03

Высокотемпературная теплоемкость Y₂Cu₂O₅

© Л.Т. Денисова¹, Л.Г. Чумилина¹, В.М. Денисов¹, С.Д. Кирик¹, С.А. Истомин²

¹ Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск, Россия ² Институт металлургии УрО РАН, Екатеринбург, Россия E-mail: antluba@mail.ru (Поступила в Редакцию 29 октрября 2013 г.)

Получены данные по молярной теплоемкости Y₂Cu₂O₅ в зависимости от температуры (328–953 K). По экспериментальным данным рассчитаны термодинамические функции оксидного соединения.

1. Введение

В течение длительного времени не ослабевает интерес исследователей к соединению Y2Cu2O5, которое рассматривается как исходное при синтезе высокотемпературных сверхпроводников типа YBa₂Cu₃O_{7-x} [1-6]. По данным [7], несмотря на длительное исследование сверхпроводящих купратов, многие их свойства еще недостаточно изучены. Так, например, для Y2Cu2O5 имеются данные по магнитным свойствам [8-10], структуре [2,11-15], спектрам люминесценции [4], низкотемпературной теплоемкости [5,16–19]. Тем не менее сведений о высокотемпературной теплоемкости Y₂Cu₂O₅, полученных экспериментально, в литературе нами не найдено (имеются лишь данные расчетов, полученные на основе экспериментов при низких температурах [5]). Известно, что сведения о теплоемкости и других термодинамических свойствах подобных фаз позволяют проводить термодинамические расчеты для оптимизации процесса их синтеза. В работе [6] отмечено, что для сложных купратных систем достаточно остро ощущается недостаток экспериментальных данных, которые позволили бы рассчитать фазовые диаграммы. При этом нужно принимать во внимание как характер плавления подобных соединений, так и сложность получения монокристаллов.

Цель настоящей работы — измерение высокотемпературной теплоемкости и определение по этим данным термодинамических свойств Y₂Cu₂O₅.

2. Эксперимент

Для измерения молярной теплоемкости использовались керамические образцы $Y_2Cu_2O_5$, которые получались твердофазным синтезом. После предварительного прокаливания исходных оксидов Y_2O_3 и CuO на воздухе при температуре 1173 К готовилась стехиометрическая смесь. После ее перемешивания в агатовой ступке и последующего прессования таблетки отжигались на воздухе при 1273 К в течение 25 h с пятью промежуточными перемолами и прессованиями. Контроль полученных образцов проводился с использованием рентгенофазового анализа на приборе X'Pert Pro фирмы "Panalytical" (Нидерланды) с использованием излучения CuK_{α} . Регистрация выполнялась высокоскоростным детектором PIXcel с графитовым монохроматором. Параметры решетки уточнены методом подгонки профиля без ссылки на структуру (метод Ле Бейла). Полученные результаты показаны на рис. 1. Сравнение полученных нами параметров кристаллической решетки $Y_2Cu_2O_5$ с данными других авторов приведено в табл. 1. Можно заключить, что в целом данные согласуются между собой.

Молярная теплоемкость C_p измерялась в платиновых тиглях методом дифференциальной сканирующей калориметрии на приборе STA 449 C Jupiter (NETZSCH). Методика измерений подобна описанной нами ранее [20].

3. Результаты и их обсуждение

Влияние температуры на теплоемкость $Y_2Cu_2O_5$ показано на рис. 2. Можно отметить, что зависимость $C_p = f(T)$, как и для ряда других купратов $Dy_2Cu_2O_5$ [21], $Ho_2Cu_2O_5$ [22], не имеет экстрему-

Рис. 1. Дифрактограмма Y₂Cu₂O₅ при комнатной температуре.

Таблица 1. Параметры элементарной ячейки Y₂Cu₂O₅

a, Å	$b, \mathrm{\AA}$	$c, \mathrm{\AA}$	Лит. ссылка
10.796(2)	3.494(1)	12.4546(2)	[12]
10.796	3.494	12.455	[13]
10.832(5)	3.495(2)	12.491(5)	[2]
10.80	3.50	12.45	[11]*
10.799(2)	3.4990(5)	12.459	[14]
10.793	3.493	12.450	[15]
10.8158(40)	3.4982(12)	12.4814(43)	[17]
10.7979(2)	3.49517(6)	12.4529(2)	Наши данные

* Данные получены на основе графика.

