15

Ориентационный порядок и поляризуемость молекул в нематическом жидком кристалле

© Е.М. Аверьянов

Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия E-mail: aver@iph.krasn.ru

(Поступила в Редакцию 29 октября 2013 г.)

Исследовано влияние ориентационной упорядоченности молекул в нематическом жидком кристалле на среднее значение $\bar{\gamma}$ и анизотропию $\Delta \gamma$ молекулярной поляризуемости в рамках молекулярно-статистического подхода с учетом возмущения электронной структуры молекул за счет изменения конформации их ароматического остова и межмолекулярных взаимодействий. Осуществлен вывод экспериментальных зависимостей величин $\bar{\gamma}$ и $\Delta \gamma$ от параметра ориентационного порядка молекул *S*, объяснены их особенности для известных объектов. На примере нематика MBBA показана возможность разделения противоположных по знаку вкладов в зависимость $\Delta \gamma(S)$, обусловленных изменением конформации молекул и межмолекулярными взаимодействиями.

1. Введение

Самоорганизация одноосных молекул в нематический жидкий кристалл (ЖК) сопровождается появлением локальной анизотропии координационного окружения молекул и дальнего ориентационного порядка продольных молекулярных осей l относительно директора n. Анизотропные стерические эффекты плотной упаковки молекул и дисперсионные межмолекулярные взаимодействия ближнего и дальнего порядков в ЖК вызывают изменение конформации, поляризации, электронной структуры молекул и зависящих от них молекулярных свойств [1]. В наибольшей степени это влияет на компоненты уіі тензора поляризуемости молекул, которые имеют цепь π -электронного сопряжения молекулярных фрагментов вдоль оси **l** и низкие барьеры изменения углов φ_k внутреннего вращения между этими фрагментами. Для типичных молекул в термотропных нематиках барьеры относительного вращения фрагментов молекулярного остова вокруг одинарных химических связей сравнимы с энергией межмолекулярных взаимодействий [1]. Вследствие этого при статистическом характере молекулярного порядка в нематике для отдельной молекулы с центром тяжести в точке **r** значения $\varphi_k(\mathbf{r}, \theta)$ флуктуируют вместе с углом $\theta(\mathbf{r})$ между молекулярной осью $\mathbf{l}(\mathbf{r})$ и директором **n**. Флуктуации $\varphi_k(\mathbf{r}, \theta)$ вызывают флуктуации степени электронного сопряжения молекулярных фрагментов и компонент $\gamma_{ij}(\mathbf{r}, \theta, \varphi_k)$ поляризуемости.

Корреляция в изменениях углов θ и φ_k для молекул нематика приводит к отсутствию факторизации $f(\theta, \varphi_k) \neq f(\theta)f(\varphi_k)$ для одночастичной функции распределения нематика $f(\theta, \varphi_k)$. Это обусловливает зависимость величин $\langle A(\theta) \rangle$, усредненных с функцией распределения $f(\theta, \varphi_k)$, от конформационной упорядоченности молекул и зависимость величин $\langle B(\varphi_k) \rangle$ от ориентационной упорядоченности молекул [1]. Компоненты поляризуемости $\gamma_i = \langle \gamma_{ij}(\theta, \varphi_k) \rangle$, измеряемые с поляризацией световой волны параллельно (j = ||) и перпендикулярно $(j = \bot)$ директору **n**, зависят от ориентационной, конформационной упорядоченности молекул и межмолекулярных взаимодействий. Совместное влияние этих факторов определяет характер экспериментальных зависимостей средней величины $\bar{\gamma} = (\gamma_{||} + 2\gamma_{\perp})/3$ и анизотропии поляризуемости $\Delta \gamma = (\gamma_{||} - \gamma_{\perp})/S$ от параметра ориентационного порядка молекул $S = \langle 3 \cos^2 \theta - 1 \rangle/2$, а соотношение этих вкладов задает амплитуду изменения $\bar{\gamma}(S)$, $\Delta \gamma(S)$.

В работе [2] для нематика 4-метоксибензилиден-4'бутиланилина (МВВА) была экспериментально установлена общая для функций $\bar{\gamma}(\lambda, S), \Delta \gamma(\lambda, S)$ зависимость

$$\Gamma(\lambda, S) = \Gamma_0(\lambda) + \Gamma_2(\lambda)S^2 \tag{1}$$

при разных длинах световой волны λ . Она также следует из феноменологической теории [2] в низшем по *S* приближении с учетом симметрии нематической фазы. Значения $\Gamma_2(\lambda)$ определяются двумя противоположными по знаку вкладами, соотношение которых зависит от химической структуры молекул [2]. Остались открытыми вопросы о возможности разделения этих вкладов, их связи с ориентационным, конформационным порядком молекул и межмолекулярными взаимодействиями, а также о зависимости отношений Γ_2/Γ_0 для $\Delta \gamma$, $\bar{\gamma}$ и $\Gamma_2(\Delta \gamma)/\Gamma_2(\bar{\gamma})$ от химической и электронной структуры молекул. Настоящая работа посвящена молекулярностатистическому анализу функций $\bar{\gamma}(S)$, $\Delta \gamma(S)$ и выяснению этих вопросов для MBBA и других известных ЖК.

