07

Зарождение прямоугольных призматических дислокационных петель в оболочках и ядрах композитных наночастиц

© М.Ю. Гуткин¹⁻³, А.М. Смирнов²

 ¹ Институт проблем машиноведения РАН, Санкт-Петербург, Россия
² Санкт-Петербургский государственный политехнический университет, Санкт-Петербург, Россия
³ Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, Санкт-Петербург, Россия
E-mail: m.y.gutkin@gmail.com, smirnov.mech@gmail.com

(Поступила в Редакцию 16 октября 2013 г.)

Предложена теоретическая модель, описывающая релаксацию напряжений несоответствия в сферически симметричной композитной наночастице типа "ядро-оболочка" путем зарождения и расширения прямоугольных призматических дислокационных петель у внутренней и внешней границ раздела. Для наночастиц, состоящих из относительно массивного ядра и тонкой оболочки, рассчитаны критические условия образования этих петель. Показано, что зарождение петель возможно, если несоответствие параметров решетки ядра и оболочки превышает некоторое критическое значение, которое зависит от радиуса наночастицы, толщины оболочки, места образования и формы петель. Для петель в оболочке это условие выполнимо, если толщина оболочки либо лежит в определенном интервале малых значений, либо (при большем несоответствии) меньше некоторой критической. Для зарождения петель в ядре толщина оболочки должна превысить некоторую критическую величину. Легче других формируются петли, вытянутые вдоль границы ядра и оболочки. По мере утолщения оболочки при заданном радиусе наночастицы сначала наиболее выгодно зарождение петли со свободной поверхности в объем оболочки, затем — от границы раздела в оболочку, и наконец — от границы раздела в ядро наночастицы.

1. Введение

Производство и применение наночастиц является на сегодня одним из самых перспективных направлений развития нанотехнологий. Электронные, магнитные и оптические свойства наночастиц сильно зависят от их размера, формы, химического состава и типа кристаллической решетки, а также от присутствия в них различных дефектов. Значительную долю производимых и исследуемых наночастиц составляют композитные наночастицы, которые состоят из разных материалов и находят широкое применение в современных оптоэлектронике, фотонике, спинтронике, солнечных батареях, сенсорных устройствах, устройствах накопления и передачи информации, катализе, медицине и т.д. [1-11]. В процессе выращивания в таких наночастицах из-за различий в решетках и свойствах составляющих их компонентов возникают напряжения несоответствия, приводящие к существенному изменению их свойств. При некоторых условиях эти напряжения могут релаксировать путем развития различных дефектных структур [11-14] или даже путем разрушения композитных наночастиц [11,15].

Теоретические исследования возможных механизмов релаксации напряжений несоответствия в композитных наночастицах были начаты более 20 лет назад. По-видимому, первой работой такого плана стали модели остаточного напряженного состояния в сферически симметричных композитных наночастицах типа "ядрооболочка" и обсуждение способов его релаксации [16]. Недавно список таких способов был несколько расширен, а некоторые из них получили приближенное количественное описание [11,17,18], из которого следует, что формирование круговых петель дислокаций несоответствия на границе ядра и оболочки энергетически намного предпочтительнее образования трещин в ядре и оболочке или же их отслоения друг от друга. Решение граничной задачи теории упругости о круговой призматической дислокационной петле в упругом шаре [19] позволило провести точный расчет критических условий образования круговых петель дислокаций несоответствия в упруго-однородной наночастице типа "ядрооболочка" [20]. В частности, было показано, что энергетически самым выгодным местом залегания этих петель является экваториальная плоскость наночастицы. Наглядным подтверждением этого вывода могут служить электронно-микроскопические изображения дислокаций несоответствия в наночастицах с ядром Аи и оболочкой FePt [13]. На возможность появления таких петель указывалось также в работе [21], авторы которой объясняли этим деградацию оптических свойств наночастиц, состоящих из ядра CdSe и оболочки CdS.

Другим дислокационным механизмом релаксации напряжений несоответствия в наночастицах типа "ядро-оболочка" может служить образование в оболочке скользящих [11,12–14,16–18] и призматических [11,16–18] дислокационных петель и полупетель, зарождающихся на свободной поверхности оболочки [11,12–14,16–18] или на границе раздела между ядром и оболочкой [11,16-18]. Естественно также предположить возможность зарождения призматических дислокационных петель (ПДП) в ядре наночастицы. Генерация призматических петель в ядре и в оболочке и полупетель в оболочке может приводить в конечном итоге к формированию вокруг ядра петель дислокаций несоответствия по схеме, предложенной для композитных нанопроволок типа "ядро-оболочка" [22].

