05

Поведение остаточных намагниченностей подрешеток феррита-граната гадолиния вблизи точки компенсации

© Ш.М. Алиев, И.К. Камилов, М.Ш. Алиев, Ж.Г. Ибаев

Институт физики им. Х.И. Амирханова ДагНЦ РАН, Махачкала, Россия E-mail: ibaev77@mail.ru

(Поступила в Редакцию 17 сентября 2013 г. В окончательной редакции 12 декабря 2013 г.)

Методом мёссбауэровской спектроскопии исследован феррит-гранат гадолиния $Gd_3Fe_5O_{12}$ в области точки компенсации T_{cm} . Показано, что вблизи T_{cm} резко возрастают остаточные намагниченности подрешеток феррита. Явление объясняется увеличением размеров доменов в феррите при приближении к T_{cm} . Отмечена возможность применения мёссбауэровской спектроскопии для исследования процессов намагничивания и перемагничивания отдельных подрешеток ферримагнетика.

Работа выполнена при финансовой поддержке РФФИ (проект № 12-02-3128).

1. Введение

Многие редкоземельные ферриты-гранаты (РЗФГ) $R_3Fe_5O_{12}$ (*R* — Gd, Tb, Dy и др.) имеют точку магнитной компенсации T_{cm}, в которой происходит смена знака суммарной намагниченности подрешеток ферримагнетика. Изучение различных физических явлений вблизи T_{ст} представляет значительный интерес в связи с тем, что именно при этой температуре наиболее ярко проявляется подрешеточная магнитная структура ферримагнетика. Вблизи T_{ст} в поведении физических свойств ферримагнетиков (коэрцитивной силы, магнитострикции, магнетокалорического эффекта и др.) был обнаружен ряд аномалий [1,2]. В частности, вблизи T_{cm} резко возрастает коэрцитивная сила H_c феррита [3-6], что может быть использовано для магнитной записи информации на тонких пленках ферритов [7]. Интерес к РЗФГ в последнее время особенно возрос в связи с перспективой создания на основе этих ферримагнетиков материалов для элементной базы приборов магнитной микроэлектроники нового поколения [8-10].

В настоящей работе с помощью метода мёссбауэровской спектроскопии в феррите-гранате гадолиния $Gd_3Fe_5O_{12}$ исследовалось поведение остаточных намагниченностей подрешеток феррита вблизи точки компенсации T_{cm} .

2. Результаты эксперимента и их обсуждение

Исследования проводились на поликристаллическом образце феррита $Gd_3Fe_5O_{12}$, изготовленном по стандартной керамической технологии из чистых исходных окислов Gd_2O_3 и Fe_2O_3 [11]. Рентгенофазный анализ, проведенный на дифрактометре ДРОН-3М (Си K_{α} -излучение, Ni-фильтр, длина волны $\lambda = 1.5418$ Å), показал однофазность изготовленного образца. Измерения намагничен-

ности проводились в интервале температур 250-350 К на вибрационном магнитометре BM2-A с чувствительностью по магнитному моменту $\sim 10^{-6}$ emu. Было установлено, что точка компенсации образца $T_{\rm cm} = 286 \, {\rm K}.$ Мёссбауэровские спектры ядер ⁵⁷Fe записывались на спектрометре ЯГРС-4М с источником у-излучения ⁵⁷Co(Cr). Образец для мёссбауэровских измерений представлял собой диск диаметром 10 mm и толщиной 50 µm, вырезанный из феррита и подвергнутый шлифовке. Для проведения температурных измерений образец помещался в комбинированную с криостатом температурную камеру с плавной регулировкой температур в интервале 120-500 К. Автоматическая терморегулировка обеспечивала поддержание заданной температуры с точностью ± 0.5 К. Перед снятием мёссбауэровского спектра образец предварительно размагничивался в переменном магнитном поле с убывающей до нуля амплитудой, затем приводился в состояние остаточной намагниченности при заданной температуре в магнитном поле $H = 3 \,\mathrm{kOe}$, приложенном перпендикулярно плоскости образца. Полученные спектры приведены на рис. 1. Они представляют собой суперпозицию двух зеемановских секстетов, обусловленных ионами железа в *а*- и *d*-подрешетках феррита $\{Cd_3^{3+}\}_c [Fe_2^{3+}]_a (Fe_3^{3+})_d O_{12}^{2-}$. Из спектров видно, что относительные интенсивности вторых и пятых линий обоих секстетов уменьшаются при приближении к T_{cm}. При выбранной геометрии эксперимента (направление распространения у-лучей параллельно направлению приложенного поля Н) это означает, что вблизи T_{cm} возрастает степень ориентации магнитных моментов ионов железа в *a*-и *d*-подрешетках относительно направления приложенного магнитного поля, т.е. вблизи T_{ст} остаточные намагниченности аи *d*-подрешеток *M_{ra}* и *M_{rd}* возрастают. Магнитные моменты ионов в подрешетках феррита Gd₃Fe₅O₁₂ упорядочены коллинеарно [7], поэтому можно полагать, что

Рис. 1. Мёссбауэровские спектры ядер ⁵⁷Fe образца феррита $Gd_3Fe_5O_{12}$, приведенного в состояние остаточной намагниченности при $T = T_{cm} - 12 \text{ K} (I), T = T_{cm} - 7 \text{ K} (2), T = T_{cm} - 2 \text{ K} (3). T_{cm} = 286 \text{ K}.$

вблизи $T_{\rm cm}$ возрастает и остаточная намагниченность редкоземельной подрешетки M_{rc} .