2. Общая форма зависимостей $\bar{y}(S), \Delta y(S)$

Рассмотрим одноосный неполярный нематик, состоящий из стержнеобразных молекул со свободным вращением вокруг их продольных осей І. Предположим, что

Е.М. Аверьянов

в ароматическом остове молекулы имеются два плоских фрагмента, связанных электронным сопряжением вдоль одинарной химической связи, параллельной оси **l**. Заторможенное относительное вращение этих фрагментов характеризуется двугранным углом φ . В системе директора **n** || **Z** ориентация молекулы задана полярным углом θ между **l** и **n** и азимутальным углом ϕ , фиксирующим проекцию **l** на плоскости *XY*. В области прозрачности ЖК компоненты поляризуемости γ_j можно представить в следующей форме:

$$\gamma_j(\lambda) = D \left\langle \sum_q \Phi_q(\lambda) F_q(\theta, \varphi, S) d_{qj}^2(\theta, \beta_q) \right\rangle.$$
(2)

Здесь $D = e^2/(4\pi^2 c^2 m)$, е и m — заряд и масса электрона, c — скорость света в вакууме, $\Phi_q(\lambda) = \lambda^2 \lambda_q^2/(\lambda^2 - \lambda_q^2)$, λ_q и F_q — длина волны и сила осциллятора молекулярного перехода из основного в q-e возбужденное состояние. Величины $d_{q_i}^2$ имеют вид

$$d_{qj}^2 = [1 + C_j S_{\beta q} P_2(\cos \theta)]/3, \quad C_{\parallel} = 2, \quad C_{\perp} = -1, \quad (3)$$

где $S_{\beta q} = (3\cos^2\beta_q - 1)/2, \beta_q$ — угол между ортом \mathbf{d}_q дипольного момента перехода и осью **l**; $P_2(\cos\theta)$ — полином Лежандра; $\langle P_2 \rangle = S$. В формуле (2) учтено усреднение по изотропному распределению углов ϕ в плоскости XY (одноосность ЖК) и по вращению \mathbf{d}_q вокруг оси **l**. Усреднение $\langle \ldots \rangle$ проводится с функцией распределения $f(\theta, \phi)$, учитывающей корреляцию в изменении углов θ и ϕ . В соответствии с теорией [3] и экспериментом [4] в формуле (2) не учитываются слабые зависимости $\lambda_q(\theta, \phi, S), \beta_q(\theta, \phi, S)$ на фоне сильной зависимости $F_q(\theta, \phi, S)$.

Рассмотрим общие свойства функции $F_q(\theta, \varphi, S)$ с учетом симметрии нематической фазы и молекул, не ограничиваясь конкретным типом межмолекулярных взаимодействий. Условиям симметрии $F_q(\theta, \varphi) =$ $= F_q(-\theta, \varphi) = F_q(\pi \pm \theta, \varphi) = F_q(\theta, -\varphi) = F_q(\theta, \pi \pm \varphi)$ отвечает следующее представление наиболее общего вида:

$$F_q(\theta, \varphi, S) = \sum_{n,k} F_{nk}^{(q)}(S) P_n(\cos \theta) \cos^k \varphi$$
(4)

с суммированием по четным значениям $n, k \ge 0$. Для молекулярных переходов хорошим приближением является ограничение $k \le 2$ [5]. Для выяснения качественных и количественных следствий функции (4) достаточно учета значений $n \le 2$. В результате имеем

$$F_{q}(\theta, \varphi, S) = F_{00}^{(q)} + F_{02}^{(q)} \cos^{2} \varphi + F_{20}^{(q)}(S)P_{2}(\cos \theta) + F_{22}^{(q)}(S)P_{2}(\cos \theta) \cos^{2} \varphi.$$
(5)

Здесь два первых слагаемых в правой части дают зависимость $F_q(\varphi)$ для молекулы в анизотропном координационном окружении ее ближайших соседей. Вид этих слагаемых не зависит от фазового состояния среды, так что возможной слабой зависимостью коэффициентов $F_{00}^{(q)}$, $F_{02}^{(q)}$ от *S* можно пренебречь. Два следующих слагаемых характеризуют возмущение молекулярных переходов анизотропными межмолекулярными взаимодействиями ближнего и дальнего порядков. При этом третье слагаемое не зависит от конформации молекулы и электронного сопряжения ее фрагментов. Для молекулы с заданным значением θ это слагаемое зависит от величины S и определяет степень возмущения электронной структуры молекулы за счет ее анизотропного окружения на масштабах, отвечающих формированию дальнего ориентационного порядка молекул. При заданном значении S это слагаемое характеризует зависимость возмущения электронной структуры молекулы от ее ориентации относительно n. Последнее слагаемое в правой части (5) описывает возмущение электронной структуры молекулы за счет ее взаимодействия с окружением при определенной ориентации молекулы относительно **n** и конформации молекулярных фрагментов.