Таблица 2. Термодинамические свойства Y₂Cu₂O₅

<i>Т</i> , К	$C_p, $ J/(mol · K)	$H_T^0 - H_{328}^0, \ { m kJ/mol}$	$S_T^0 - S_{328}^0$, J/(mol · K)
328	191.2	_	_
350	195.9	4.260	12.57
400	203.3	14.25	39.25
450	207.9	24.54	63.48
500	211.2	35.02	85.56
550	213.6	45.65	105.8
600	215.7	56.38	124.5
650	217.5	67.21	141.8
700	219.3	78.13	158.0
750	221.0	89.14	173.2
800	222.8	100.2	187.5
850	224.7	111.4	201.1
900	226.6	122.7	214.0
950	228.6	134.1	226.3

мов. Полученные данные могут быть описаны уравнением [23]

$$C_p = a + bT + cT^{-2} + gT^{-0.5}, (1)$$

которое лучше, чем классическое уравнение Майера– Келли $C_p = a + bT + cT^{-2}$, описывает температурную зависимость теплоемкости Y₂Cu₂O₅, особенно в области низких температур. Обращает на себя внимание то, что и для Dy₂Cu₂O₅ уравнение (1) лучше передает зависимость $C_p = f(T)$, чем уравнение Майера–Келли [21].

Для $Y_2Cu_2O_5$ уравнение (1) в области исследованных температур 328–953 К имеет следующий вид (в единицах J/(mol \cdot K)):

$$C_p = 54.81 + 79.10 \cdot 10^{-3}T - 77.48 \cdot 10^5 T^{-2} + 3.30 \cdot 10^3 T^{-0.5}.$$
 (2)

Обработка экспериментальных данных проводилась с использованием лицензионной программы Sigma Plot 12. Установлено, что значение коэффициента корреляции равно 0.999, а максимальное отклонение экспериментальных результатов от аппроксимирующей кривой, описываемой уравнением (2), не превышает 0.4%. По экспериментальным значениям C_p для $Y_2Cu_2O_5$ нами определена температура Дебая. Она оказалась равной 595 К, что несколько выше значения $\Theta_D = 379$ К, приведенного в работе [17]. Расчет значений C_p по модели Дебая [24] показал, что наблюдается небольшое различие рассчитанных и экспериментальных значений C_p , причем с ростом температуры это различие увеличивается (рис. 2). Здесь нужно учитывать то, что при температуре 840 К значения C_p превышают предел Дюлонга–Пти 3Rs, где R — универсальная газовая постоянная, s — число атомов в формульной единице $Y_2Cu_2O_5$ (s = 9). В подобных случаях опытные данные представляют в виде комбинаций функций Дебая и Эйнштейна [24]

$$C_p = D\left(\frac{\Theta_{\rm D}}{T}\right) + mE\left(\frac{\Theta_{\rm E}}{T}\right),\tag{3}$$

где $D\left(\frac{\Theta_{\rm D}}{T}\right)$ и $E\left(\frac{\Theta_{\rm E}}{T}\right)$ — теплоемкости, вычисляемые по функциям Дебая и Эйнштейна. Для Y₂Cu₂O₅ уравнение (3) имеет следующий вид:

$$C_p = D\left(\frac{595}{T}\right) + 0.14E\left(\frac{4050}{T}\right).$$
 (4)

С использованием уравнения (2) рассчитаны изменения энтальпии $H_T^0 - H_{328}^0$ и энтропии $S_T^0 - S_{328}^0$. Результаты расчета приведены в табл. 2.

Расчет $C_p(298)$ по уравнению (2) для Y₂Cu₂O₅ дает значение 182.6 J/(mol·K), что достаточно близко к величине 186.6 ± 0.4 J/(mol·K), приведенной в работе [19]. В то же время расчет на основе данных экспериментов при низких температурах показывает, что $C_p(298) = 195.78 \text{ J/(mol·K)}$ [18], а в случае расчета с использованием эмпирических зависимостей $C_p(298) = 198.67 \text{ J/(mol·K)}$ [5].

