06,07,10,11

Обратный флексоэлектрический эффект в монокристалле SrTiO₃

© В.Г. Залесский, Е.Д. Румянцева

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: nsh@mail.ioffe.ru

(Поступила в Редакцию 24 января 2014 г.)

Исследован обратный флексоэлектрический эффект в монокристалле SrTiO₃, как отклик неоднородной деформации (деформации изгиба) на величину прикладываемого электрического поля. Получена температурная зависимость эффекта в интервале температур 77–450 К.

1. Введение

Прямой флексоэлектрический эффект как линейный полярный отклик на градиент деформации кристалла был теоретически предсказан в работе Когана [1] и впервые исследован группой Бурсиана на тонких (порядка десятков микрометров) монокристаллах ВаТіО₃ [2,3]. Позже прямой флексоэлектрический эффект в монокристаллах и керамике BaTiO₃ был более детально изучен в работах [4,5]. В первых экспериментальных работах [3,6] был обнаружен и обратный эффект, при котором поляризация тонкой пластины монокристалла ВаТіОз внешним электрическим полем сопровождалась деформацией изгиба образца. В настоящее время термин "прямой и обратный флексоэлектрический эффект" утвердился по аналогии с прямым и обратным пьезоэффектом, а современное состояние проблемы подробно изложено в обзоре [7]. В работе [6] было показано, что, несмотря на сравнительную малость флексоэлектрического эффекта, наблюдаемого в кристаллах макроскопического размера, в объектах микронного и субмикронного масштаба этот эффект становится существенным, внося заметный вклад в деформацию и величину поляризации, например, в тонких пленках [7]. Более того, в случае использования в качестве пленок сегнетоэлектрических материалов эффект становится еще более значительным, поскольку, как было предсказано в работах [1,8], флексоэлектрические коэффициенты пропорциональны величине диэлектрической проницаемости. Этими обстоятельствами обусловлен большой интерес к флексоэлектрическому эффекту в последнее десятилетие, особенно при исследовании диэлектрических и механических свойств тонких пленок материалов с большой проницаемостью (сегнетоэлектрики, релаксоры, мультиферроики), перспективных для интегральной электроники и устройств МЭМС (микроэлектромеханических систем) (см. обзор [7]).

Для исследования флексоэлектрического эффекта титанат стронция SrTiO₃ представляет особый интерес, поскольку обладает достаточно большой величиной диэлектрической проницаемости ($\varepsilon \sim 300$ при 300 K) и в то же время является неполярным материалом, что позволяет свести к минимуму влияние пьезоэффекта при изучении взаимодействия градиентов деформации и поляризации. Сведения о прямом флексоэлектрическом эффекте в SrTiO₃ ранее были опубликованы в [4,9]. В настоящей работе приводятся результаты исследования обратного флексоэлектрического эффекта в SrTiO₃. Получены зависимости его величины от внешнего электрического поля и температуры.

2. Эксперимент

В эксперименте использовался набор пластин монокристалла титаната стронция разной толщины (160, 280 и 350 μ m), одинаковых по длине и ширине (5 и 4 mm соответственно). На поверхность (100) наносились серебряные электроды, к которым прикладывалось высокое напряжение от 0 до 3 kV в виде импульса длительностью в 2–3 s. Для предотвращения электрического пробоя напряжение ограничивалось в зависимости от толщины кристалла. Схема установки для измерения зависимости кривизны изгиба пластины от электрического поля показана на рис. 1. Край пластины со стороны меньшего ребра жестко прикреплялся к держателю так, чтобы не было препятствий для деформации изгиба этой пластины. Величина кривизны изгиба $\sigma = 1/\rho$ (ρ радиус кривизны изгиба) измерялась по углу отклонения

Рис. 1. Измерение деформации изгиба под действием внешнего поля (обратный флексоэлектрический эффект).

Рис. 2. Зависимость кривизны изгиба кристалла SrTiO₃ от величины внешнего поля для трех толщин при комнатной температуре.

луча лазера, отраженного от поверхности со стороны незакрепленного края пластины, как показано на рис. 1. Точность измерения кривизны изгиба составляла порядка 0.01 m^{-1} . Измерение температурной зависимости величины эффекта проводилось в атмосфере сухого азота при фиксированных температурах в интервале 77-300 K.

