03

Высокотемпературная теплоемкость TbFe₃(BO₃)₄

© Л.Т. Денисова¹, В.М. Денисов¹, И.А. Гудим², В.Л. Темеров², Н.В. Волков^{2,3}, Г.С. Патрин^{2,3}, Л.Г. Чумилина¹

¹ Институт цветных металлов и материаловедения Сибирского федерального университета,

Красноярск, Россия

² Институт физики им. Л.В. Киренского СО РАН,

Красноярск, Россия

³ Институт инженерной физики и радиоэлектроники Сибирского федерального университета,

Красноярск, Россия

E-mail: antluba@mail.ru

(Поступила в Редакцию 5 ноября 2013 г.)

Методом дифференциальной сканирующей калориметрии измерена молярная теплоемкость TbFe₃(BO₃)₄ в интервале температур 346–1041 К. Установлено, что на зависимости $C_p = f(T)$ нет экстремумов. По экспериментальным данным определены термодинамические свойства оксидного соединения.

1. Введение

В последнее время не ослабевает интерес к изучению редкоземельных ферроборатов с общей формулой $LnM_3(BO_3)_4$, в которых Ln — редкоземельный элемент, $M \equiv$ Fe, Cr, Al, Ga, Sc [1–5]. Эти соединения перспективны для лазерной техники и генерации второй оптической гармоники [6]. Кристаллы имеют структуру хантита и принадлежат к пространственной группе R32 [2]. К соединениям этого типа относится и TbFe₃(BO₃)₄, свойства которого исследованы недостаточно. Имеются данные по структуре [7], магнитным свойствам [2,7] и низкотемпературной теплоемкости [8]. Поэтому целью настоящей работы является изучение высокотемпературной (346–1041 K) теплоемкости TbFe₃(BO₃)₄.

2. Эксперимент

Монокристаллы TbFe₃(BO₃)₄ выращены из расплавов на основе Bi₂Mo₃O₁₂ подобно [9]. Для анализа выращенных кристаллов использовали рентгеновский дифрактометр X'Pert Pro фирмы Panalytical (Нидерланды) с полупроводниковым детектором и графитовым монохроматором (излучение CuK_{α}). Сравнение полученных нами параметров кристаллической решетки TbFe₃(BO₃)₄ с результатами других авторов показано в табл. 1. Можно заключить, что имеется хорошее согласие с другими данными.

Таблица 1. Параметры кристаллической решетки TbFe₃(BO₃)₄

a, Å	<i>c</i> ,Å	Лит. ссылка
9.55236(7)	7.57370(8)	[2]
9.5466(2)	7.5704(1)	[7]
9.5511(4)	7.5699(3)	Наши данные

Измерение молярной теплоемкости проводилось в платиновых тиглях на приборе STA 449 C Jupiter (NETZSCH). Методика экспериментов описана ранее [10].

3. Результаты и их обсуждение

На рис. 1 показано влияние температуры на молярную теплоемкость TbFe₃(BO₃)₄. Видно, что значения C_p закономерно увеличиваются с ростом температуры, а на кривой $C_p = f(T)$ в исследованном интервале температур нет экстремумов. Полученные данные могут быть описаны уравнением (в единицах J/(mol·K))

$$C_p = 377.18 + 13.90 \cdot 10^{-2}T - 78.51 \cdot 10^5 T^{-2}.$$
 (1)

Уравнение (1) получено обработкой экспериментальных данных с помощью лицензионного программного инструмента Systat Sigma Plot 12. Максимальное отклонение экспериментальных точек относительно аппроксимирующей кривой до T = 900 К не превышало 0.3%, а при T > 900 К — 0.7%.

На рис. 1 приведены также результаты для C_p авторов работы [8]. Видно, что эти данные хорошо согласуются с полученными нами значениями теплоемкости TbFe₃(BO₃)₄. Можно отметить, что сведения этих же авторов [11] о C_p YFe₃(BO₃)₄ и полученные нами данные [12] также хорошо согласуются между собой.

Наличие температурной зависимости C_p позволяет по известным термодинамическим уравнениям определить изменение энтальпии $H_T^0 - H_{346}^0$ и энтропии $S_T^0 - S_{346}^0$. Эти данные приведены в табл. 2.

Из табл. 2 следует, что при температурах выше 900 К значение теплоемкости C_p превышает классический предел Дюлонга–Пти 3*Rs*, где *R* — универсальная газовая

постоянная, s — число атомов в формульной единице TbFe₃(BO₃)₄ (s = 20).

При допущении, что значения C_p и C_V для TbFe₃(BO₃)₄ близки между собой, было рассчитано значение характеристической температуры Дебая $\Theta_D = 948$ К. Используя найденное значение Θ_D и воспользовавшись таблицами функций Дебая (Θ_D/T) [13], мы рассчитали C_p . Эти данные приведены на рис. 2. Видно, что имеется некоторая разница между экспериментальными и рассчитанными значениями C_p при T > 650 К, причем с ростом температуры она увеличивается. Такое различие можно связать с тем, что теория Дебая плохо применима для многоатомных соединений [13], а также с изменением Θ_D с ростом температуры [14].