Подстановка выражений (3), (5) в формулу (2) дает

$$\bar{\gamma} = (D/3) \sum_{q} \Phi_{q}(\lambda) \left[F_{00}^{(q)} + F_{02}^{(q)} Q_{2} + F_{20}^{(q)}(S) S + F_{22}^{(q)}(S) \langle P_{2} \cos^{2} \varphi \rangle \right],$$
(6)

$$\begin{aligned} \gamma_{\parallel} - \gamma_{\perp} &= D \sum_{q} \Phi_{q}(\lambda) S_{\beta q} \left[F_{00}^{(q)} S + F_{02}^{(q)} \langle P_{2} \cos^{2} \varphi \rangle \right. \\ &+ F_{20}^{(q)}(S) \langle P_{2}^{2} \rangle + F_{22}^{(q)}(S) \langle P_{2}^{2} \cos^{2} \varphi \rangle \Big]. \end{aligned}$$
(7)

Здесь и далее для краткости записи у функций $P_2(\cos \theta)$ и $P_2^2(\cos \theta)$ опущен аргумент. В формуле (6) значение $Q_2 = \langle \cos^2 \varphi \rangle$ для ЖК отличается от величины $Q_{2i} = \langle \cos^2 \varphi \rangle_i$, которая отвечает изотропной фазе или факторизации $f(\theta, \varphi) = f(\theta)f(\varphi)$ в ЖК. В низшем порядке по *S* из молекулярно-статистической [1,5] и феноменологической [6] теорий следует зависимость

$$Q_2 = Q_{2i} + \eta S^2, (8)$$

справедливая для любой скалярной величины $\langle B(\varphi) \rangle$. Далее в формуле (7) проведем разложение $P_2^2 = 1/5 + (2/7)P_2 + (18/35)P_4$. С учетом связи $\gamma_{\parallel} - \gamma_{\perp} = \Delta \gamma S$ и коэффициентов $K_n = \langle P_n \cos^2 \varphi \rangle / [\langle P_n \rangle Q_2]$ формулы (6), (7) принимают вид

$$\bar{\gamma} = (D/3) \sum_{q} \Phi_{q}(\lambda) \left[F_{00}^{(q)} + F_{02}^{(q)} Q_{2} + F_{20}^{(q)}(S) S + F_{22}^{(q)}(S) K_{2} S Q_{2} \right],$$

$$\Delta \gamma = D \sum \Phi_{q}(\lambda) S_{\beta q} \left\{ F_{00}^{(q)} + F_{02}^{(q)} K_{2} Q_{2} + \left[F_{20}^{(q)}(S) / S \right] \right\}$$
(9)

$$\begin{split} \Delta \gamma &= D \sum_{q} \Psi_{q}(\kappa) S \beta_{q} \{ \Gamma_{00}^{-} + \Gamma_{02}^{-} \kappa_{2} \mathcal{Q}_{2}^{-} + [\Gamma_{20}^{-} (S)/S] \\ &\times \left[1/5 + (2/7)S + (18/35) \langle P_{4} \rangle \right] + \left[F_{22}^{(q)}(S)/S \right] \\ &\times \left[\mathcal{Q}_{2}/5 + (2/7) \kappa_{2} S \mathcal{Q}_{2} + (18/35) \kappa_{4} \langle P_{4} \rangle \mathcal{Q}_{2} \right] \}. \tag{10}$$

При S = 0 коэффициенты $F_{n0}^{(q)}(S)$, $F_{n2}^{(q)}(S)$ должны быть равны нулю, и можно принять $F_{n0}^{(q)}(S) = F_{n0}^{(q)}S^{\mu}$, $F_{n2}^{(q)}(S) = F_{n2}^{(q)}S^{\nu}$. Чтобы формула (10) отвечала зависимости (1) в низшем по *S* приближении, следует положить $\mu = \nu = 3$. Подстановка (8) в (9) дает

$$\bar{\gamma} = (D/3) \sum_{q} \Phi_{q}(\lambda) \left[F_{00}^{(q)} + F_{02}^{(q)} Q_{2i} + S^{2} \eta F_{02}^{(q)} \right. \\ \left. + S^{4} (F_{20}^{(q)} + F_{22}^{(q)} K_{2} Q_{2i}) + S^{6} \eta K_{2} F_{22}^{(q)} \right].$$
(11)

