09 Комбинационное рассеяние света в кристаллах N-бензиланилина

© Ю.Ф. Марков, Е.М. Рогинский, А.А. Вайполин

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: yu.markov@mail.ioffe.ru

(Поступила в Редакцию 17 декабря 2013 г.)

Выращены монокристаллы N-бензиланилина (C₆H₅-CH₂-NH-C₆H₅), выполнен рентгеноструктурный анализ этих кристаллов и определена их симметрия — пространственная группа C_{2h}⁵. В поляризованном свете, в различных геометриях эксперимента изучены спектры комбинационного рассеяния монокристаллов N-бензиланилина. Определены частоты решеточных фононов и их симметрия.

Работа частично поддержана грантами РФФИ (№ 13-08-0093а), Президиума РАН (П-20) и ОФН РАН.

1. Введение

Ранее мы изучали динамику решетки и фазовые переходы в кристаллах бензила (С6H5CO)2 (см., например, [1-3]), молекулы которого состоят из двух бензольных (ароматических) колец и "мостика" между ними в виде двух СО-групп. При комнатной температуре эти кристаллы имеют тригональную (ромбоэдрическую) симметрию $D_{3}^{4,6}$ (P3_{1,2}21) с тремя молекулами (формульными единицами) в элементарной ячейке. Такую же симметрию (пространственную группу) при комнатной температуре имеют кристаллы кварца, поэтому бензил часто называют "органическим кварцем". При охлаждении, при $T_c = 83.5 \,\mathrm{K}$ кристаллы бензила испытывают структурный фазовый переход из тригональной высокотемпературной фазы в моноклинную C_2^2 (P2₁) [4,5]. "Органический кварц" — бензил является модельным органическим кристаллом при изучении общих вопросов динамики решеток и структурных фазовых переходов.

Значительное внимание уделялось также изучению других органических кристаллов — бензофенона $(C_6H_5)_2CO$ (см., например, [6]), бифенила — $(C_6H_5)_2$ и др. [7], молекулы которых состоят из двух и более бензольных колец. Следует заметить, что все эти кристаллы демонстрируют аномальное поведение динамики их кристаллических решеток и различные фазовые переходы, в том числе, несоразмерные.

В настоящей работе наше внимание было направлено на изучение органических кристаллов, молекулы которых состоят также из двух бензольных колец. Речь идет о синтезе и изучении кристаллов N-бензиланилина — C_6H_5 - CH_2 -NH- C_6H_5 ($C_{13}H_{13}N$), представляющих как научный, так и прикладной интерес, в значительной степени определяемый генетической связью с поли-N-бензиланилином. Последний демонстрирует уникальные физические свойства, в том числе, оптические, электрические (проводимость) и др. (см. ссылки 1–5 в работе [8]).

Для выполнения строгих поляризационных оптических исследований и интерпретации полученных экспериментальных результатов необходимо было выполнить рентгеноструктурный анализ и определить симметрию выращенных кристаллов, и лишь затем, зная симметрию и соответствующий тензор поляризуемости, изучить и интерпретировать низкочастотные — "решетчатые" спектры комбинационного рассеяния этих кристаллов. Частоты внутримолекулярных колебаний также были получены, однако в настоящей работе высокочастотные спектры и их интерпретация не приводятся и не обсуждаются.

2. Методика эксперимента

Рентгеноструктурный анализ монокристаллов N-бензиланилина был выполнен на двухкружном рентгеновском дифрактометре ДРОН-2. Использовалось K_{α} излучение молибденового анода мощностью 1.5 kW. Во всех рентгеноструктурных измерениях использовались " $2\theta - \theta$ "-сканирование.

Измерения спектров комбинационного рассеяния этих кристаллов выполнялись на тройном Раманспектрометре "DILOR-Z24" при возбуждении рассеяния аргоновым или гелий-неоновым лазерами небольшой и варьируемой мощности от 50 до 200 mW. Использование небольших мощностей было вызвано опасностью локального нагрева и возможным плавлением входной поверхности изучаемых монокристаллов N-бензиланилина, имеющего температуру плавления в диапазоне 36–38°С.

