13,01

Электрическое сопротивление и 1/f-флуктуации в тонких пленках титана

© О.В. Геращенко, В.А. Матвеев, Н.К. Плешанов, В.Ю. Байрамуков

Петербургский институт ядерной физики им. Б.П. Константинова, Национальный исследовательский центр "Курчатовский институт", Гатчина, Россия

E-mail: gerashch@pnpi.spb.ru

(Поступила в Редакцию 16 декабря 2013 г.)

Определена толщина металлического слоя, исследованы электрическое удельное сопротивление и спектральная плотность флуктуаций напряжения в тонких пленках титана с исходной толщиной $5-100\,\mathrm{nm}$, полученных магнетронным напылением и предназначенных для перспективных элементов нейтронной оптики. Обнаружено, что в даже в самых тонких образцах сохраняется необходимый для функционирования сплошной металлический слой, при этом наблюдаются избыточные флуктуации его сопротивления со спектром 1/f-типа. Показано, что метод измерения электрического сопротивления пленки можно использовать как эффективный экспресс-метод определения толщин металлических нанослоев.

Работа поддержана Российским фондом фундаментальных исследований гранты № 12-02-12066-офи-м и № 12-02-31625 мол а.

1. Введение

Исследования пленок титана толшиной от нескольких до десятков нанометров представляют большой интерес в связи с их широким применением при создании устройств спинтроники, микро- и наноэлектроники, а также в качестве оптических покрытий, металлических контактов и т.д. Одно из важных и перспективных применений — это создание поляризующих покрытий нейтронной оптики нового поколения. Такие покрытия с использованием титановых нанослоев [1-3] позволят существенно поднять поляризующую эффективность нейтронных поляризаторов и повысят возможности дифракционных и рефлектометрических методик на основе поляризованных нейтронных пучков, в перспективе может оказаться возможным эффективно поляризовать даже ультрахолодные нейтроны. Знание толщин оксида и неокисленного титана на различных поверхностях, а также стабильности такого бислоя представляет значительный интерес для его использования в качестве антиотражающего покрытия в поляризационной нейтронной оптике.

В настоящей работе представлены результаты комплексного исследования (с использованием рентгеновской и нейтронной рефлектометрии, электрофизических методов и спектроскопии электрических флуктуаций) титановых пленок с исходной толщиной d_0 от 5 до 100 nm, полученных магнетронным напылением на стеклянные подложки в атмосфере аргона при базовом давлении в вакуумной камере 10^{-5} mbar (напылительная установка "Луна" ФБГУ "ПИЯФ"). Окисление пленок происходило естественным образом на воздухе при атмосферном давлении и комнатной температуре. После извлечения образцов из установки, по истечении суток

толщина слоя оксида стабилизировалась и оставалась неизменной, по крайней мере, в течение года.

2. Методика измерений

Перед напылением образцов на напылительной установке была произведена калибровка скорости распыления титановой мишени с помощью рентгеновского рефлектометра. Затем были приготовлены образцы пленок титана с исходными заданными толщинами d_0 от 5 до 100 nm на стеклянных подложках. Для определения толщины полученных титановых пленок использовались методы нейтронной и рентгеновской рефлектометрии. Такая комбинация взаимодополняющих методов дает возможность с хорошей точностью находить толщину как слоев металла d, которая потом использовалась при расчете удельного сопротивления, так и формирующихся на их поверхности оксидов.

Для изучения электропроводности и электрических флуктуаций применялся стандартный 4-контактный метод. В качестве образцов использовались полоски шириной около 4 mm и длиной 80 mm, которые вырезались на стеклянных пластинах с напыленным слоем титана разной толщины. На полоску наносились токовые и потенциальные контакты из индий-галлиевой эвтектики, которая обладает высокой адгезией к различным материалам, имеет малое контактное сопротивление и низкий уровень контактного шума.

Электрическое сопротивление пленки измерялось при помощи пары универсальных мультиметров HP Agilent 34410A, один из которых подключался к токовым контактам образца и служил источником стабильного тока, а другим измерялось падение напряжения на потенциальных контактах. Величина удельного сопротивления

вычислялась по стандартной формуле $\rho=Rwd/l$, где R — электрическое сопротивление, w — ширина образца, d — усредненная по рентгеновским и нейтронным данным толщина металлического слоя, l — расстояние между потенциальными контактами.