Неравенство $Q_{2i} \gg \eta S^2$ [1,6] позволяет здесь пренебречь слагаемым $\propto S^6$ в сравнении со слагаемым $\propto S^4$. Выполнение экспериментальной зависимости (1) для функции $\bar{\gamma}(S)$ вплоть до предельно высоких значений $S \approx 0.8$ в нематической фазе [7] показывает малость поправки $\propto S^4$. В результате зависимость $\bar{\gamma}(S)$ имеет вид (1) с коэффициентами

$$\Gamma_0(\bar{\gamma}) = (D/3) \sum_q \Phi_q(\lambda) (F_{00}^{(q)} + F_{02}^{(q)} Q_{2i}), \qquad (12)$$

$$\Gamma_2(\bar{\gamma}) = (D\eta/3) \sum_q \Phi_q(\lambda) F_{02}^{(q)}.$$
(13)

Величина $\Gamma_2(\bar{\gamma})$ определяется изменением (8) параметра Q_2 конформационного состояния молекул в ЖК. Молекулярные переходы, у которых силы осцилляторов нечувствительны к изменению конформации и электронного сопряжения молекулярных фрагментов ($F_{02}^{(q)} = 0$), не вносят вклад в $\Gamma_2(\bar{\gamma})$.

Учитывая (8) и явный вид функций $F_{n0}^{(q)}(S)$, $F_{n2}^{(q)}(S)$ в выражении (10), получаем

$$\Delta \gamma = D \sum_{q} \Phi_{q}(\lambda) S_{\beta q} \{ F_{00}^{(q)} + F_{02}^{(q)} K_{2} Q_{2i} + S^{2} [\eta K_{2} F_{02}^{(q)} + (F_{20}^{(q)} + F_{22}^{(q)} Q_{2i})/5] + (2/7) S^{3} (F_{20}^{(q)} + F_{22}^{(q)} K_{2} Q_{2i}) + (18/35) S^{2} \langle P_{4} \rangle (F_{20}^{(q)} + F_{22}^{(q)} K_{4} Q_{2i}) \}.$$
(14)

При заданном *S* максимальные экспериментальные значения $\langle P_4 \rangle$ [8] удовлетворяют теории Майера–Заупе [9], в которой при $S \leq 0.85$ хорошо выполняется соотношение $\langle P_4 \rangle \approx (5/7)S^2$ [10]. С учетом этого и равенства $K_{2.4} \approx 1$ [1,5] в формуле (14) можно пренебречь слагаемым $\propto S^2 \langle P_4 \rangle$ относительно слагаемого $\propto S^2$. При типичных для реальных нематиков значениях $S(T_{NI}) > 2/7$ (T_{NI} — температура перехода нематик–изотропная жидкость) имеем $2S^3/7 < S^4$, и для всего нематического интервала в формуле (14) можно пренебречь слагаемым $\propto S^3$ относительно слагаемого $\propto S^2$. В результате выражение (14) сводится к формуле (1), в которой коэффициент

$$\Gamma_0(\Delta \gamma) = D \sum_q \Phi_q(\lambda) S_{\beta q} (F_{00}^{(q)} + F_{02}^{(q)} K_2 Q_{2i})$$
(15)

несущественно отличается от анизотропии поляризуемости молекулы

$$\Delta \gamma_i = D \sum_q \Phi_q(\lambda) S_{\beta q} (F_{00}^{(q)} + F_{02}^{(q)} Q_{2i})$$
(16)

в изотропной фазе, поскольку $K_2 \approx 1$. Коэффициент $\Gamma_2 = \Gamma_2^{(1)} + \Gamma_2^{(2)}$ включает слагаемые

$$\Gamma_2^{(1)}(\Delta \gamma) = D\eta K_2 \sum_q \Phi_q(\lambda) S_{\beta q} F_{02}^{(q)},$$

$$\Gamma_2^{(2)}(\Delta \gamma) = (D/5) \sum_q \Phi_q(\lambda) S_{\beta q} (F_{20}^{(q)} + F_{22}^{(q)} Q_{2i}).$$
(17)

Величина $\Gamma_2^{(1)}(\Delta \gamma)$ зависит от изменения (8) параметра Q_2 , тогда как значение $\Gamma_2^{(2)}(\Delta \gamma)$ обусловлено изменением величин F_q за счет межмолекулярных взаимодействий.

Если дисперсия величин $\bar{\gamma}$, $\Delta \gamma$ и их коэффициентов $\Gamma_{0,2}$ в видимой области определяется совокупностью *m* близких длинноволновых электронных переходов с одинаковыми значениями $S_{\beta q} = S_{\beta}$, то зависимости $\bar{\gamma}$, $\Delta \gamma$, $\Gamma_{0,2}$ от λ в этой области можно аппроксимировать функцией [2]

$$y = y_b + P\lambda^2 / (\lambda^2 - \lambda_r^2).$$
(18)

Коэффициент y_b дает фоновые значения $\bar{\gamma}_b$, $\Delta \gamma_b$ и $\Gamma_{0,2}^{(b)}$, обусловленные коротковолновыми переходами с q > m. Сравнение формул (12) и (15) при $K_2 = 1$ с (18) дает связь

$$\Gamma_0(\Delta \gamma) - \Gamma_0^{(b)}(\Delta \gamma) = 3S_\beta [\Gamma_0(\bar{\gamma}) - \Gamma_0^{(b)}(\bar{\gamma})], \qquad (19)$$