До сих пор возможность зарождения дислокационных петель в оболочках композитных наночастиц анализировалась лишь на качественном уровне, исходя из распределения напряжений несоответствия в ядре и оболочке [11,16,17]. Цель настоящей работы — сделать количественные оценки изменений энергии наночастицы типа "ядро-оболочка", сопровождающих зарождение в ней ПДП, и на этой основе решить, в каких местах наночастицы следует ожидать преимущественного зарождения таких петель и какой должна быть их оптимальная форма.

2. Модель

Рассмотрим модель сферически симметричной композитной наночастицы типа "ядро-оболочка" с внешним радиусом R и толщиной оболочки h, на внутренней или внешней границе которой образуется ПДП, прорастающая либо в ядро, либо в оболочку (рис. 1, a). Формирование такой ПДП энергетически выгодно, если соответствующее изменение полной энергии системы ΔW будет отрицательным. Величину ΔW можно представить в виде

$$\Delta W = W_{el} + W_c + W_{\text{int}},\tag{1}$$

где W_{el} — упругая энергия ПДП, W_c — энергия ее ядра, Wint — энергия взаимодействия ПДП с упругим полем несоответствия.

Рис. 1. Схема зарождения прямоугольных призматических дислокационных петель на внутренней и внешней границах раздела в композитной наночастице радиуса R, состоящей из ядра 1 и оболочки 2 толщиной h: a — общий вид наночастицы с тремя петлями, зарождающимися на границах раздела; b переход к плоской модельной структуре для расчета упругой энергии дислокационной петли в случае $h \ll R$.

Для расчета первого и третьего слагаемых в выражении (1) воспользуемся приближением классической линейной теории упругости. При этом положим, что ядро и оболочка упруго изотропны и обладают одинаковыми упругими модулями, причем толщина оболочки намного меньше внешнего радиуса наночастицы: $h \ll R$. Последнее допущение означает, что при расчете первого слагаемого в (1) можно перейти от сферической геометрии задачи к плоской и рассматривать прямоугольную ПДП с размерами $2a \times 2c$ (рис. 1, *b*). В этом случае можно воспользоваться готовым решением для упругой энергии прямоугольной ПДП, залегающей в плоскости, перпендикулярной плоской свободной поверхности упругого полупространства [23]

$$W_{el} = \frac{Db^2 L}{2},\tag{2}$$

где $D = G/[2\pi(1-\nu)], G$ — модуль сдвига, ν — коэффициент Пуассона, *b* — модуль вектора Бюргерса ПДП, L — эффективная длина периметра ПДП, определяемая выражениями

4 (2

0 0 0 0 0 0

$$\begin{split} L &= S_1 + 2S_2 + S_3 + [3 - 4\nu(3 - 2\nu)]S_4 \\ &+ 2 \frac{1 - 2\nu(6 - 11\nu + 8\nu^3)}{(1 - 2\nu)^2}S_5 \\ &- \frac{129 - 2\nu\{234 - \nu[245 - 4\nu(5 + 16\nu)]\}}{3(1 - 2\nu)^2}S_6, \\ S_1 &= c \left(2\ln\frac{K_3 + c}{K_3 - c} - \ln\frac{\sqrt{c^2 + (d - a + r_0/2)^2} + c}{\sqrt{c^2 + (d - a + r_0/2)^2} - c} \right), \\ S_2 &= 2c\ln\frac{4c}{r_0} + 2a\ln\frac{4a}{r_0} - c\ln\frac{K_4 + c}{K_4 - c} \\ &- a\ln\frac{K_4 + a}{K_4 - a} - 4(c + a - K_4), \\ S_3 &= \frac{8(1 - \nu)(1 - 2\nu)a^2d}{c^2} + \frac{3a^2}{d} - \frac{2a^2(c^2 + d^2)K_3}{c^2d^2}, \\ S_4 &= \frac{2d^2K_3 - (d - a)^2K_1 - (d + a)^2K_2}{3c^2}, \\ S_5 &= 2d\ln\frac{d + K_3}{d} - (d - a)\ln\frac{d - a + K_1}{d - a} \\ &- (d + a)\ln\frac{d + a + K_2}{d + a}, \\ S_6 &= 2K_3 - K_1 - K_2, \\ K_{1,2}^2 &= c^2 + (d \mp a)^2, \quad K_3^2 &= c^2 + d^2, \quad K_4^2 &= c^2 + a^2 \end{split}$$

Здесь r₀ — радиус дислокационного ядра ПДП, а параметр *d* принимает различные значения в зависимости от положения ПДП в системе: $d = d_1 = h - a$ для ПДП, зародившейся на границе раздела и растущей в оболочку

705

(петля типа 1); $d = d_2 = a$ для ПДП, зародившейся на свободной поверхности оболочки (петля типа 2); $d = d_3 = h + a$ для ПДП, зародившейся на границе раздела и растущей в ядро (петля типа 3).