При измерении электрических флуктуаций исследуемое напряжение с потенциальных контактов подавалось на блок усилителей, полосовой фильтр $3-6000\,\mathrm{Hz}$ и плату сбора данных в составе персонального компьютера, частота дискретизации составляла $16\,384\,\mathrm{Hz}$. Записанная реализация длиной $1200\,\mathrm{s}$ разбивалась на односекундные отрезки, по которым методом быстрого преобразования Фурье вычислялась спектральная плотность мощности (СПМ) флуктуаций и проводилось ее усреднение. Для устранения электромагнитных наводок и помех образец располагался в двойном медно-пермаллоевом экране. Все измерения проводились в термостате при температуре $T=295\pm0.5\,\mathrm{K}$.

Стационарное неравновесное (токовое) состояние устанавливалось при пропускании через образец постоянного электрического тока, задаваемого от аккумуляторной батареи с ограничивающим проволочным резистором, сопротивление которого многократно превышало сопротивление образца. Поскольку при такой схеме измерений могли иметь место флуктуации сопротивления токовых контактов, которые трансформируются в шумы измеряемого напряжения, то для оценки этого эффекта в измерительную цепь включался последовательно с образцом проволочный резистор с таким же сопротивлением. Измерения на таком эквиваленте образца показали, что контактные шумы пренебрежимо малы.

Как известно, неупорядоченные проводящие системы в стационарном неравновесном состоянии, созданным протекающим постоянным электрическим током, демонстрируют флуктуации, избыточные по отношению к тепловым шумам. В этом случае, при естественном предположении, что источники шума не коррелируют, полную измеряемую спектральную плотность мощности флуктуаций напряжения можно представить в следующем виле:

$$S_V(f) = 4k_B T R + G_V(f) + S_0(f) + S_I(f) R^2,$$
 (1)

где первый член описывает равновесные тепловые флуктуации напряжения (шум Найквиста), k_B — постоянная Больцмана, T — абсолютная температура, R — среднее сопротивление образца. Второе слагаемое $G_V(f)$ — СПМ избыточных флуктуаций, связанных с особенностями динамических процессов в образце, $S_0(f)$ и $S_I(f)$ — спектры шума напряжения и тока измерительной системы, которые можно определить независимо и вычесть из результата измерений с образцом.

В линейной проводящей системе, где выполняется закон Ома, источником флуктуаций обычно является шумящее электрическое сопротивление. В этом случае избыточные флуктуации электрических величин квадратично зависят от соответствующих средних значений и

имеют, чаще всего, характерную частотную зависимость вида $1/f^{\gamma}$ с параметром $\gamma \approx 1$ [4–10]

$$G_V(f) = CV^2/f^{\gamma},$$

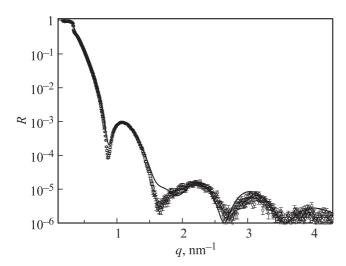
$$G_V(f)/V^2 = G_I(f)/I^2 = G_R(f)/R^2 = G_N(f),$$
 (2)

где V,I,R — среднее напряжение, ток и сопротивление исследуемого образца, $G_V(f), G_I(f), G_R(f)$ — СПМ флуктуаций напряжения, тока и сопротивления, $G_N(f)$ — нормированная СПМ. Известно, что избыточный низкочастотный шум пренебрежимо мал в металлических проволочных проводниках и, как правило, является определяющим в полупроводниках и пространственно-неоднородных материалах типа углеродных резисторов, проводящих керамик и тонких пленок, а интенсивность этого шума позволяет судить о качестве материала (фликкер-шумовая спектроскопия).

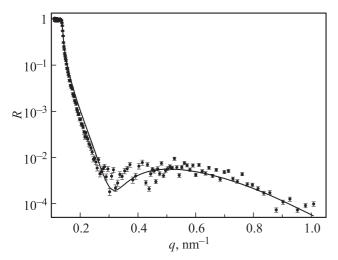
3. Результаты и обсуждение

Толщины титановых пленок определялись методами нейтронной и рентгеновской рефлектометрии. Типичные зависимости коэффициента отражения R рентгеновского и нейтронного излучения от пленок титана с исходной толщиной $d_0=5$ nm приведены на рис. 1, 2. В таблице приведены результаты определения фактической толщины металлической пленки титана d для образцов с различными исходными толщинами d_0 . Таким образом, можно сделать вывод о том, что даже в самых тонких пленках имеется сплошной металлический слой.