При прикладывании импульсов высокого напряжения наблюдается обратимый изгиб пластин образцов в сторону положительного электрода. Нечетность зависимости эффекта от поля хорошо видна из рис. 2, где представлена зависимость изгиба пластин от поля $\sigma(E)$ при $T = 20^{\circ}$ С. Из рисунка видно, что деформация кристаллов начинается с величины порогового поля $E_{th} = 17 - 20 \, \text{kV/cm}$, почти одинаковой для всех образцов с разными толщинами. Выше порогового значения зависимость изгиба от величины поля $\sigma(E)$ ведет себя одинаково для всех толщин. Для толстых образцов (280 и 350 μ m) дальнейшее измерение зависимости $\sigma(E)$ ограничивается пробивным полем 45-50 kV/cm. Измерения на более тонком образце толщиной 160 µm показали, что в поле выше 50 kV/cm деформация мало зависит от величины поля и эффект выходит на насыщение.

Во второй части эксперимента проводилось измерение температурной зависимости кривизны изгиба $\sigma(T)$ на тонком образце толщиной $160\,\mu\text{m}$ в поле $E = 50\,\text{kV/cm}$ в режиме насыщения. Из рис. З видно, что при охлаждении образца в диапазоне температур $130-300\,\text{K}$ деформация изгиба монотонно возрастает примерно в $6-7\,\text{раз}$. При температуре ниже $T = 130\,\text{K}$ на зависимости $\sigma(T)$ можно заметить аномалию в виде отдельного пика. Для сравнения температурной зависимости эффекта с температурным ходом действительной части диэлектрической проницаемости на этом же рисунке представлен результат измерения $\varepsilon(T)$, полученный на частоте 1 kHz при амплитуде 1 V. При

охлаждении в интервале температур 130–300 К диэлектрическая проницаемость, так же как и $\sigma(T)$, монотонно возрастает. В области температур 105–130 К в температурной зависимости $\varepsilon(T)$ также видна аномалия, ниже которой темп роста проницаемости с понижением температуры замедляется.

3. Обсуждение результатов

Нечетность зависимости деформации изгиба от поля $\sigma(E)$ в SrTiO₃, которая представлена на рис. 2, связана с обратным флексоэлектрическим эффектом, аналогичным тому, что наблюдается в тонких монокристаллах ВаТіО₃ [6]. Однако, как и ожидалось, величина эффекта в SrTiO₃ по сравнению с ВаTiO₃ при тех же условиях оказалась на порядок меньше, поскольку разница в проницаемости этих двух диэлектриков составляет 1-2 порядка в пользу ВаТіОз. Другое отличие заключается в том, что зависимость $\sigma(E)$ для BaTiO₃ представляет собой петлю гистерезиса, обусловленную остаточной деформацией вследствие остаточной поляризации, а также наличием порогового поля для переключения поляризации. В SrTiO₃ при комнатной температуре наблюдается обратимый изгиб пластин без заметного гистерезиса. Причина порогового характера эффекта в SrTiO₃ пока остается неясной, поскольку гистерезисные процессы, связанные с переключением ферроэластичных доменов, проявляются только при температуре ниже структурного фазового перехода 105 К [9]. Что касается эффекта насыщения в SrTiO₃ в поле выше 50 kV/cm, то этот эффект связан с насыщением диэлектрической проницаемости в сильных полях подобно тому, как это наблюдалось в ВаТіО₃ [6].

Чтобы проследить взаимосвязь величин обратного флексоэлектрического эффекта и диэлектрической проницаемости зависимости $\sigma(T)$ и $\varepsilon(T)$ проверялись на соответствие функции $1/(T-T_0)$, т.е. закону Кюри–Вейсса, как показано на рис. З штриховой и штрихпунктирными линиями. На вставке к рис. 3 для удобства показаны эти же зависимости для обратных величин: $\rho(T) = 1/\sigma(T)$ (радиус кривизны изгиба) и $1/\varepsilon(T)$. Из этой вставки видно, что зависимость радиуса кривизны ho(T) от температуры с учетом погрешности удовлетворяет выражению $\rho(T) = (T - T_{Cf})/C_f$ с параметрами $C_f = 4.7 \,\mathrm{K}$ и $T_{Cf} = 70 \, \text{K}$. Диэлектрическая проницаемость в интервале температур 120-300 К следует закону Кюри-Вейсса $1/\varepsilon(T) = (T - T_C)/C_C$ с параметрами $C_C = 8 \cdot 10^4 \, \text{K}$ и $T_{C} = 18 \, {\rm K}$, которые практически совпадают с ранее опубликованными данными [10]. Ниже температуры 130 К наблюдается известное отклонение от закона Кюри-Вейсса.