Образцами в этих экспериментах служили достаточно качественные монокристаллы, (параллепипеды), выращенные из растворов в различных органических растворителях, с ребрами вдоль осей *X*, *Y*, *Z* соответственно.

3. Экспериментальные результаты и их обсуждение

Монокристаллы N-бензиланилина — C₆H₅-CH₂- NH-C₆H₅ были изучены при комнатной температуре

при помощи рентгеноструктурного анализа. Эти исследования позволили достаточно строго получить моноклинную симметрию — пространственную группу C_{2h}^5 . Отсюда следует, что эти кристаллы имеют винтовую ось C_2 , плоскость зеркального скольжения σ_h и центр инверсии в точке пересечения первых двух элементов симметрии. Была получена элементарная ячейка со следующими параметрами: $a = 18.89 \pm 0.05$ Å, $b = 5.83 \pm 0.01$ Å, $c = 19.60 \pm 0.05$ Å и углом моноклинности $\beta = 103^{\circ}18' \pm 10'$, соответствующего углу между осями а и с. Здесь, по-видимому, нужно кратко пояснить какие аргументы были использованы в пользу центросимметричности этих кристаллов: среди отражений типа h0l не обнаружено отражений с нечетным *l*. Плоскость (0*l*0) дает отражения только четных порядков. Таким образом погасания в данном случае однозначно определяют пространственную группу симметрии $P2_1/c$ (C_{2h}^5).

Зная симметрию кристаллов N-бензиланилина можно было уже выполнить строгие поляризационные измерения Раман-спектров. Изучаемые кристаллы — это молекулярные соединения, состоящие из больших молекул C₆H₅-CH₂-NH-C₆H₅, которые состоят из двух бензольных колец и "мостика" между ними (см. рис. 1). Следовательно, в спектрах этих кристаллов должны наблюдаться как высокочастотные (внутримолекулярные) колебания, так и низкочастотные межмолекулярные колебания самих молекул, последние — это трансляционные и ориентационные колебания молекул друг относительно друга. Всего в оптических спектрах, за вычетом трех акустических колебаний, должны быть разрешены (6N-3) — колебания, где N — число молекул в примитивной ячейке, которая может быть меньше или совпадает с элементарной ячейкой. Наши рентгеновские исследования прямо не дали нам значение N, но из сравнения рентгеновской и пикнометрической плотности было получено значение N ~ 7.5. Так как в кристаллах этой симметрии — C_{2h}^5 разрешены эквивалентные позиции с кратностью 2 или 4, следовательно в элементарной ячейке должно содержатся 8 молекул N-бензиланилина. В принципе, возможно, что в этих кристаллах путем выбора 3-х простых векторов трансляций удастся получить меньшую примитивную

Рис. 1. Структура молекулы N-бензиланилина $C_6H_5-CH_2-NH-C_6H_5$.

Η

Η

Таблица	1.	Характеры	неприводимых	представлений	для
симметрии	C_2	h			

C_{2h}	Ε	C_2	Ι	σ_h	
A_g	+1	1	1	1	R_z
B_{g}	+1	-1	1	-1	R_x, R_y
A_u	+1	1	-1	-1	T_z
B_u	+1	-1	-1	1	T_x , T_y

Таблица 2. Тензоры поляризуемости для моноклинной симметрии кристаллов C_{2h} ($C_2 \parallel Z$)

	A_g			B_g	
$\begin{pmatrix} a \\ d \\ 0 \end{pmatrix}$	d b 0	$\begin{pmatrix} 0\\0\\0 \end{pmatrix}$	$\begin{pmatrix} 0\\ 0\\ e \end{pmatrix}$	0 0 <i>f</i>	$\begin{pmatrix} e \\ f \\ 0 \end{pmatrix}$

ячейку (например, в 2 раза). Такой выбор позволил бы уменьшить число разрешенных в спектрах колебаний в 2 раза. Однако, последние наши рассуждения не имеют пока никаких подтверждений.