На рис. З представлены результаты измерений удельного электрического сопротивления в зависимости от толщины d пленки металлического титана, полученной по усредненным данным рентгеновской и нейтронной рефлектометрии. Видно, что, во-первых, удельное сопротивление пленки превышает сопротивление исходной титановой мишени $\rho_{\text{Ti}}=68\pm2\,\mu\Omega\cdot\text{cm}$, во-вторых, оно остается постоянным и равным $\rho_0=180\,\mu\Omega\cdot\text{cm}$ вплоть до толщины слоя около 20 nm, а затем увеличивается.

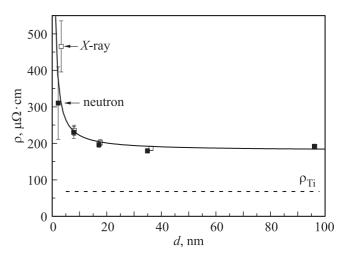

Сплошная кривая на рис. 3 представляет простую параметризацию зависимости ρ от d вида

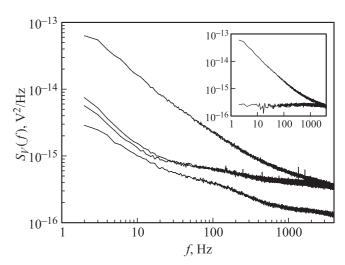
$$\rho(d) = \rho_0 + A/d,\tag{3}$$


где $\rho_0=180\,\mu\Omega\cdot\mathrm{cm},\,A=420\,\mu\Omega\cdot\mathrm{cm}\cdot\mathrm{nm},\,$ а усредненная по ренгеновским и нейтронным данным толщина d

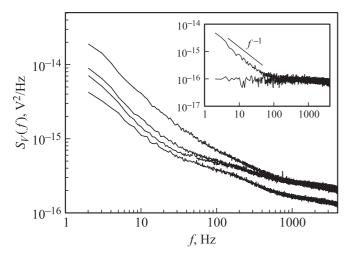
Фактическая толщина металлического слоя титана по данным измерений рентгеновской d_x и нейтронной рефлектометрии d_n . (В первой колонке приведена исходная (as prepared) толщина титановой пленки)

d_0 (nm)	d_x (nm)	d_n (nm)
5	3.3 ± 0.5	2.2 ± 0.7
10	8.1 ± 0.4	7.9 ± 0.5
20	17.6 ± 0.4	17.1 ± 0.5
40	36.2 ± 0.4	34.9 ± 0.4
100	96.2 ± 0.3	96.1 ± 0.5


Рис. 1. Зависимость коэффициента отражения рентгеновского излучения R от переданного волнового вектора q для пленок титана с исходной толщиной $d_0=5\,\mathrm{nm}$. Сплошная линия — расчетная величина R для пленки с фактической толщиной $d_x=3.3\pm0.5\,\mathrm{nm}$.


Рис. 2. Зависимость коэффициента отражения нейтронов R от переданного волнового вектора q для пленок титана с исходной толщиной $d_0 = 5$ nm. Сплошная линия — расчетная величина R для пленки с фактической толщиной $d_n = 2.2 + 0.7$ nm.

берется в nm. Таким образом, измерение электрического сопротивления можно применять как быстрый и точный метод определения фактической толщины пленки титана, используя его как экспресс-метод, дополнительный к рентгеновским и нейтронным измерениям, поскольку, определив величины A и ρ_0 , можно получать точные данные о толщине неокисленного слоя металла и непрерывно отслеживать ее изменение. Это совершенно невозможно при использовании рефлектометрических данных, само получение которых занимает не менее часа и не обеспечивает необходимой точности измерений толщин порядка 1-10 nm, тогда как предлагаемый здесь метод измерения удельного сопротивления наиболее чувствителен как раз для таких толщин.