Разница параметров $T_{Cf} = 70 \text{ K}$ и $T_C = 18 \text{ K}$ температурных зависимостей для обратного флексоэлектрического эффекта и диэлектрической проницаемости свидетельствует о нарушении прямой пропорциональности величины эффекта от диэлектрической восприимчивости.

Рис. 3. Температурные зависимости кривизны изгиба $\sigma(T)$ в поле 50 kV/cm (показано черными квадратами) и диэлектрической проницаемости $\varepsilon(T)$ (показано жирной сплошной линией) для кристалла SrTiO₃ толщиной 165 μ m. Штриховой и штрихпунктирной линиями показаны функции вида $1/(T-T_0)$. На вставке — температурные зависимости радиуса кривизны изгиба $\rho(T)$ и обратной величины диэлектрической проницаемости $1/\varepsilon(T)$. Стрелками выделена область фазового перехода.

Ранее нелинейная зависимость флексоэлектрических коэффициентов для прямого эффекта от диэлектрической восприимчивости была обнаружена в экспериментах с керамикой BaTiO₃, PbMg_{1/3}Nb_{2/3}O₃ и др. перовскитов, особенно вблизи критических температур [5]. Причину нелинейности авторы [5] связывают с необходимостью учитывать дополнительный фактор (scale factor), зависящий от симметрии фазы, микроструктуры, химического состава и технологии приготовления образцов. Измерение флексоэлектрических коэффициентов с учетом этого фактора является одним из основных направлений дальнейших экспериментальных исследований в области флексоэлектричества.

Что касается аномалии на зависимости $\sigma(T)$ в виде отдельного пика при температуре 130 K, то аналогичная аномалия существует в температурной зависимости для прямого флексоэлектрического эффекта в SrTiO₃ в районе структурного фазового перехода при T = 105 K [9]. По мнению авторов [9], наблюдаемый максимум связан с переключением ферроэластичных доменов в результате механического напряжения. В случае обратного эффекта аномалия наблюдается при более высокой температуре 130 K, которая также входит в интервал температур 105–130 K, где имеется аномалия на зависимости $\varepsilon(T)$, обусловленная структурным фазовым переходом (рис. 3).

4. Заключение

В результате проведенных измерений обнаружен обратный флексоэлектрический эффект в монокристалле SrTiO₃ начиная с пороговой напряженности поля 17-20 kV/cm при $T = 20^{\circ}\text{C}$. В поле выше 50 kV/cm эффект выходит на насыщение. При охлаждении в интервале температур 77-50 K величина эффекта возрастает в 6-7 раз и наблюдается аномалия в области структурного фазового перехода 105-130 K.

Список литературы

- [1] Ш.М. Коган. ФТТ 5, 2829 (1963).
- [2] Э.В. Бурсиан, Н.Н. Трунов. ФТТ 16, 1187 (1974).
- [3] Э.В. Бурсиан, О.И. Зайковский, К.В. Макаров. Изв. АН СССР. Сер. физ. 33, 1098 (1969).
- [4] J. Hong, G. Catalan, J.F. Scott, E. Artacho. J. Phys.: Cond. Matter. 22, 112 201 (2010).
- [5] W. Ma, L.E.Cross. Appl. Phys. Lett. 88, 232 902 (2006).
- [6] Э.В. Бурсиан, О.И. Зайковский. ФТТ 10, 1413 (1968).
- [7] P. Zubko, G. Catalan, A. Tagantsev. Ann. Rev. Mater. Res. 43, 387 (2013).
- [8] A. Tagantsev. Phys Rev. B 34, 5883 (1986).
- [9] P. Zubko, G. Catalan, A Buckley, P.R.L. Welche, J.F.Scott. Phys. Rev. Lett. 99, 167 601 (2007).
- [10] R. Viana, P. Lunkenheimer, J. Hemberger, R. Bohmer, A. Loidl. Phys. Rev. B 50, 601 (1994).