Рассмотрим этот вопрос более подробно на примере поликристаллического образца. Известно, что при приближении к T_{cm} размеры доменов в феррите увеличиваются и в непосредственной близости от T_{cm} доменная структура в феррите может полностью исчезнуть [12-14]. Поэтому вблизи T_{ст} поликристаллический образец можно рассматривать как набор однодоменных кристаллитов, изотропно распределенных в пространстве. Если такой образец намагнитить до насыщения, а затем выключить намагничивающее поле, то максимальный угол θ_m отклонения векторов намагниченности кристаллитов от направления приложенного поля будет равен углу между осями трудного и легкого намагничивания в данной кристаллической структуре. Следует отметить, что вблизи Tcm самопроизвольная намагниченность феррита близка к нулю, поэтому собственное размагничивающее поле образца не будет существенно влиять на ориентацию магнитных моментов кристаллитов. В кубическом кристалле угол

между осями трудного и легкого намагничивания равен 55°. Следовательно, вблизи $T_{\rm cm}$ магнитные моменты ионов *j*-й подрешетки (j = a, d, c) будут распределены в минимальном для изотропного образца телесном угле $\Omega_j = 2\theta_{mj} = 110^\circ$ (рис. 2), поэтому остаточные намагниченности подрешеток феррита максимально возрастают вблизи $T_{\rm cm}$. С удалением от $T_{\rm cm}$ угол Ω_j увеличивается, так как в кристаллитах возникает доменная структура и остаточные намагниченности подрешеток уменьшаются. Покажем справедливость приведенных рассуждений на основе мёссбауэровской спектроскопии.

Известно, что относительные площади линий зеемановского расщепления мёссбауэровского спектра ядер ⁵⁷Fe в однородно намагниченном образце зависят от угла θ между направлением распространения γ -лучей и направлением намагниченности в образце [15]:

$$S_{1,6} = 3(1 + \cos^2 \theta),$$

$$S_{2,5} = 4 \sin^2 \theta,$$

$$S_{3,4} = (1 + \cos^2 \theta).$$
 (1)

Для величины k_j , равной отношению площадей второй и первой или пятой и шестой линий мёссбауэровского спектра ядер ⁵⁷Fe в образце, можно записать

$$k_j = \frac{S_{(2,5)_j}}{S_{(1,6)_j}} = \frac{4(1 - \cos^2 \theta_{ij})}{4(1 + \cos^2 \theta_{ij})},\tag{2}$$

где θ_{ij} — угол между направлением распространения *γ*-лучей и направлением магнитных моментов ионов *j*-й подрешетки в *i*-м домене ($0 \le \theta_{ij} \le \theta_{mj}$),

$$\overline{\cos^2}\theta_{ij} = \frac{\int\limits_{0}^{\theta_{mj}} \int\limits_{0}^{2\pi} \cos^2\theta \sin\theta d\theta d\varphi}{\int\limits_{0}^{\theta_{mj}} \int\limits_{0}^{2\pi} \int\limits_{0}^{\sin\theta d\theta d\varphi} \sin\theta d\theta d\varphi} = \frac{\cos^2\theta_{mj} - 1}{3(\cos\theta_{mj} - 1)}.$$
 (3)

В случае однодоменных частиц ($\theta_{mj} = 55^{\circ}$) получим $k_j = 0.30$. Экспериментально вблизи $T_{\rm cm}$ (283–290 K)

Рис. 2. Пространственное распределение магнитных моментов ионов в a-, d- и c-подрешетках поликристаллического образца феррита $Gd_3Fe_5O_{12}$ в состоянии остаточной намагниченности вблизи T_{cm} .

Рис. 3. Температурные зависимости относительных остаточных намагниченностей *a*- и *d*-подрешеток M_{ra}/M_{sa} и M_{rd}/M_{sd} феррита Gd₃Fe₅O₁₂, полученные по мёссбауэровским спектрам, и температурная зависимость остаточной намагниченности феррита в области T_{cm} .

получены значения $k_a = k_d = 0.30 \pm 0.04$, что свидетельствует об отсутствии доменной структуры в кристаллитах вблизи $T_{\rm cm}$.