На рис. 4 приведена СПМ флуктуаций напряжения $S_V(f)$, измеренная на образце с толщиной титана $d=2.8\,\mathrm{nm}$ (исходная толщина $d_0=5\,\mathrm{nm}$) при трех значениях среднего напряжения V=0,1.52 и $2.85\,\mathrm{V}$, а на вставке — после вычитания шума усилительной системы. Видно, что в спектре можно выделить два участка: частотно-независимый, отвечающий тепловому шуму Найквиста, и зависящий от частоты участок в низкочастотной спектральной области. Видно также, что пропускание тока через образец резко увеличивает

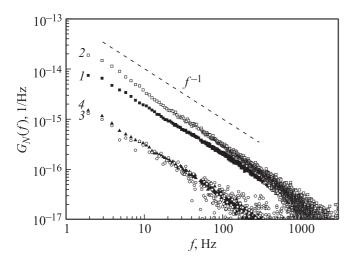

Рис. 3. Зависимость удельного электрического сопротивления от толщины титановой пленки, определенной по усредненным рентгеновским и нейтронным данным (см. Таблицу). Сплошная прямая соответствует выражению (3), ρ_{Ti} — сопротивление титановой мишени.

Рис. 4. Спектральная плотность мощности флуктуаций напряжения в пленке с толщиной титанового слоя $d=2.8\,\mathrm{nm}$ (исходная толщина $d_0=5\,\mathrm{nm}$). Кривые представляют (снизу вверх): собственный шум короткозамкнутой усилительной системы, шум подключенного образца при трех значениях среднего напряжения на нем V=0, 1.52, $2.85\,\mathrm{V}$. На вставке — СПМ при V=0 и $2.85\,\mathrm{V}$ после вычитания шума усилительной системы.

Рис. 5. Спектральная плотность мощности флуктуаций напряжения в пленке с d=8 nm ($d_0=10$ nm). Кривые представляют (снизу вверх): собственный шум короткозамкнутой усилительной системы, шум подключенного образца при трех значениях среднего напряжения на нем V=0, 1.23, 2.91 V. На вставке — СПМ при V=0 и 2.91 V после вычитания шума усилительной системы.

Рис. 6. Нормированная на квадрат напряжения СПМ флуктуаций напряжения в пленке $d=2.8\,\mathrm{nm}~(d_0=5\,\mathrm{nm})~(I)$, в аналогичной пленке, выдержанный в течение часа при $100^\circ\mathrm{C}~(2)$ и в пленке $d=8\,\mathrm{nm}~(d_0=10\,\mathrm{nm})$ при $V=1.23\,\mathrm{V}~(3)$ и при $V=2.91\,\mathrm{V}~(4)$.

частотно-зависящий шум, избыточный над тепловым шумом. Аналогичные зависимости для пленки толщиной $d=8\ \mathrm{nm}\ (d_0=10\ \mathrm{nm})$ приведены на рис. 5.

По частотно-независимому тепловому шуму Найквиста можно определить среднее сопротивление образца R. Оказалось, что для образца с d=2.8 nm шумовое сопротивление $R=16.36\pm0.01$ k Ω и совпадает с сопротивлением, измеренным 4-контактным методом, где $R=16.37\pm0.01$ k Ω . Для образца с d=8 nm шумовое сопротивление $R=5.97\pm0.01$ k Ω , а сопротивление, измеренное 4-контактным методом $R=5.959\pm0.001$ k Ω .

Это также подтверждает тот факт, что сопротивление и шум электрических контактов пренебрежимо малы.

Нормированная на квадрат напряжения СПМ флуктуаций $G_N(f)$, измеренная в двух пленках с $d=2.8\,\mathrm{nm}$ и в пленке с $d=8\,\mathrm{nm}$, приведена на рис. 6. Следуя гипотезе Хоуге [4], ее можно представить в следующем виде:

$$G_N(f) = \alpha/N_C f, \tag{4}$$

где $N_C = n_C V_S$ — число носителей в образце, $n_C \approx 5.7 \cdot 10^{22} \, ({\rm cm}^{-3})$ — концентрация электронов в титане, V_S — объем образца. Определенная в наших измерениях величина $\alpha \sim 10^2$, что на несколько порядков превышает эмпирический параметр Хоуге $lpha_H = 2 \cdot 10^{-3} \,\, [4\text{--}10]$ для фликкер-шума в металлических пленках. Здесь необходимо отметить следующее: вопервых, этот параметр не универсальная константа и может меняться на несколько порядков в различных материалах. Во-вторых, величина параметра Хоуге α_H была определена на относительно толстых пленках металлов 50–100 nm и толще, где, вообще говоря, предполагается, что 1/f-шум имеет объемный характер, поскольку его интенсивность зависит от полного числа носителей N_C , тогда как наши результаты получены на весьма тонких пленках, для которых влияние поверхности и ее состояние являются определяющими. Наконец, рентгеновские, нейтронные и атомно-силовые исследования наших пленок показали высокую однородность фаз в них, поэтому столь большая величина параметра Хоуге может быть обусловлена лишь электрической неоднородностью материала, мерой которой является отношение удельного сопротивления пленки к сопротивлению титановой мишени: $\rho(d=2.8\,\mathrm{nm})/\rho_{\mathrm{Ti}}\approx 5$ и $\rho(d=8\,\mathrm{nm})/\rho_{\mathrm{Ti}}\approx 3$. Это указывает на большое количество электрических дефектов, кислородных вакансий и электронных ловушек на границе металл-оксид, характерных для титана [11], а широкое распределение времен релаксации этих ловушек приводит к наблюдаемому 1/f-шуму.

