Сравнительные фотоэлектрические характеристики наноструктурированных пленок $Pb_{1-x}Sn_xSe$, полученных совместным и послойным осаждением PbSe и SnSe

© Х.Н. Мухамедзянов[¶], В.Ф. Марков, Л.Н. Маскаева

Уральский федеральный университет им. первого президента России Б.Н. Ельцина, 620002 Екатеринбург, Россия

(Получена 24 апреля 2013 г. Принята к печати 4 июня 2013 г.)

Проведен сравнительный анализ фотоэлектрических характеристик пленок твердого раствора Pb_{0.975}Sn_{0.025}Se, полученного совместным гидрохимическим осаждением PbSe и SnSe, и твердого раствора Pb_{0.902}Sn_{0.098}Se, полученного послойным гидрохимическим осаждением индивидуальных селенидов металлов (SnSe–PbSe–SnSe–PbSe) с их последующей термической обработкой на воздухе при 523–700 К. Показано, что пленки, синтезированные методом послойного осаждения, по своим фотоэлектрическим характеристикам имеют ряд преимуществ перед пленками, полученными соосаждением.

1. Введение

Создание новых высокочувствительных и в то же время доступных материалов для регистрации и преобразования инфракрасного (ИК) излучения является актуальной проблемой в развитии инфракрасной техники, используемой для температурного мониторинга атмосферы, земной поверхности, поиска полезных ископаемых, создания современных систем вооружений и предотвращения чрезвычайных ситуаций. Наиболее информативны для решения этих задач средний и дальний ИК диапазоны (3-14 мкм) [1-3]. Для материалов, используемых в этой области спектра (InSb, CdHgTe, PbSnTe), характерны сложность технологического оборудования для получения тонких пленок и высокая коммерческая стоимость [4–6]. Актуальной задачей является создание альтернативных соединений. К перспективным соединениям следует отнести твердые растворы замещения в системе (селенид свинца-селенид олова) (II) [7,8]. Их уникальность заключается в присущей им инверсии зон проводимости при формировании общей структуры на основе PbSe, в результате чего наблюдается уменьшение ширины запрещенной зоны твердого раствора с увеличением содержания в нем олова и расширения тем самым диапазона спектральной чувствительности в дальнюю область ИК спектра [9,10]. Широкое применение фотодетекторов на основе этих материалов возможно при условии, что тонкопленочная технология их изготовления будет отличаться высокой воспроизводимостью характеристик и относительно малозатратна. Указанными качествами обладает метод гидрохимического осаждения пленок. Он не требует сложного технологического оборудования и хорошо апробирован для селенида свинца [11-13]. В ранее выполненных работах наноструктурированные пленки твердых растворов $Pb_{1-x}Sn_xSe$ были получены как путем совместного (метод СО) [14,15], так и послойного гидрохимического осаждения (метод ПО) [16,17] индивидуальных селенидов

свинца и олова (II) с их последующей термообработкой на воздухе. Однако фотоэлектрические и полупроводниковые характеристики пленок $Pb_{1-x}Sn_xSe$, полученных тем и другим путем с использованием гидрохимического осаждения, до настоящего времени не сопоставлялись.

Цель данной работы заключается в сравнении фотоэлектрических и полупроводниковых характеристик наноструктурированных пленок твердых растворов $Pb_{1-x}Sn_xSe$, полученных методом совместного осаждения селенидов свинца и олова (II) и методом послойного гидрохимического осаждения SnSe и PbSe с последующей термообработкой на воздухе.

2. Методика эксперимента

В качестве объектов исследования были взяты пленки $Pb_{0.975}Sn_{0.025}Se$, синтез которых проводился путем соосаждения SnSe и PbSe, и пленки $Pb_{0.902}Sn_{0.098}Se$, полученные послойным гидрохимическим осаждением индивидуальных селенидов металлов в последовательности SnSe-PbSe-SnSe-PbSe. Гидрохимический синтез пленок осуществляли в стеклянных герметичных реакторах из молибденового стекла объемом 100 мл, помещенных в термостат марки "U-10", точность измерения температуры в котором составляла $\pm 0.1^{\circ}$. В качестве материала подложки использовали ситалл марки CT-50-1-2.