Итак для полученной элементарной ячейки разрешены 6N-3 = 48-3 = 45 колебаний, активных в Рамани ИК-спектрах. Следует заметить, что в кристаллах с центром симметрии действуют правила альтернативного запрета, то есть колебания, которые разрешены в Раманспектрах запрещены в ИК-спектрах, и наоборот. Таким образом для примитивной ячейки, равной элементарной, в Раман-спектрах должны быть активными около половины от общего числа разрешенных колебаний. Соответствующие неприводимые представления и характеры для точечной симметрии кристаллов C_{2h} приведены в табл. 1. Разрешенные компоненты тензоров комбинационного рассеяния, соответствующие активным неприводимым представлениям, приведены в табл. 2. Из этих таблиц следует, что в Раман-спектрах активны колебания симметрии A_g и B_g , а в ИК-спектрах — колебания симметрии A_u и B_u . Полносимметричные колебания A_g активны в Раман-спектрах в поляризациях: XX, YY и ZZ (в диагональных компонентах) и в скрещенных — ХУ и ҮХ. Колебания симметрии В_g разрешены в поляризациях XZ(ZX) и YZ(ZY).

Установка кристаллов N-бензиланилина в экспериментах по рассеянию света производилась так, что ось Z (максимальный размер монокристалла — параллепипеда) совпадала с осью **b** (C_2), а оси X и Y с осями **a** и **c** соответственно. Используемые в эксперименте образцы имели средние размеры $10 \times 5 \times 5$ mm.

Экспериментальные поляризованные Раман-спектры монокристаллов N-бензиланилина для компонент XX, YY, ZZ и YX(XY) приведены на рис. 2. Как следует из вышесказанного, в этих геометриях разрешены лишь четные колебания симметрии A_g , причем как трансляционные, так и ориентационные (либрационные) относительно оси Z (см. табл. 1). Наиболее интересны две

Рис. 2. Низкочастотные (решеточные) спектры комбинационного рассеяния кристаллов N-бензиланилина в поляризациях XX, YY, ZZ, YX (XY) (колебания симметрии A_g).

самые низкочастотные и интенсивные линии, имеющие наименьшую полуширину и, по-видимому, связанные с трансляционными колебаниями. Полуширина высокочастотных полос (см. рис. 2) заметно больше, что может быть объяснено их более сложной структурой, т.е. перекрытием близко лежащих линий (колебаний), а также их связью с либрационными (ориентационными) колебаниями. Молекулы С₆H₅-CH₂-NH-C₆H₅ относительно определенных осей могут иметь вращательные степени свободы (например, "заторможенный ротатор") и большую амплитуду колебаний. Большинство линий симметрии А, надежно наблюдаются одновременно в нескольких приведенных на рис. 2 геометриях опыта, такие как $\nu_1 = 17$, $\nu_3 = 27$, $\nu_6 = 43$, $\nu_8 = 55$, $\nu_9 = 63$, $v_{11} = 78$, $v_{12} = 82$, $v_{15} = 111$ и $v_{16} = 115 \,\mathrm{cm}^{-1}$. Конечно в спектрах может иметь место некоторая деполяризация, вызванная не слишком высоким качеством изученных органических образцов, например, линия $43 \, \mathrm{cm}^{-1}$ также и более убедительно проявляется в других геометриях опыта — YZ (ZY) (B_g). Не исключено, что это (совпадение частот A_g и B_g колебаний) — проявление случайного вырождения в этих кристаллах.

На рис. 3 приведены спектры в геометрии XZ (ZX) и YZ (ZY), разрешенные для фононов симметрии B_{g} . В этой геометрии эксперимента также проявляются трансляционные и ориентационные (относительно осей Х и У, см. табл. 1) колебания и кажется более естественным две самые низкочастотные и более узкие (по полуширине) линии 24 и $30 \, {\rm cm}^{-1}$ отнести к трансляционным колебаниям молекул N-бензиланилина. Более высокочастотные колебания могут быть связаны как с трансляционными, так и с ориентационными (либрационными) колебаниями. Здесь следует отметить, что интенсивные линии из одной геометрии опыта, например, из XZ, проявляются в виде слабых по интенсивности линий в другой геометрии (YZ), и наоборот — сильные линии из YZ-геометрии проявляются в XZ-поляризации. Это скорее всего связано со значительной моноклинностью базисной плоскости ($\gamma \approx 103^{\circ}$), т.е. с тем, что оси Х и У всегда дают проекцию друг на друга. В этих рассуждениях нельзя забывать и о качестве органических кристаллов, содержащих обычно значительное количество примесей, дефектов, в том числе дислокаций и т.д., содержание которых несколько нарушает правила отбора по волновому вектору и поляризации.