Остаточная намагниченность подрешетки M_{rj} есть сумма проекций магнитных моментов ионов данной подрешетки на направление приложенного поля H. Следовательно, для относительной остаточной намагниченности подрешетки феррита можем записать

$$\frac{M_{rj}}{M_{sj}} = \overline{\cos}\theta_{ij},\tag{4}$$

где M_{sj} — намагниченность насыщения подрешетки. Усредняя $\cos \theta_{ij}$ по части единичной сферы, ограниченной телесным углом $\Omega_i = 2\theta_{mj}$, получим уравнение

$$\frac{M_{rj}}{M_{sj}} = \frac{1 + \cos \theta_{mj}}{2},\tag{5}$$

на основе которого, пользуясь выражениями (2) и (3), можно построить температурные зависимости $\frac{M_{ra}}{M_{sa}}(T)$ и $\frac{M_{rd}}{M_{sd}}(T)$ по мёссбауэровским спектрам. В феррите с коллинеарной магнитной структурой $\theta_{ma} = \theta_{md} = \theta_{mc}$, поэтому для феррита-граната гадолиния Gd₃Fe₅O₁₂ справедливы соотношения

$$\frac{M_{ra}}{M_{sa}} = \frac{M_{rd}}{M_{sd}} = \frac{M_{rc}}{M_{sc}}.$$
 (6)

При отсутствии доменной структуры в кристаллитах $(\theta_{mj} = 55^{\circ})$ из уравнения (5) получим $\frac{M_{rj}}{M_{sj}} = 0.79$. На рис. 3 приведены температурные зависимости $\frac{M_{ra}}{M_{sa}}(T)$ и $\frac{M_{rd}}{M_{sd}}(T)$, полученные по мёссбауэровским спектрам.

Видно, что эти зависимости, совпадая друг с другом в пределах экспериментальной ошибки, имеют ярко выраженный максимум вблизи $T_{\rm cm}$. Учитывая равенство (6), можно ожидать, что температурная зависимость $\frac{M_{rc}}{M_{sc}}T$ будет аналогичной. Заметим, что результирующая остаточная намагниченность феррита $Gd_3Fe_5O_{12}$ $M_r = |M_{ra} + M_{rc} - M_{rd}|$ уменьшается при приближении к $T_{\rm cm}$ и обращается в нуль при $T = T_{\rm cm}$ (рис. 3).

Следует отметить, что, пользуясь выражениями (2), (3) и (5), по мёссбауэровским спектрам ядер ⁵⁷ Fe можно построить зависимости $\frac{M_a}{M_{sa}}(H)$ и $\frac{M_d}{M_{sd}}(H)$, т.е. исследовать процессы намагничивания и перемагничивания отдельно для *a*- и *d*-подрешеток феррита, что позволит более детально изучить явление магнитного гистерезиса в ферримагнетиках.

3. Заключение

Проведены исследования эффекта Мёссбауэра на ядрах 57 Fe в поликристаллическом образце ферритаграната гадолиния Gd₃Fe₅O₁₂ в области точки компенсации $T_{\rm cm}$. Показано, что вблизи $T_{\rm cm}$ остаточные намагниченности подрешеток феррита резко возрастают. Явление объясняется увеличением размеров доменов в феррите при приближении к $T_{\rm cm}$. На основе проведенных исследований отмечена возможность применения мёссбауэровской спектроскопии для исследования процессов намагничивания и перемагничивания отдельных подрешеток ферримагнетика.

Список литературы

- К.П. Белов, М.А. Белянчикова, Р.З. Левитин, С.А. Никитин. Редкоземельные ферро- и антиферромагнетики. Наука, М. (1965).
- [2] К.П. Белов, С.А. Никитин. ЖЭТФ 58, 937 (1970).
- [3] К.П. Белов, А.В. Педько. ЖЭТФ 39, 961 (1960).
- [4] И.С. Любутин. ФТТ 7, 1397 (1965).
- [5] Б.П. Горанский, А.К. Звездин. ЖЭТФ 57, 547 (1969).
- [6] К.П. Белов, А.Н. Горяга, Т.Я. Гридасова. ФТТ 14, 1428 (1972).
- [7] К.П. Белов. Редкоземельные магнетики и их применение. Наука, М. (1980). 239 с.
- [8] А.С. Логгинов, Г.А. Мешков, А.В. Николаев, А.П. Пятаков. Письма в ЖЭТФ 86, 124 (2007).
- [9] A.S. Logginov, G.A. Meshkov, A.V. Nikolaev, E.P. Nikolaeva, A.P. Pyatakov, A.K. Zvezdin. Appl. Phys. Lett. 93, 182 510 (2008).
- [10] А.К. Звездин, А.П. Пятаков. УФН 179, 897 (2009).
- [11] Л.И. Рабкин, С.А. Соскин, Б.Ш. Эпштейн. Ферриты. Энергия, Л. (1968). 384 с.
- [12] C.D. Mee. Contemp. Phys. 8, 385 (1967).
- [13] Ф.В. Лисовский, Е.Г. Мансветова, В.И. Шаповалов. ЖЭТФ 71, 1443 (1976).
- [14] В.Г. Барьяхтар, Д.А. Яблонский. ФТТ 16, 3511 (1974).
- [15] С.М. Иркаев, Р.Н. Кузьмин, А.А. Опаленко. Ядерный гамма-резонанс. Изд-во МГУ, М. (1970). 207 с.