Реакционная смесь для получения пленок путем совместного осаждения селенидов свинца и олова (II) включала соли этих металлов, цитрат натрия, гидроксид аммония, селенокарбамид и сульфит натрия. При гидрохимическом синтезе четырехслойной композиции SnSe-PbSe-SnSe-PbSe пленки SnSe и PbSe осаждали последовательно в отдельных реакторах. Реакционная смесь для получения пленок SnSe включала соль олова (II), трилон Б, гидроксид натрия, а также селенокарбамид с сульфитом натрия. Пленки PbSe получали из ванны, содержащей соль свинца, этилендиамин, селенокарбамид, ацетат аммония и сульфит натрия. Все полученные пленки с целью сенсибилизации к ИК

[¶] E-mail: newage@isnet.ru

излучению подвергали термообработке на воздухе в негерметично закрытой емкости при 573-700 К [18]. Для этого использовалась электрическая печь ПМ-1.0-7 с точностью поддержания температуры ±2 К.

Измерение толщин пленок проводили оптическим методом. Спектры отражения снимали на инфракрасном спектрофотометре Specord 75 IR в интервале длин волн 2.5–25.0 мкм.

Фазовый состав и структуру пленок определяли методом рентгеновской дифракции на дифрактометре ДРОН-3 с медным излучением в режиме сканирования с шагом 0.02° и временем накопления сигнала в точке 5 с. Долю селенида олова в структуре твердого раствора Pb_{1-x}Sn_xSe рассчитывали по правилу Вегарда [19], при этом использовали значение периода решетки псевдокубического SnSe, равное 0.6002 нм [20]. Ошибка определения содержания замещающего компонента в твердом растворе не превышала ± 0.4 мол% с доверительной вероятностью 90%.

Измерение фотоэлектрических характеристик проводили в соответствии с ГОСТ 17782-79. Для измерения вольт-ваттной чувствительности и темнового сопротивления использовали измерительный стенд К.54.410. Для выполнения электрофизических измерений и исследования полупроводниковых свойств на экспериментальные образцы пленок электрохимическим способом наносили никелевые омические контакты, к которым с использованием низкотемпературного припоя припаивали золотые проводники. Размеры чувствительного элемента исследованных образцов составляли 2 × 2 мм.

Измерение постоянной времени образцов пленок проводили двухчастотным методом с точностью ±10%.

Низкотемпературные исследования фотоэлектрических характеристик проводили в разработанном вакуумном криостате при помощи двухкаскадного термоэлектрического охладителя (ТЭО) при остаточном давлении 10^{-1} Па в интервале 220-300 К и точностью поддержания температуры ± 0.2 К. В качестве ТЭО использовался двухкаскадный термоэлектрический охладитель производства ГНПП ТФП "Остерм" (г. Санкт-Петербург).

Для исследования фотоэлектрических и спектральных характеристик пленок при температуре 80 К использовали азотный криостат. Относительные спектральные характеристики фоточувствительности снимали с использованием двойного монохроматора SPM-2 на частоте модуляции излучения 1000 Гц. В качестве источника излучения использовали галогеновую лампу накаливания КГМ-12-100, режим работы которой был стабилизирован по току с точностью $\pm 0.2\%$. Запись спектров осуществляли в автоматическом режиме в диапазоне длин волн 0.4-10.0 мкм с шагом 0.05 мкм.

Определение термической ширины запрещенной зоны проводили по стандартной методике, основанной на температурной зависимости проводимости [21]. Оптическую ширину запрещенной зоны рассчитывали исходя из граничной длины волны спектральной характеристики [22].

3. Экспериментальные результаты и их обсуждение

При совместном осаждении (метод CO) селенидов свинца и олова (II) на подложку образование твердого раствора $Pb_{1-x}Sn_xSe$ возможно непосредственно в процессе синтеза с последующей стабилизацией его состава при термообработке. Формирование структуры твердого раствора $Pb_{1-x}Sn_xSe$ при послойном осаждении (метод ПО) селенидов PbSe и SnSe происходит предположительно в процессе операции термического отжига.

По результатам ранее выполненных работ [14,15] максимальное содержание SnSe в пленках твердых растворов $Pb_{1-x}Sn_xSe$, полученных методом соосаждения PbSe и SnSe, не превышало 9.6 мол%. Послойным гидрохимическим осаждением PbSe и SnSe при формировании четырехслойной композиции SnSe-PbSe-SnSe-PbSe с последующей ее термообработкой получены твердые растворы замещения $Pb_{1-x}Sn_xSe$, содержащие до 13.2 мол% SnSe [16,17]. Метод послойного осаждения селенидов свинца и олова (II) с формированием многослойных композиций требует проведения большего числа операций синтеза, однако позволяет лучше подобрать оптимальные условия осаждения селенидов металлов в отличие от метода соосаждения, где процесс синтеза связан с протеканием конкурирующих реакций образования PbSe и SnSe в одном реакторе, контроль за которыми затруднителен.

