metals where an increase of the EP coupling,
decreases quasiparticle weight of electron excitation [3,13].
We also investigate the effect of EP on the heat capacity of
BN sheet using Eqs. (8) and (9). In Fig. 3, electronic heat
capacity of the system is plotted for mentioned values of η.
As we noted, the heat capacity is a quantity which directly
depends on the details of the excitation spectrum and the
band gap of aystem decreases because of EP interaction.
Furthermore, it is well-known that the heat capacity of
semiconductors, in the low temperature, can be written
as [16], C ∝ exp(−Eg/T). According to this formula,
with decreasing Eg, the specific heat increases in the low
temperature region as it is shown in Fig. 3. On the other
hand, the specific heat decreases with increasing η in the
high temperature region. In this region, for temperature
increasing of the system, less value of energy is needed
rather than low temperature region. Therefore from general
formula of the specific heat, C = ∂U/∂T , the electronic spe-
cific heat capacity of the system reduces with increasing η.
So it is concluded that with increasing EP coupling

strength, the band gap of the system decreases due to
increasing quasiparticle weight and the specific heat has
different behaviors in two temperature regions. In the
low temperature region, the EP interaction causes the
enhancement of specific heat due to decreasing the band
gap, while heat capacity decreases in the high temperature
region due to decreasing the excitation spectrum.
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