Энергии ядер этих петель, соответственно W_{c1} , W_{c2} и W_{c3} , аппроксимируются обычными выражениями [24]

$$W_{c1} = W_{c3} \approx 4(a+c) \frac{Db^2}{2},$$
 (3)

$$W_{c2} \approx 4\left(a + \frac{c}{2}\right)\frac{Db^2}{2}.$$
 (4)

Энергии взаимодействия указанных петель с упругим полем несоответствия в сферически симметричной наночастице типа "ядро-оболочка" [11,17,25], соответственно W_{int1} , W_{int2} и W_{int3} , найдем как работу по зарождению ПДП в поле напряжения σ_{xx} (рис. 1, *b*):

$$W_{\rm int1} = -b \int_{R-h}^{R-h+2a} dz \int_{-c}^{c} \sigma_{xx}^{(2)} dy, \qquad (5)$$

$$W_{\text{int2}} = -b \int_{R-2a}^{R} dz \int_{-c}^{c} \sigma_{xx}^{(2)} dy, \qquad (6)$$

$$W_{\text{int3}} = -b \int_{R-h-2a}^{R-h} dz \int_{-c}^{c} \sigma_{xx}^{(1)} dy, \qquad (7)$$

где $\sigma_{xx}^{(1)}$ — напряжение в ядре, $\sigma_{xx}^{(2)}$ — в оболочке. Переходя в известном решении для напряжений несоответствия [11,17,25] от сферической системы координат к декартовой (рис. 1, *b*), имеем

$$\sigma_{xx}^{(1)} = \frac{4G(1+\nu)f}{3(1-\nu)} \left(\frac{(R-h)^3}{R^3} - 1\right),\tag{8}$$

$$\sigma_{xx}^{(2)} = \frac{2G(1+\nu)f(R-h)^3}{3(1-\nu)R^3} \left(\frac{R^3}{(z^2+y^2)^{3/2}} + 2\right), \quad (9)$$

где $f = 2(a_1 - a_2)/(a_1 + a_2)$ — параметр несоответствия постоянных решетки ядра (a_1) и оболочки (a_2) . Примем для определенности, что $a_1 > a_2$, так что f > 0. Подставив компоненты (8) и (9) в выражения (5)–(7) и взяв интегралы, находим энергии взаимодействия

$$\begin{split} W_{\text{int1}} &= -\frac{4G(1+\nu)f(R-h)^{3}b}{3(1-\nu)} \\ &\times \left(\frac{4ac}{R^{3}} - \frac{\sqrt{c^{2} + (R-h+2a)^{2}}}{c(R-h+2a)} + \frac{\sqrt{c^{2} + (R-h)^{2}}}{c(R-h)}\right), \end{split}$$
(10)
$$W_{\text{int2}} &= -\frac{4G(1+\nu)f(R-h)^{3}b}{3(1-\nu)} \\ &\times \left(\frac{4ac}{R^{3}} - \frac{\sqrt{c^{2} + R^{2}}}{cR} + \frac{\sqrt{c^{2} + (R-2a)^{2}}}{c(R-2a)}\right), \end{aligned}$$
(11)

$$W_{\text{int3}} = -\frac{16G(1+\nu)fcab}{3(1-\nu)} \left(1 - \frac{(R-h)^3}{R^3}\right).$$
 (12)

Таким образом, все слагаемые изменения полной энергии (1) найдены, что позволяет исследовать условия зарождения ПДП всех трех типов.

3. Результаты

В качестве примера рассмотрим наночастицы Si/Ge (f = 0.042) и InAs/ZnS (f = 0.107) с внешним радиусом R = 100 nm и толщиной оболочки h = 5 nm. Карты изменения энергии ΔW при образовании ПДП в этих частицах приведены на рис. 2. Значения ΔW даны в единицах Gb^3 .

Из рис. 2, *а* видно, что зарождение ПДП типа 1 на границе раздела между ядром Si и оболочкой Ge и ее последующий рост в оболочку при таком относительно малом значении несоответствия f энергетически не выгодны, поскольку сопровождаются положительным приростом энергии системы. Напротив, зарождение такой же ПДП в оболочке ZnS на ядре InAs при относительно большом значении несоответствия f энергетически выгодно уже при самых малых размерах петли (рис. 2, *b*).