Сравнение данных по влиянию температуры на теплоемкость $Y_2Cu_2O_5$, полученных нами (328–953 K) и

Рис. 2. Температурная зависимость теплоемкости Y₂Cu₂O₅. *I* — экспериментальные данные, *2* — расчет по модели Дебая.

Рис. 3. Влияние температуры на теплоемкость $Y_2Cu_2O_5$. *1* — расчет по уравнению (2), *2* — данные работы [19], *3* — расчет по уравнению (5).

Рис. 4. Связь состава и удельных значений теплоемкости системы Y₂O₃-CuO: *1* — [28], *2* — наши данные, *3* — расчет по уравнению (6).

авторами работы [19] (5–335 K), показано на рис. 3. Видно, что имеется неплохое совпадение хода зависимостей $C_p = f(T)$.

В работе [5] приведено расчетное уравнение, описывающее влияние температуры на теплоемкость $Y_2Cu_2O_5$, в виде соотношения Майера-Келли

$$C_p = 201.7 + 41.85 \cdot 10^{-3}T - 18.16 \cdot 10^5 T^{-2}.$$
 (5)

Сравнение рассчитанных по уравнению (5) значений $C_p = f(T)$ с нашими данными и данными авторов [19] приведено на рис. 3. Можно видеть, что уравнение (5) дает самые высокие значения C_p для Y₂Cu₂O₅. Это может быть связано со следующим обстоятельством. При расчете по уравнению (5) ряд данных получен

в предположении аддитивного вклада (приближение Неймана-Коппа) составляющих соединения. Ранее было показано, что в этом случае могут быть получены завышенные значения теплоемкостей сложных оксидных соединений [25–27]. Действительно, расчет удельной теплоемкости C_p^0 аддитивным методом Неймана-Коппа [5]

$$C_{p}^{0}(Y_{2}Cu_{2}O_{5}) = \frac{1}{3}C_{p}^{0}(Y_{2}O_{3}) + \frac{2}{3}(CuO)$$
(6)

дает для Y₂Cu₂O₅ при 298 К $C_p^0 = 0.51 \text{ J/(g} \cdot \text{K})$, что несколько выше полученного на основании уравнения (2) значения, равного 0.47 J/(g · K). Необходимые для расчета по уравнению (6) значения $C_p^0(\text{Y}_2\text{O}_3)$ и $C_p^0(\text{CuO})$ взяты из работы [28].

Полученные результаты показывают, что в анализируемой системе наблюдается отрицательное отклонение от аддитивности (рис. 4). Можно заметить, что на рис. 4 приведено малое количество экспериментальных точек, но нужно принять во внимание следующее. Во-первых, подобные зависимости C_p^0 от состава получены и для других купратов [25–27]. Во-вторых, на возможность как положительного, так и отрицательного отклонения от аддитивного правила Неймана-Коппа указывалось и ранее [29]. Поэтому предположим, что и для системы Y2O3-CuO имеется подобная связь между составом оксидных соединений и их удельной теплоемкостью. Согласно [29], эти отклонения от аддитивности отражают изменения в частотах колебаний атомов в сложном оксидном соединении по сравнению с простыми оксидами. По мнению [13], уменьшение частоты колебаний в сложном оксиде по сравнению с исходными оксидами, ответственно за положительное значение энтропии образования У2Си2О5.

4. Заключение

Исследована высокотемпературная теплоемкость Y₂Cu₂O₅. Установлено, что в исследованном интервале температур (328–953 K) экспериментальные значения теплоемкости могут быть описаны комбинацией функций Дебая и Эйнштейна.

Список литературы

- L.Y. Jang, F. Xu, Y.D. Yao, A. Krol, S.C. Woronick, Y.H. Kao. Physica B 158, 1-3, 467 (1989).
- [2] R. Famery, F. Queyroux. Mater. Res. Bull. 24, 275 (1989).
- [3] W. Wong-Ng, Z. Yang, L.P. Cook, J. Frank, M. Loung, Q. Huang, J. Electron. Mater. 36, 10, 1279 (2007).
- [4] Т.В. Сухарева, В.В. Еременко. ФТТ 39, 10, 1739 (1997).
- [5] Г.К. Моисеев, Н.А. Ватолин, Л.А. Маршук, Н.И. Ильиных. Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ. УрО РАН, Екатеринбург (1997). 230 с.
- [6] Ю.Д. Третьяков, Е.А. Гудилин. Успехи химии **69**, *1*, 3 (2000).