Рис. 1. Температурная зависимость теплоемкости TbFe₃(BO₃)₄: *I* — наши данные, *2* — [8].

Рис. 2. Зависимость теплоемкости TbFe₃(BO₃)₄ от температуры: *1* — расчет по уравнению (1), *2* — расчет по модели Дебая.

Таблица 2. Сглаженные значения молярной теплоемкости и рассчитанные по ним термодинамические функции TbFe₃(BO₃)₄

<i>T</i> ,K	$C_p, \mathbf{J} \cdot \mathrm{mol}^{-1} \cdot \mathbf{K}^{-1}$	$H_T^0 - H_{346}^0,$ kJ · mol ⁻¹	$S_T^0 - S_{346}^0, \ \mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$
346	359.7	_	_
350	361.7	1.44	4.15
400	383.7	20.10	53.95
450	401.0	39.74	100.2
500	415.3	60.15	143.2
550	427.7	81.23	183.4
600	438.8	102.9	221.1
650	448.9	125.1	256.6
700	458.5	147.8	290.2
750	467.5	170.9	322.1
800	476.1	194.5	352.6
850	484.4	218.5	381.7
900	492.6	243.0	409.6
950	500.5	267.8	436.5
1000	508.3	293.0	462.3

Проведем сравнение теплоемкости для TbFe₃(BO₃)₄ с данными для соединения YFe₃(BO₃)₄, полученными нами [12]. Обратим внимание на то, что последнее соединение имеет ту же структуру, что и TbFe₃(BO₃)₄. Установлено, что при 298 К значения молярной теплоемкости TbFe₃(BO₃)₄ и YFe₃(BO₃)₄ равны 330 и 313 J/(mol · K) соответственно. Учитывая различие молекулярных масс этих соединений, можно заключить, что значения C_p имеют достаточно близкие величины.

4. Заключение

Исследована температурная зависимость молярной теплоемкости TbFe₃(BO₃)₄. Установлено, что модель Дебая не описывает температурную зависимость тепло-емкости в области 346–1041 К.

Список литературы

- А.К. Звездин, А.М. Кадомцева, Ю.Ф. Попов, Г.П. Воробьев, А.П. Пятаков, В.Ю. Иванов, А.М. Кузьменко, А.А. Мухин, Л.Н. Безматерных, И.А. Гудим. ЖЭТФ 136, 1, 80 (2009).
- [2] C. Ritter, A. Balaev, A. Vorotynov, G. Petrakovskiĭ, D. Velikanov, V. Temerov, I. Gudim. J. Phys.: Condens. Matter 19, 196 227 (2007).
- [3] P. Dekker, J.M. Dawes, J.A. Piper, Y. Liu, J. Wang. Opt. Commun. 195, 431 (2001).
- [4] M.H. Bartl, K. Gatterer, E. Cavalli, A. Speghini, M. Bettinelli. Spectrochim. Acta A 57, 1981 (2001).
- [5] А.И. Панкрац, Г.А. Петраковский, Л.Н. Безматерных, В.Л. Темеров. ФТТ **50**, *1*, 77 (2008).
- [6] А.И. Панкрац, Г.А. Петраковский, Л.Н. Безматерных, О.А. Баюков. ЖЭТФ 126, 4, 887 (2004).

- [7] Y. Hinatsu, Y. Doi, K. Ito, M. Wakeshima, A. Alemi. J. Solid State Chem. **172**, 438 (2003).
- [8] A.N. Vasiliev, E.A. Popova, I.A. Gudim, L.N. Bezmaternykh, Z. Hiroi. J. Magn. Magn. Mater. 300, e382 (2006).
- [9] L.N. Bezmaternykh, V.L. Temerov, I.A. Gudim, N.A. Stolbovaya. Cryst. Rep. 50, Suppl. 1, 597 (2005).
- [10] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ **52**, 7, 1274 (2010).
- [11] A.N. Vasiliev, E.A. Popova, L.N. Bezmaternykh, V.L. Temerov, Z. Hiroi. ЖЭТФ 129, 2, 299 (2006).
- [12] В.М. Денисов, Л.Т. Денисова, В.Л. Темеров, Н.В. Волков, Г.С. Патрин, Л.Г. Чумилина. ФТТ 56, 2, 276 (2014).
- [13] С.М. Скуратов, В.П. Колесов, А.Ф. Воробьев. Термохимия.
 Ч. II. Изд-во МГУ, М. (1966). 434 с.
- [14] П.А. Попов, Н.В. Моисеев, Ф.У. Кох, К.А. Кох. Неорган. материалы 47, 2, 205 (2011).