Достижение высоких пороговых фотоэлектрических характеристик пленок $Pb_{1-x}Sn_xSe$ за счет их термообработки требует определения оптимальной температуры и времени процесса, условий его проведения [18]. Для термообработанных при указанных выше условиях пленках наблюдается корреляция между величиной фотоответа и содержанием по данным рентгеновского анализа кислородсодержащих фаз оксида свинца PbO, селенита свинца PbSeO₃, а также бинарного соединения 4PbO · PbSeO₃, играющих, вероятно, определяющую роль в реализации процесса фотопроводимости [23].

На рис. 1 приведены зависимости темнового сопротивления пленки Pb_{0.975}Sn_{0.025}Se, полученной методом CO (кривая 1), и пленки Pb_{0.902}Sn_{0.098}Se, представляющей собой результат синтеза четырехслойной композиции (кривая 2), от температуры термоактивации в диапазоне 523-700 К в течение 60 мин. Из рисунка видно, что если с повышением температуры термообработки сопротивление пленки, полученной методом СО, имело монотонную тенденцию к увеличению, повысившись с 55 кОм при 573 К до 870 кОм при 673 К, то для пленки, синтезированной по технологии ПО, в результате нагрева оно, наоборот, уменьшалось, снизившись с 806 кОм при 573 К до 52 кОм при 653-673 К. Дальнейшее увеличение температуры процесса до 693 К сопровождалось увеличением сопротивления до 250 К. Основной причиной принципиально различающихся зависимостей является, вероятно, толщина пленок (соответственно 1.8

Рис. 1. Зависимости темнового сопротивления R_D пленок Pb_{0.975}Sn_{0.025}Se (1) (метод CO) и Pb_{0.902}Sn_{0.098}Se (2) (метод ПО) от температуры обработки T_{ht} на воздухе в течение 60 мин.

и 0.7 мкм), определяющая интенсивность и глубину их окисления.

Сравниваемые пленки отличаются также и величиной вольтовой чувствительности. Как следует из рис. 2, вольтовая чувствительность S_V четырехслойной композиции Pb_{0.902}Sn_{0.098}Se примерно вдвое превышает таковую у пленки, полученной соосаждением. Это, вероятно, связано с различной степенью окисления материала пленки и, следовательно, с изменением содержания кислородсодержащих фаз, определяющих величину фотоответа [24,25]. В том и другом случае характер кривых экстремальный.

С увеличением температуры отжига наблюдается рост вольтовой чувствительности, который затем сменяется резким ее снижением за счет переокисления материала. Положение максимума вольтовой чувствительности пленки Pb_{0.975}Sn_{0.025}Se соответствует 653 K, а у более толстой четырехслойной композиции Pb_{0.902}Sn_{0.098}Se — 673 K. Из полученных зависимостей видно, что для каждой пленки существует оптимальная температура обработки, обеспечивающая максимальный уровень ее вольтовой чувствительности. Это связано прежде всего с достижением при температуре экстремума оптимального для конкретной пленки содержания и состава образовавшихся в ней кислородсодержащих фаз [24,25]. Характер приведенных на рис. 2 зависимостей является типичным для всех исследованных в работе пленок.

На рис. З изображены относительные спектральные характеристики фоточувствительности обсуждаемых пленок при 300, 220 и 80 К. Температура обработки для пленок, полученных соосаждением и послойным осаждением, соответственно составила 653 и 673 К. Как видно из рисунка, длинноволновая граница поглощения у четырехслойной композиции (Pb_{0.902}Sn_{0.098}Se), полученной методом ПО, находится "правее" примерно на 1.0 мкм во всем рассматриваемом интервале температур по сравнению с пленкой Pb_{0.975}Sn_{0.025}Se, полученной методом СО. Так, при 300, 220 и 80 К для $Pb_{0.902}Sn_{0.098}Se$ длинноволновая граница составляет 5.5, 6.0 и 6.5 мкм, а для $Pb_{0.902}Sn_{0.098}Se$ соответственно 6.5, 7.0 и 7.5 мкм. Видно, что для пленки с более высоким содержанием олова в составе твердого раствора сдвиг кривой спектральной чувствительности в длинноволновую область спектра выражен сильнее.