- [7] Е.И. Шнейдер, С.Г. Овчинников, М.М. Коршунов, С.В. Николаев. Письма в ЖЭТФ 96, 5, 381 (2012).
- [8] Я. Зоубкова, З.А. Казей, Р.З. Левитин, Б.В. Милль, В.В. Мощалков, В.В. Снегирев. Письма в ЖЭТФ 49, 9, 524 (1989).
- [9] Z.A. Kazei, N.P. Kolmakova, R.Z. Levitin, B.V. Mill, V.V. Moshchalkov, V.N. Orlov, V.V. Snegirev, Ja. Zoubkova. J. Magn. Magn. Mater. 86, 124 (1990).
- [10] М. Баран, Р.З. Левитин, Б.В. Милль, Р. Шимчак. ЖЭТФ 109, 3, 961 (1996).
- [11] J. Typek, J. Kostrzewa, N. Guskos. Mater. Sci. Poland 23, 4, 929 (2005).
- [12] J.L. Garcia-Munoz, J. Rodriguez-Carvajal. J. Solid State Chem. 115, 324 (1995).
- [13] K.P. Jayadevan, K.T. Jacob. High Temp. Mater. Processes. 19, 6, 389 (2000).
- [14] R.D. Adams, J.A. Estrada, T. Datta. J. Superconductivity 5, 1, 33 (1992).
- [15] R. Troc, J. Klamut, Z. Bukowski, R. Horyn, J. Stepien-Damm. Physica B 154, 189 (1989).
- [16] V.V. Moshchalkov, N.A. Samarin, Y. Zoubkova, B.V. Mill. Physica B 163, 1-3, 237 (1990).
- [17] V.V. Moshchalkov, N.A. Samarin, I.O. Grishchenko, B.V. Mill, Y. Zoubkova. J. Magn. Magn. Mater. 90-91, 533 (1990).
- [18] Д.П. Мелихов. ЖФХ 66, 6, 1677 (1992).
- [19] К.С. Гавричев, В.Е. Горбунов, Л.Н. Голушкина, В.Б. Лазарев, Г.Е. Никифорова, Н.Ф. Ведерников, Г.А. Тотрова, И.С. Шаплыгин. ЖНХ 37, 7, 1583 (1992).
- [20] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ 52, 7, 1274 (2010).
- [21] В.М. Денисов, Л.Т. Денисова. Л.Г. Чумилина, С.Д. Кирик, Н.В. Белоусова. ФТТ 55, 9, 1714 (2013).
- [22] В.М. Денисов, Л.Т. Денисова, Л.Г. Чумилина, С.Д. Кирик. ФТТ 55, 10, 1908 (2013).
- [23] К.В. Чудненко. Термодинамическое моделирование в геохимии: теория, алгоритмы, программное обеспечение, приложения. Гео, Новосибирск (2010). 287 с.
- [24] С.М. Скуратов, В.П. Колесов, А.Ф. Воробьев. Термохимия.
 Ч. II. Изд-во МГУ, М. (1966). 434 с.
- [25] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, Н.В. Волков, Г.С. Патрин, Л.Г. Чумилина. ФТТ 54, 10, 2012 (2012).
- [26] В.М. Денисов, Л.Т. Денисова, Л.Г. Чумилина, С.Д. Кирик. ФТТ 55, 6, 1244 (2013).
- [27] В.М. Денисов, Л.Т. Денисова, Л.Г. Чумилина, С.Д. Кирик. ФТТ 55, 7, 1285 (2013).
- [28] J. Leitner, D. Sedmidubsky, P. Chuchvalec. Ceramics–Silikaty 46, 1, 29 (2002).
- [29] Л.А. Резницкий. Калориметрия твердого тела. Изд-во МГУ, М. (1981). 184 с.