которую можно использовать для определения величины S_{β} или угла β [2]. Выделение фоновых вкладов в значения $\Gamma_2(\bar{\gamma})$ и $\Gamma_2(\Delta \gamma)$ в формулах (13), (17) приводит к следующим соотношениям

$$\Gamma_2(\bar{\gamma}) = \Gamma_2^{(b)}(\bar{\gamma}) + (D\eta/3) \sum_{q=1}^m \Phi_q(\lambda) F_{02}^{(q)}, \qquad (20)$$

$$\Gamma_2(\Delta \gamma) = \Gamma_2^{(b)}(\Delta \gamma) + \delta_1 + \delta_2, \qquad (21)$$

$$\delta_1 = 3S_\beta K_2 [\Gamma_2(\bar{\gamma}) - \Gamma_2^{(b)}(\bar{\gamma})], \qquad (22)$$

$$\delta_2 = (DS_\beta/5) \sum_{q=1}^m \Phi_q(\lambda) (F_{20}^{(q)} + F_{22}^{(q)} Q_{2i}).$$
(23)

С использованием величин Γ_2 , $\Gamma_2^{(b)}$ для $\Delta \gamma$ и продольной компоненты поляризуемости $\gamma_l = \bar{\gamma} + 2\Delta \gamma/3$, которые наиболее чувствительны к сопряжению молекулярных фрагментов и межмолекулярным взаимодействиям, из формул (20)–(22) получаем

$$\delta_{2} = (1 + 2S_{\beta}K_{2})[\Gamma_{2}(\Delta\gamma) - \Gamma_{2}^{(b)}(\Delta\gamma)] - 3S_{\beta}K_{2}[\Gamma_{2}(\gamma_{l}) - \Gamma_{2}^{(b)}(\gamma_{l})].$$
(24)

Соотношения (19), (21), (22), (24) позволяют определить значения $\delta_{1,2}$.

значениях λ (μ m)

λ	$\bar{\gamma}_i$	$\Gamma_0(ar{\gamma})$	$\Gamma_2(\bar{\gamma})$	$\Gamma_0(\Delta \gamma)$	$\Gamma_2(\Delta \gamma)$	$\Gamma_2(\gamma_l)$	δ_1	$-\delta_2$
0.4678	37.94	37.87	5.60	44.31	5.21	9.04	17.94	11.55
0.4800	37.52	37.60	5.29	43.69	4.22	8.10	17.14	11.74
0.5086	36.88	36.99	5.08	41.58	4.41	7.98	16.45	10.86
0.5893	35.89	35.94	4.60	37.95	5.77	8.45	15.21	8.26
0.6438	35.47	35.63	4.12	37.40	3.02	6.15	13.89	9.69
∞	34.23	34.14	3.00	32.74	2.06	4.02	9.68	6.44

3. Сравнение с экспериментом и обсуждение

Для проверки полученных соотношений используем приведенные в таблице коэффициенты $\Gamma_{0,2}(\lambda)$ зависимости (1) для параметров поляризуемости \bar{p} , $\Delta \gamma$, γ_l в нематической фазе MBBA [2]. При $\lambda = \infty$ коэффициенты $\Gamma_{0,2}$ отвечают величинам \bar{p}_{∞} , $\Delta \gamma_{\infty}$, $\gamma_l^{(\infty)}$, полученным из аппроксимации зависимостей $\bar{p}(\lambda)$, $\Delta \gamma(\lambda)$, $\gamma_l(\lambda)$ функцией (18) при различных температурах нематической фазы. Формула (12) дает поляризуемость молекул в изотропной фазе $\bar{\gamma}_i$. Это подтверждается сравнением $\Gamma_0(\bar{\gamma})$ и значений

$$\bar{\gamma}_i = 3M(n_i^2 - 1)/[4\pi N_A \rho_i (n_i^2 + 2)],$$
 (25)

рассчитанных по известным показателям преломления $n_i(\lambda)$ [11] и плотности $\rho_i = 1.0252 \text{ g/cm}^3$ [12] изотропной фазы MBBA при температуре $T = T_{NI} + 1^{\circ}$ С. Здесь M и N_A — молекулярный вес и число Авогадро. Предельное значение $\bar{p}_i^{(\infty)}$, следующее из аппроксимации зависимости $\bar{\gamma}_i(\lambda)$ функцией (18), также согласуется с величиной $\Gamma_0(\bar{\gamma}_\infty)$.