Путем построения зависимостей логарифма темнового сопротивления $\ln R_D$ исследуемых пленок $Pb_{1-x}Sn_xSe$ от обратной температуры ($\ln R_D - 1/T$) была определена их термическая ширина запрещенной зоны. На рис. 4 приведены зависимости $\ln R_D$, а также значения оптической и термической ширины запрещенных зон исследуемых пленок от обратной температуры. Из рисунка видно, что пленка твердого раствора $Pb_{0.975}Sn_{0.025}Se$ (метод CO) при температуре 300 К имеет термиче

Рис. 2. Зависимости вольтовой чувствительности S_V пленок Pb_{0.975}Sn_{0.025}Se (метод CO) (1) и четырехслойной композиции Pb_{0.902}Sn_{0.098}Se (метод ПО) (2) от температуры термообработ-ки T_{ht} .

Рис. 3. Относительные спектральные характеристики фоточувствительности пленок Pb_{0.975}Sn_{0.025}Se (метод CO) — *1*, *2*, *3* и Pb_{0.902}Sn_{0.098}Se (метод ПО) — *4*, *5*, *6* при 300 (*1*, *4*), 220 (*2*, *5*), 80 K (*3*, *6*).

Физика и техника полупроводников, 2014, том 48, вып. 2

скую ширину запрещенной зоны, равную 0.213 эВ, которая при снижении температуры до 220 К уменьшается до 0.2 эВ (кривая 4). Оптическая ширина запрещенной зоны этого же твердого раствора при температуре 300 К составляет 0.234 эВ и уменьшается до 0.218 эВ при понижении температуры до 220 К (кривая 2). В результате в интервале температур 220-300 К оптическая ширина запрещенной зоны превышает термическую ширину запрещенной зоны на 0.018-0.021 эВ соответственно. В свою очередь пленка твердого раствора Pb_{0.902}Sn_{0.098}Se (метод ПО) при 300 К имеет термическую ширину запрещенной зоны, равную 0.209 эВ, а при 220 К — 0.194 эВ (кривая 3). Оптическая ширина запрещенной зоны этого твердого раствора при температуре 300 К составляет 0.225 эВ и уменьшается до 0.207 эВ при понижении температуры до 220 К (кривая 1). Таким образом, и для этой пленки в интервале 220-300 К оптическая ширина запрещенной зоны выше термической. Можно предположить, что это связано с захватом фотонов дефектами структуры поверхности пленок с образованием электронно-дырочных пар, а также с увеличением энергии активации процесса фотопроводимости на величину, обеспечивающую преодоление поверхностного барьера, образовавшегося за счет оксидных фаз [26,27].

Полученные обоими методами пленки $Pb_{1-x}Sn_xSe$ после термического окисления являются сильно легированными полупроводниками *p*-типа [15,17]. Это можно объяснить наличием высоких концентраций электрически активных примесей, образующих акцепторные примесные уровни, которые формируют в материале значительную по величине примесную зону. В создании акцепторных примесных уровней внутри запрещенной зоны участвуют вакансии и несовершенства структуры, а также образуемые при термическом окислении оксиды, селениты и оксиселениты свинца (PbO_x, SeO₂, PbSeO₃, 2PbO·PbSeO₃, 4PbO·PbSeO₄), которые

Рис. 4. Зависимости оптической (1, 2), термической (3, 4) ширины запрещенной зоны и логарифма темнового сопротивления lnR_D (5, 6) от обратной температуры для пленки Pb_{0.902}Sn_{0.098}Se (метод ПО) — 1, 3, 5 и пленки Pb_{0.975}Sn_{0.025}Se (метод СО) — 2, 4, 6. Температура отжига — 653 К (метод СО) и 673 К (метод ПО).

Физика и техника полупроводников, 2014, том 48, вып. 2

Рис. 5. Зависимости вольт-ваттной чувствительности $S_{V/W}$ пленок твердых растворов Pb_{0.975}Sn_{0.025}Se (метод CO) — *1* и Pb_{0.902}Sn_{0.098}Se (метод ПО) — *2* от температуры. Температура термоактивации — 653 K (метод CO) и 673 K (метод ПО).

являются ловушками для неосновных носителей (электронов) [27–30].

Полупроводник на основе твердого раствора $Pb_{1-x}Sn_xSe$ является невырожденным, так как в противном случае наблюдались бы заметные эффекты фотоэдс и выпрямления. Зависимость логарифма сопротивления от температуры (рис. 4, кривые 5, 6) для всех исследованных пленок практически линейна, что характерно для несобственного поликристаллического полупроводника с межкристаллитными потенциальными барьерами.