Зарождение ПДП типа 2 на свободной поверхности оболочки Ge на ядре Si также не выгодно (рис. 2, c), а в оболочке ZnS на ядре InAs выгодно только для петель, вытянутых вдоль свободной поверхности (при 2c > 6b, рис. 2, d).

Из рис. 2, е, f видно, что зарождение ПДП типа 3 на границе раздела с последующим ростом в ядро Si наночастицы Si/Ge или в ядро InAs наночастицы InAs/ZnS не выгодно. Это объясняется тем, что при $h \ll R$ ядро деформировано очень слабо, напряжение в нем малó, и величина W_{int3} практически не дает вклада в общую энергию. Расчеты показывают, что образование ПДП этого типа становится энергетически выгодным при относительно высоких значениях f и толщине оболочки h, примерно вдвое большей, чем радиус ядра наночастицы.

Из карт энергий на рис. 2 можно сделать вывод, что ПДП всех трех типов могут зарождаться в тех случаях, когда несоответствие f превышает некоторую критическую величину f_c , которая зависит как от размеров ядра и оболочки, так и от типа, размера и формы ПДП. Критическое несоответствие f_c можно найти из равенства $\Delta W = 0$, которое сразу дает

$$f_c = \frac{W_{el} + W_{ci}}{W_{\text{int}\,i}^*},\tag{13}$$

где $W_{\text{int }i}^* = -W_{\text{int }i}/f$ и i = 1, 2, 3.

Рассмотрим три типичные конфигурации петель типа 1—3, схематично изображенные на рис. 3: вытянутую вдоль нормали к границе раздела (петля NI, рис. 3, a), квадратную (петля S, рис. 3, b) и вытянутую вдоль границы раздела (петля AI, рис. 3, c). Соответственно месту зарождения обозначим их как NI-1, NI-2 и NI-3

Рис. 2. Карты изменения энергии ΔW в пространстве относительных размеров ПДП (2a/b, 2c/b) для наночастиц Si/Ge (a, c, e) и InAs/ZnS (b, d, f) при R = 100 nm, h = 5 nm, $r_0 = b$. Петли зарождаются на границе раздела (a, b, e, f) или на свободной поверхности оболочки (c, d) и растут в оболочку (a-d) или в ядро (e, f).

(рис. 3, a); S-1, S-2 и S-3 (рис. 3, b); AI-1, AI-2 и AI-3 (рис. 3, c). Для каждой из этих конфигураций можно построить зависимости критического несоответствия f_c от толщины оболочки h, а затем сравнить их между

собой. Чем меньше окажется значение f_c для некоторой толщины h, тем более вероятным будет первоочередное зарождение соответствующей петли. Примеры таких зависимостей приведены на рис. 4.

Рис. 3. Схематичное изображение петель типа NI-1, NI-2 и NI-3 (*a*); S-1, S-2 и S-3 (*b*); AI-1, AI-2 и AI-3 (*c*) у границ раздела в композитной наночастице типа "ядро-оболочка".

На рис. 4 показаны зависимости $f_c(h)$ для ПДП типа AI-1, AI-2 и AI-3 (рис. 4, *a*); S-1, S-2 и S-3 (рис. 4, *b*), и NI-1, NI-2 и NI-3 (рис. 4, c), которые зарождаются в наночастицах разного радиуса R у границы раздела и у свободной поверхности. Рассмотрим сначала кривые $f_{c}(h)$ для петель типа 1 и 2, образующихся в оболочке наночастицы. Как видно, для этих петель характерно уменьшение f_c при увеличении радиуса наночастицы R, поскольку при этом возрастает напряжение в оболочке фиксированной толщины h, и соответственно растет величина энергий взаимодействия W_{int1} и W_{int2}. Изменение критического несоответствия f_c с ростом толщины оболочки h при заданном R зависит от типа петли. В случае петель типа 2, зарождающихся у свободной поверхности, f с монотонно увеличивается с ростом *h*. Это объясняется тем, что при заданном радиусе наночастицы R и растущей толщине оболочки h напряжение у свободной поверхности оболочки быстро снижается по закону $\sim (R - h)^3 / R^3$, см. выражение (9) при $z^2 + y^2 \rightarrow R^2$. Соответственно с ростом h происходит и снижение энергии взаимодействия W_{int2}, так что для поддержания баланса $\Delta W = 0$ требуется увеличение критического несоответствия f_c . Отметим, что при зарождении ПДП у свободной поверхности оболочки наиболее предпочтительны петли типа AI-2, поскольку для них требуется наименьшее критическое несоответствие f_c (рис. 4, a).