Параметры обнаруженных в спектрах четных фононов (Раман-активных) приведены в табл. 3. Здесь приведены частоты ν наблюдаемых колебаний, полуширины линий $\Delta \nu$ и их "симметрийная" интерпретация. В основном линии спектра — достаточно узкие, а значительную полуширину некоторых линий спектра можно объяснить значительным ангармонизмом этих колебаний, а в слу-

Рис. 3. Низкочастотные спектры комбинационного рассеяния кристаллов N-бензиланилина в поляризациях XZ (ZX) и YZ (ZY) (колебания симметрии B_g).

ν_i	Частота, с m^{-1}	$\Delta \nu$, cm ⁻¹	Симметрия в Г-точке
ν_1	17	5.0	A_g
ν_2	24	2.8	B_g
ν_3	27	6.1	A_g
ν_4	30	5.5	B_g
ν_5	34	4.2	A_g
ν_6	43	7.1	A_g, B_g
ν_7	51	12.0	B_{g}
ν_8	55	7.4	A_g
ν_9	63	8.7	A_g
v_{10}	73	15.3	B_{g}
v_{11}	78	20.0	A_g
v_{12}	82	15.3	A_g
v_{13}	88	20.0	B_{g}
v_{14}	110	32.0	B_{g}
v_{15}	112	26.0	A_g
v_{16}	115	31.0	A_g

Таблица 3. Частоты и полуширины линий спектра

чае ориентационных колебаний малым временем жизни возбужденных состояний. Обычно уширение полос фундаментальных колебаний в кристаллах связывают с возможностью распада возбуждения, определяемого ангармоническим взаимодействием данного колебания с другими фононами кристаллического спектра. Самостоятельный интерес представляет ряд узких и интенсивных низкочастотных линий (см. табл. 3), проявляющихся в геометриях, соответствующих A_g и B_g симметрии.

Итак резюмируя полученные результаты, можно констатировать, что получена симметрия (пространственная группа) C_{2h}^5 кристаллов N-бензиланилина. Изучены поляризованные Раман-спектры, обнаружено около двух десятков линий (колебаний) различной симметрии A_g B_g, соответствующих трансляционным и ориента-И ционным межмолекулярным (решетчатым) колебаниям. Экспериментальные результаты не противоречат предположению о восьми молекулах N-бензиланилина — С₆H₅-CH₂-NH-C₆H₅ в элементарной (примитивной) ячейке. Нечетные фононы симметрии A_u и B_u в Раман-спектрах не наблюдаются, что и должно быть для центросимметричных кристаллов. В пользу центросимметричности свидетельствует также отсутствие какойлибо зависимости линий спектра от направления волновых векторов падающей волны, рассеянной и фонона, т.е. от геометрии эксперимента, что не противоречит полученной из "рентгена" центросимметричности этих кристаллов.

Авторы благодарят Ю.Э. Китаева за полезные обсуждения представленных результатов.

Список литературы

 М.А. Иванов, В.А. Кимасов, Ю.Ф. Марков. ФТТ 44, 2, 157 (2002).

- [2] М.А. Иванов, В.А. Кимасов, Ю.Ф. Марков. Известия РАН. Сер. физ. 67, 8, 1093 (2003).
- [3] Ю.Ф. Марков, Е.М. Рогинский. ФТТ 55, 9, 1723 (2013).
- [4] J.C. Toledano. Phys. Rev. B20, 1147 (1979).
- [5] M. More, G. Odou, J. Lefebvre. Acta Cryst. B 43, 398 (1987).
- [6] L. Babkov, J. Baran, N.A. Davydova, V.I. Mel'nik, K.E. Uspenskiy. J. Mol. Struct. **792**, 73 (2006).
- [7] Рассеяние света вблизи точек фазовых переходов / Под ред. Г.З. Камминза, А.П. Леванюка. Наука, М. (1990). С. 270.
- [8] M. Arslan, H. Duymus, F. Yakuphanoglu. J. Phys. Chem. B 110, 1, 276 (2006).