Температурный коэффициент термической ширины запрещенной зоны в интервале 220–300 К для пленки твердого раствора Pb_{0.975}Sn_{0.025}Se (метод CO) по расчету составил $\Delta E_g^{\text{therm}}/\Delta T = 2.0 \cdot 10^{-4}$ эB/K, а для Pb_{0.902}Sn_{0.098}Se (метод ПО) — 2.25 \cdot 10⁻⁴ эB/K.

На рис. 5 приведены зависимости вольт-ваттной чувствительности от температуры для пленок Pb_{0.975}Sn_{0.025}Se (метод CO) И Pb_{0.902}Sn_{0.098}Se (метод ПО), термически обработанных при 653 и 673 К соответственно. Видно, что пленка Pb0.902Sn0.098Se имеет более высокую вольт-ваттную чувствительность в диапазоне 220-300 К по сравнению с Pb_{0 975}Sn_{0 025}Se. В указанном температурном интервале вольт-ваттная чувствительность Pb0.902Sn0.098Se (метод ПО) возросла с 190 до 5890 В/Вт, в то время как для пленки Pb_{0.975}Sn_{0.025}Se (метод CO) соответствующие изменения находятся в пределах 95-2560 В/Вт. Отметим, что изменение постоянной времени при этом для пленки Pb0.975Sn0.025Se (метод CO) составило от 3 до 18 мкс, а для Pb_{0.902}Sn_{0.098}Se (метод ПО) этот параметр возрос с 2 до 15 мкс.

4. Заключение

Сравнение методов соосаждения селенидов свинца и олова и их послойного осаждения в виде тонкопле-

ночных композиций с целью формирования твердых растворов $Pb_{1-x}Sn_xSe$ показало ряд различий в их фотоэлектрических и спектральных характеристиках.

Пленки твердых растворов $Pb_{1-x}Sn_xSe$, полученные методом соосаждения, требуют более низкой рабочей температуры термоактивации, однако они обладают меньшей величиной фотоотклика.

Максимально достигнутые значения вольт-ваттной чувствительности пленки твердого раствора, полученной послойным осаждением Pb_{0.902}Sn_{0.098}Se, в 2–3 раза превышают аналогичный параметр для Pb_{0.975}Sn_{0.025}Se.

Установлено, что максимум кривой относительной спектральной чувствительности и ее "правый край" для пленки Pb_{0.902}Sn_{0.098}Se, сформированной послойным осаждением, имеют больший сдвиг в длинноволновую область ИК спектра по сравнению с исследованной соосажденной пленкой.

Определенные по результатам низкотемпературных исследований в интервале 300–220 К температурные коэффициенты ширины запрещенной зоны пленок твердых растворов Pb_{0.975}Sn_{0.025}Se (метод CO) и Pb_{0.902}Sn_{0.098}Se (метод ПО) составили соответственно $2.0 \cdot 10^{-4}$ и $2.25 \cdot 10^{-4}$ эB/K.

Список литературы

- [1] Ж. Госсорг. Инфракрасная термография. Основы, техника, применение (М., Мир, 1988).
- [2] Б.Н. Формозов. Аэрокосмические фотоприемные устройства видимого и инфракрасного диапазона (СПб., ГУАП, 2002).
- [3] Л.Н. Курбатов. Прикл. физика, 3, 5 (1999).
- [4] C.P. Li, P.J. Mc Cann, X.M. Fang. J. Cryst. Growth, 208, 423 (2000).
- [5] J. John, A. Fach, J. Masck, P. Muller, C. Paglino, H. Zogg. Appl. Surf. Sci., **102**, 346 (1996).
- [6] X.J. Wang, C. Fulk, F. Zhao, D. Li, S. Mukherjee, Y. Chang, R. Sporken, R. Klie, Z. Shi, C.H. Grein, S. Sivananthan. J. Electron Mater, **37** (9), 1200 (2008).
- [7] Б.А. Волков, О.А. Панкратов, А.В. Сазонов. ФТТ, 26 (2), 430 (1984).
- [8] Н.П. Гавалешко, П.Н. Горлей, В.А. Шендеровский. Узкозонные полупроводники. Получение и физические свойства (Киев, Наук. думка, 1984).
- [9] Н.Х. Абрикосов, Л.Е. Шелимова. Полупроводниковые материалы на основе соединений А^{IV}В^{VI} (М., Наука, 1975).
- [10] A. Szczerbakow, H. Berger. J. Cryst. Growth, 139 (1,2), 172 (1994).
- [11] Х.Н. Мухамедзянов, М.П. Миронов, С.И. Ягодин, Л.Н. Маскаева, В.Ф. Марков. Цветные металлы, 12, 57 (2009).
- [12] Н.А. Третьякова, В.Ф. Марков, Л.Н. Маскаева, Х.Н. Мухамедзянов. Конденсированные среды и межфазные границы, 7 (2), 189 (2005).
- [13] Н.А. Третьякова, В.Ф. Марков, Л.Н. Маскаева, Х.Н. Мухамедзянов. Химия и химическая технология. Сб. тр. УГТУ– УПИ, 97 (2006).
- [14] В.Ф. Марков, Н.А. Третьякова, Л.Н. Маскаева, Х.Н. Мухамедзянов. Вестн. УГТУ–УПИ. Сер. хим., 5 (57), 75 (2005).