Как установлено ранее [2] с использованием аппроксимации (18), в изотропной и нематической фазах MBBA с молекулярной структурой

дисперсия величин $\bar{\gamma}_i$, $\bar{\gamma}$, $\Delta \gamma$, γ_l и их коэффициентов $\Gamma_{0,2}$ в видимой области определяется двумя длинноволновыми электронными переходами типа $n-\pi^*$ и $\pi-\pi^*$ с максимумами соответствующих полос поглощения $\lambda_{n\pi} = 0.285 \,\mu\text{m}$ и $\lambda_{\pi\pi} = 0.325 \,\mu\text{m}$ [13,14] и поляризацией вдоль связи N-фенил [15]. Значение $\cos^2\beta = 0.962$ [2], полученное из трех выражений типа (19) для коэффициентов $\Gamma_0(\lambda)$, $\Gamma_0^{(b)}$ величин $\bar{\gamma}$, $\Delta \gamma$, γ_l и усредненное по табличным значениям λ , можно использовать в формулах (22), (24). Аппроксимация табличных зависимостей $\Gamma_2(\lambda)$ для $\bar{\gamma}$, $\Delta \gamma$, γ_l функцией (18) без учета флуктуаций Γ_2 ($\lambda = 0.5893 \,\mu\text{m}$) дает значения $\Gamma_2^{(b)}(\bar{\gamma}) = -0.77$,

 $\Gamma_2^{(b)}(\Delta \gamma) = -1.18$ и $\Gamma_2^{(b)}(\gamma_l) = -1.56$ Å³. Для MBBA экспериментальные величины $K_2 > 1$ близки к единице и слабо зависят от *S* [5]. В таблице приведены значения $\delta_{1,2}$, рассчитанные при $K_2 = 1$ по формулам (21), (24) с использованием табличных и указанных выше параметров. Расчет по формулам (21), (22) дает величины $\delta_{1,2}$, отличающиеся от табличных не более чем на 1%.

Для MBBA величины δ_1 и δ_2 противоположны по знаку. Малое значение $\Gamma_2^{(b)}(\Delta \gamma) < 0$ в сравнении с $|\delta_{1,2}|$ показывает, что $\Gamma_2^{(2)}(\Delta \gamma) < 0$ во всем интервале изменения λ . Частичная взаимная компенсация слагаемых δ_1 и δ_2 в формуле (21) объясняет низкие значения $\Gamma_2(\Delta \gamma)$ и отношения $\kappa_1 = \Gamma_2(\Delta \gamma) / \Gamma_0(\Delta \gamma) \approx 0.1$ для MBBA в сравнении с $\kappa_1 \approx 0.5$ для гомологов 5CB и 7CB ряда 4-*п*-алкил-4'-цианобифенилов (*n*CB) [8]. В отличие от нематической фазы МВВА, образованной отдельными молекулами, нематическая фаза гомологов nCB состоит из молекулярных ассоциатов-димеров и имеет локальную квазисмектическую структуру [9]. Соотношение параметров к₁ для MBBA и гомологов nCB показывает, что для последних имеет место неравенство $\delta_1 \gg |\delta_2|$. Действительно, в видимой области для MBBA величина $\delta_1/\Gamma_0(\Delta \gamma) \approx 0.40$ сравнима со значением κ_1 для *n*CB, а отношение $\delta_1/\Gamma_2(\bar{\gamma}) \approx 3.27$ близко к значению для nCB [8].

Это соответствие связано с наличием электронного сопряжения фрагментов ароматического остова молекул МВВА и *n*CB. Электронная структура МВВА чувствительна к углу ϕ_N между плоским мостиковым фрагментом CH=N и анилиновым фенильным кольцом [15]. В молекуле МВВА двум первым слагаемым в формуле (5) для сил осцилляторов переходов $n-\pi^*$ и $\pi - \pi^*$ соответствуют зависимости $F_{n\pi}(\varphi_N) \propto \sin^2 \varphi_N$ и $F_{\pi\pi}(\phi_{
m N}) \propto \cos^2 \phi_{
m N}$ [1,15]. В нематической фазе МВВА изменение параметра $Q_2 = \langle \cos^2 \varphi_{\rm N} \rangle$ в формуле (8) с $\eta > 0$ [6] определяет вклад $\propto (1 - Q_2)$ в среднюю величину $F_{n\pi} = \langle F_{n\pi}(\varphi_N) \rangle$ и вклад $\propto Q_2$ в величину $F_{\pi\pi} = \langle F_{\pi\pi}(\varphi_N) \rangle$. Сумма этих вкладов обусловливает положительные значения $\Gamma_2(\bar{\gamma}), \ \Gamma_2^{(1)}(\Delta \gamma)$ и δ_1 . Для молекул *n*CB значения $\Gamma_2(\bar{\gamma})$, $\Gamma_2^{(1)}(\Delta \gamma)$ определяются зависимостью $F_{\pi\pi}(\varphi) \propto \cos^2 \varphi$ силы осциллятора длинноволнового электронного перехода $\pi - \pi^*$ от угла φ между фенильными кольцами бифенильного фрагмента [3] и изменением $Q_2 = \langle \cos^2 \phi \rangle$ в нематической фазе согласно (8) с $\eta > 0$ [6]. Это обусловливает близость величин $\kappa_2 = \Gamma_2(\bar{\gamma})/\Gamma_0(\bar{\gamma})$ для MBBA [2] и *n*CB [1,8] в видимой области.