Можно оценить число ловушек заряда следующим образом: предположим, что флуктуации сопротивления R вызваны флуктуациями числа носителей (электронов) N_C в образце. Тогда для относительных флуктуаций, измеренных в полосе частот от f_{\min} до f_{\max} , выполняется равенство

$$(\Delta R)^2/R^2 = (\Delta N_C)^2/N_C^2 = \int_{f_{min}}^{f_{max}} G_N(f) df.$$
 (5)

Оценка этой величины в нашем случае дает интенсивность относительных флуктуаций порядка 10^{-14} , это означает, что только $10^{-7} \cdot N_C \sim 10^{16}$ электронов флуктуирует. Можно ожидать, что число ловушек заряда в образце того же порядка.

Интересно отметить также отличие в интенсивности 1/f-шума на двух пленках с одинаковой толщиной слоя титана $d=2.8\,\mathrm{nm}$, одна из которых подверглась нагреву на воздухе при $100^\circ\mathrm{C}$ в течение часа (см. рис. 6).

Видно, что такой низкотемпературный отжиг, не меняя среднего электрического сопротивления пленки, заметно увеличивает избыточный шум. Возможно, это связано с термической миграцией части ловушек заряда от границы раздела в слой металла, что мало влияет на величину среднего сопротивления, но может существенно увеличить интенсивность его флуктуаций.

4. Заключение

Таким образом, в работе определена фактическая толщина металлического слоя в тонких титановых пленках нанометровой толщины, измерено электрическое удельное сопротивление, показано, что даже самые тонкие пленки с исходной толщиной $5-10\,\mathrm{nm}$ имеют сплошной металлический слой толщиной $3-8\,\mathrm{nm}$, необходимый для создания высокоэффективных поляризующих покрытий. Кроме того, тот факт, что они остаются достаточно хорошими проводниками, позволяет в принципе, пропуская электрический ток, создавать в них магнитное поле и получать тем самым управляемые элементы нейтронной оптики.

Обнаружено, что в тонких пленках титана наблюдается избыточный 1/f-шум сопротивления, связанный, повидимому, с электрическими дефектами и ловушками заряда на границе металл-окисел и оценено число таких ловушек. Показано также, что интенсивность флуктуаций весьма чувствительна к термическому воздействию на пленки.

Показано, что метод измерения электрического сопротивления пленки можно использовать как эффективный экспресс-метод определения толщины металлического слоя. Его также можно применять в процессе термического отжига пленки в воздухе или атмосфере кислорода для контролируемого получения заданной толщины слоя металла.

Список литературы

- [1] N.K. Pleshanov. Nucl. Instrum. Methods A **613**, 15 (2010).
- [2] N.K. Pleshanov, A.P. Bulkin, V.G. Syromyatnikov. Nucl. Instrum. Methods A 634, 63 (2011).
- [3] V.A. Matveev, N.K. Pleshanov, A.P. Bulkin. J. Phys.: Conf. Ser. 340, 012 086 (2012).
- [4] F.N. Hooge. Phys. Lett. A 29, 139 (1969).
- [5] F.N. Hooge, T.G.M. Kleinpenning, L.K.J. Vandamme. Rep. Prog. Phys. 44, 479 (1981).
- [6] Г.Н. Бочков, Ю.Е. Кузовлев. УФН 141, 151 (1983).
- [7] Ш.М. Коган. УФН 145, 285 (1985).
- [8] F.N. Hooge. Physica B 162, 344 (1990).
- [9] Sh. Kogan. Electronic noise and fluctuations in solids. Cambridge University Press, Cambridge (1996). 354 p.
- [10] Г.П. Жигальский. УФН 173, 465 (2003).
- [11] В.Б. Лазарев, В.В. Соболев, И.С. Шаплыгин. Химические и физические свойства простых оксидов металлов. Наука, М. (1983). 239 с.