- [15] Л.Н. Маскаева, В.Ф. Марков, В.М. Баканов, Х.Н. Мухамедзянов. ФТТ, 54 (4), 679 (2012).
- [16] М.П. Миронов, А.Ю. Кирсанов, В.Ф. Дьяков, Л.Н. Маскаева, В.Ф. Марков. Бутлеровские сообщ., 19 (3), 45 (2010).
- [17] В.Ф. Марков, Х.Н. Мухамедзянов, Л.Н. Маскаева, З.И. Смирнова. ФТП, 45 (11), 1459 (2011).
- [18] М.П. Миронов, В.Ф. Марков, Л.Н. Маскаева, В.Ф. Дьяков, Р.Д. Мухамедьяров, Х.Н. Мухамедзянов, З.И. Смирнова. Патент РФ № 2357321, МПК Н 01 L 21/36. Опубл. 27.05.2009. Бюл. № 15. 4 с.
- [19] L. Vegard. Z. Phys., 5, 17 (1921).
- [20] ASTM X-ray diffraction date cards, Phyladelphia, 14-159 (1968).
- [21] Ю.Р. Равич, Б.А. Ефимова, И.А. Смирнов. Методы исследования полупроводников в применении к халькогенидам свинца PbTe, PbSe, PbS (М., Наука, 1968).
- [22] Л.А. Сена. Единицы физических величин и их размерности (М., Наука, 1988).
- [23] В.М. Баканов, З.И. Смирнова, Х.Н. Мухамедзянов, Л.Н. Маскаева, В.Ф. Марков. Конденсированные среды и межфазные границы, **13** (4), 401 (2011).
- [24] Е.М. Гамарц, Н.В. Голубченко, В.А. Мошников, Д.Б. Чеснокова. Матер. электрон. техн., **4**, 25 (2003).
- [25] Н.В. Голубченко, М.А. Иошт, В.А. Мошников, Д.Б. Чеснокова. Перспективные материалы, 3, 31 (2005).
- [26] J.N. Humphrey, R.L. Petritz. Phys. Rev., 105 (6), 1736 (1957).
- [27] Д.В. Казанцев, Ю.Г. Селиванов, В.Т. Трофимов и др. Письма ЖЭТФ, **62** (5), 422 (1995).
- [28] J.N. Humphrey, W.W. Scanlon. Phys. Rev., 105 (2), 469 (1957).
- [29] R.L. Petritz. Phys. Rev., 104 (6), 1508 (1956).
- [30] J.N. Humphrey, R.L. Petritz. Phys. Rev., 105 (4), 1192 (1957).

Редактор Т.А. Полянская

Comparative photovoltaic characteristics of nanostructured $Pb_{1-x}Sn_xSe$ films obtained by co-deposition and by layer-by-layer deposition of PbSe and SnSe

H.N. Mukhamedzyanov, L.N. Maskaeva, V.F. Markov

Ural Federal University named after the first President of Russia B.N. Yeltsin 620008 Ekaterinburg, Russia

Abstract The comparative analysis of photovoltaic characteristics of the films of the $Pb_{0.975}Sn_{0.025}Se$ solid solution obtained by hydrochemical co-deposition of PbSe and SnSe, and $Pb_{0.902}Sn_{0.098}Se$ solid solution obtained by layer-by-layer hydrochemical deposition of individual metal selenides (SnSe-PbSe-SnSe-PbSe) with the subsequent thermal treatment of the films on air at 523–700 K has been carried out. It has shown that the films, synthesized by the method of layer-by-layer deposition, according to their photovoltaic characteristics have a number of advantages before the films obtained by hydrochemical co-deposition.