По соотношению слагаемых $\Gamma_2^{(1)}$ и $\Gamma_2^{(2)}$ нематическая фаза MBBA занимает промежуточное положение между гомологами ряда *n*CB и этил-*p*-(4-этоксибензилиденамино-) α -метилциннаматом (ЕЕВМ) [7]. Остовы молекул MBBA и ЕЕВМ одинаковы. Для ЕЕВМ выполняется соотношение $\Gamma_2(\Delta \gamma) \approx 0$ [7], которое отвечает равенству $|\Gamma_2^{(2)}| \approx \Gamma_2^{(1)}$. Отрицательные значения $\Gamma_2^{(2)}$, δ_2 повышают коэффициент

$$\Gamma_{2}(\gamma_{t}) = \Gamma_{2}^{(b)}(\gamma_{t}) + (1 - S_{\beta}K_{2})[\Gamma_{2}(\bar{\gamma}) - \Gamma_{2}^{(b)}(\bar{\gamma})] - \delta_{2}/3$$
(26)

для поперечной компоненты $\gamma_t = \bar{\gamma} - \Delta \gamma/3$ поляризуемости и снижают коэффициент

$$\Gamma_2(\gamma_l) = \Gamma_2^{(b)}(\gamma_l) + (1 + 2S_\beta K_2)[\Gamma_2(\bar{\gamma}) - \Gamma_2^{(b)}(\bar{\gamma})] + 2\delta_2/3$$
(27)

для продольной компоненты γ_l . В силу малости параметра $\Gamma_2^{(b)}(\gamma_l) = \Gamma_2^{(b)}(\bar{\gamma}) - \Gamma_2^{(b)}(\Delta \gamma)/3 = -0.38 \text{ Å}^3$ и соотношения $S_\beta K_2 \approx 1$ для МВВА экспериментальные значения $\Gamma_2(\gamma_l)$ [2], воспроизводимые формулой (26), практически равны $-\delta_2/3$, т.е. квадратичная зависимость $\gamma_l(S)$ для МВВА и ЕЕВМ целиком обусловлена влиянием межмолекулярных взаимодействий на силы осцилляторов длинноволновых электронных переходов.

При отсутствии сопряжения фрагментов ароматического остова молекулы и длинноволновых полос электронного поглощения, чувствительных к изменению конформации остова, будут выполняться неравенства $|\Gamma_2^{(2)}| > \Gamma_2^{(1)}$ и $\Gamma_2(\Delta \gamma) < 0$. Это характерно для молекул 4-нитрофенил-4'-октилоксибензоата (NP8OB), в нематической фазе которого зависимостям $\bar{\gamma}$, $\gamma_{l,t}$, $\Delta \gamma$ от *S* в видимой области [8,16] отвечают отрицательные (положительные) значения Γ_2 для $\Delta \gamma$, $\gamma_l(\bar{\gamma}, \gamma_t)$. Особенности влияния межмолекулярных взаимодействий на параметры $\gamma_{l,t}$ и $\Delta \gamma$ для MBBA, EEBM и NP8OB соответствуют предсказанным ранее [17] для индукционного диполь-дипольного взаимодействия ориентационноупорядоченных молекул.

При высоких значениях *S* первые поправки к квадратичным зависимостям $\bar{\gamma}(S)$ и $\Delta\gamma(S)$ в формулах (11) и (14) обусловлены межмолекулярными взаимодействиями и отрицательны. Это качественно соответствует снижению до нуля положительного коэффициента $\Gamma_2(\bar{\gamma})$ и изменению коэффициента Γ_2 для $\gamma_l(\Delta\gamma)$ с положительного (близкого к нулю) на отрицательный при переходе из нематической в смектическую *A* фазу EEBM со значениями *S* > 0.8 [7]. Для анализа особенностей изменения $\bar{\gamma}(S)$ и $\Delta\gamma(S)$ в смектической фазе разложение (5) должно быть дополнено слагаемыми, отражающими позиционное упорядочение молекул вдоль директора **n** и его связь с ориентационной и конформационной упорядоченностью молекул.

4. Заключение

В работе представлен молекулярно-статистический подход к анализу взаимосогласованных зависимостей $\bar{\gamma}(S)$, $\Delta\gamma(S)$ в нематической фазе с учетом симметрии этой фазы и электронной структуры молекул при наличии корреляции между ориентационной степенью свободы молекул относительно директора и конформационной степенью свободы внутреннего вращения молекулярных фрагментов. Показано, что в видимой области прозрачности ЖК зависимости $\bar{\gamma}(S)$, $\Delta\gamma(S)$ обусловлены возмущением сил осцилляторов длинноволновых электронных переходов молекулярного остова и межмолекулярных взаимодействий. Функции $\bar{\gamma}(S)$, $\Delta\gamma(S)$ имеют вид степенных рядов по *S*, которые начинаются со слагаемых $\propto S^2$. Коэффициенты Γ_0 функции (1) для $\bar{\gamma}$

и $\Delta \gamma$ отвечают значениям $\bar{\gamma}_i$ и $\Delta \gamma_i$ в изотропной фазе ЖК, что подтверждено сравнением величин $\Gamma_0(\bar{\gamma}, \lambda)$ и $\bar{\gamma}_i(\lambda)$ для МВВА. Выяснена связь коэффициентов степенных рядов $\bar{\gamma}(S)$, $\Delta \gamma(S)$ с изменением конформации молекул и межмолекулярными взаимодействиями.

Установленный явный вид дисперсионных зависимостей $\Gamma_2(\lambda)$ для $\bar{\gamma}$, $\Delta \gamma$ позволил развить метод разделения разных по природе вкладов в $\Gamma_2(\Delta \gamma) = \Gamma_2^{(1)} + \Gamma_2^{(2)}$. Как и коэффициент $\Gamma_2(\bar{\gamma})$, величина $\Gamma_2^{(1)}$ зависит от изменения сил осцилляторов длинноволновых электронных переходов за счет изменения конформации и электронного сопряжения фрагментов молекулярного остова, а значение $\Gamma_2^{(2)}$ обусловлено возмущением сил осцилляторов этих переходов межмолекулярными взаимодействиями. Применение этого метода к MBBA показало, что $\Gamma_2^{(1)} > 0$, $\Gamma_2^{(2)} < 0$ и слагаемые $\Gamma_2^{(1)} > |\Gamma_2^{(2)}|$ сравнимы по величине. Соотношение слагаемых $\Gamma_2^{(1)}$ и $\Gamma_2^{(2)}$, зависящее от химической и электронной структуры молекул, определяет величину и знак коэффициента $\Gamma_2(\Delta \gamma)$, а также отношения Γ_2/Γ_0 для $\Delta \gamma$, $\bar{\gamma}$ и $\Gamma_2(\Delta \gamma)/\Gamma_2(\bar{\gamma})$. С учетом химической структуры молекул для известных нематиков это позволило объяснить наблюдаемые для них зависимости величин $\bar{\gamma}$, $\gamma_{l,t}$, $\Delta \gamma$ от S, которым отвечают соотношения $\Gamma_2^{(1)} \gg |\Gamma_2^{(2)}|$ (*n*CB), $\Gamma_2^{(1)} > |\Gamma_2^{(2)}|$ (MBBA), $\Gamma_2^{(1)} \approx |\Gamma_2^{(2)}|$ (EEBM) и $\Gamma_2^{(1)} < |\Gamma_2^{(2)}|$ (NP8OB). Характер влияния межмолекулярных взаимодействий на параметры $\gamma_{l,t}$ и $\Delta \gamma$ для этих ЖК соответствует индукционному диполь-дипольному взаимодействию ориентационно-упорядоченных молекул.

Список литературы

- [1] Е.М. Аверьянов. Стерические эффекты заместителей и мезоморфизм. Изд-во СО РАН, Новосибирск (2004). 470 с.
- [2] Е.М. Аверьянов. ФТТ 55, 2020 (2013).
- [3] H. Suzuki. Electronic absorption spectra and geometry of organic molecules. Acad. Press, N.Y.–London (1967). 567 p.
- [4] Е.М. Аверьянов, В.М. Муратов, В.Г. Румянцев. ЖЭТФ 88, 810 (1985).
- [5] Е.М. Аверьянов. Опт. и спектр. 90, 55 (2001).
- [6] Е.М. Аверьянов. ФТТ 24, 2839 (1982).
- [7] Е.М. Аверьянов. ФТТ 55, 2271 (2013).
- [8] Е.М. Аверьянов. Эффекты локального поля в оптике жидких кристаллов. Наука, Новосибирск (1999). 552 с.
- [9] С. Чандрасекар. Жидкие кристаллы. Мир, М. (1980). 344 с.
- [10] U. Fabbri, C. Zannoni. Mol. Phys. 58, 763 (1986).
- [11] M. Brunet-Germain. Comp. Rend. Acad. Sci. B 271, 1075 (1970).
- [12] P.I. Rose. Mol. Cryst. Liq. Cryst. 26, 75 (1974).
- [13] M. Mizuno, T. Shinoda, H. Mada, S. Kobayashi. Mol. Cryst. Liq. Cryst. Lett. 41, 155 (1978).
- [14] В.Г. Румянцев, Л.М. Блинов. Опт. и спектр. 47, 324 (1979).
- [15] M. Mizuno, T. Shinoda. Mol. Cryst. Liq. Cryst. 69, 103 (1981).
- [16] Е.М. Аверьянов, В.А. Жуйков, В.Ф. Шабанов. Кристаллография 29, 542 (1984).
- [17] Е.М. Аверьянов, В.Ф. Шабанов. Кристаллография 22, 174 (1981).