В случае петель типа 1, которые зарождаются в оболочке у границы с ядром, зависимость $f_c(h)$ может быть немонотонной, с характерным минимумом в области малых h (~ 4–8 nm). Это объясняется тем, что по мере увеличения h меняется как энергия взаимодействия W_{int1} , так и собственная упругая энергия петли W_{el1} . Если первая монотонно снижается с ростом h, то вторая

падает для петель типа NI-1 (при $a/c \gg 1$), растет и достигает максимума, а затем снижается для петель типа S-1 (при a/c = 1) и AI-1 (при a/c < 1), и монотонно

Рис. 4. Зависимость критического несоответствия f_c от толщины оболочки h для петель, зарождающихся в оболочке у границы раздела (петли типа AI-1, S-1 и NI-1), у свободной поверхности (петли типа AI-2, S-2 и NI-2) и в ядре (петли типа AI-3, S-3 и NI-3): a — петли типа AI-1, AI-2 и AI-3 при a/c = 0.2, c/b = 10; b — петли типа S-1, S-2 и S-3 при a/c = 1, c/b = 2; c — петли типа NI-1, NI-2 и NI-3 при a/c = 5, c/b = 2. Величина вектора Бюргерса b = 0.3 пт. Значения внешнего радиуса наночастицы R даны в нанометрах. Штриховыми линиями показаны кривые для петель типа 1, сплошными — для петель типа 2, штрихпунктирными — для петель типа 3.

растет, выходя на насыщение, для петель типа AI-1 при $a/c \ll 1$ [23]. Такое разнообразие в поведении зависимостей $W_{el1}(h)$ наряду с монотонным падением W_{int1} и формирует различные зависимости $f_c(h)$ для петель этих типов.

При заданном несоответствии f необходимым условием образования ПДП любого из рассмотренных типов является выполнение неравенства $f > f_c(h, R)$. Исходя из вида кривых $f_c(h)$, можно представить себе три возможности: 1) горизонтальная прямая, соответствующая постоянному уровню f, проходит ниже кривой $f_c(h)$, что означает невозможность зарождения ПДП соответствующего типа; 2) эта прямая пересекает кривую $f_c(h)$ на участке ее немонотонности в двух точках, $h = h_{c1}^{(1,2)}$ и $h = h_{c2}^{(1,2)}$, так что критерий зарождения ПДП $f > f_c(h, R)$ выполняется только в интервале толщин оболочки от $h_{c1}^{(1,2)}$ до $h_{c2}^{(1,2)}$; 3) эта прямая пересекает кривую $f_c(h)$ на участке ее монотонности в одной точке $h = h_c^{(1,2)}$, так что ПДП данного типа могут зарождаться только при $h < h_c^{(1,2)}$. Очевидно, что с увеличением уровня f и радиуса наночастицы R критическая толщина оболочки $h_{c1}^{(1,2)}$ уменьшается, а критические толщины $h_{c2}^{(1,2)}$ и $h_{c}^{(1,2)}$ увеличиваются. Таким образом, с ростом f и Rувеличивается интервал толщин оболочки, в которой могут зарождаться ПДП.

Заметим, что модельная ситуация, когда релаксация напряжений несоответствия за счет образования дислокаций несоответствия становится возможной только в определенном интервале толщин оболочки, типична для цилиндрических [11,26] и сферических [11,17,18,20] систем типа "ядро-оболочка". Она объясняется тем, что при фиксированном радиусе наночастицы наличие достаточно тонких ядра или оболочки не требует релаксации напряжений несоответствия — нерелаксированное когерентное напряженное состояние оказывается энергетически выгоднее релаксированного, поскольку напряженными оказываются только относительно малые объемы системы. Напротив, модельная ситуация, в которой зарождение дислокации несоответствия возможно только при достаточно малой толщине оболочки, ранее не встречалась и является принципиально новой. Она объясняется тем, что для зарождения в оболочке малой ПДП требуется значительный уровень напряжения несоответствия, достижимый в сферически симметричных системах только при малой толщине оболочки.

Сравнивая между собой зависимости $f_c(h)$ для шести рассмотренных типов петель, которые могут зародиться в оболочке наночастицы, заключаем, что, если судить о вероятности их зарождения по уровню значений f_c , то наиболее вероятным является зарождение петель типа AI-2 у свободной поверхности оболочки при условии, что толщина оболочки достаточно мала, а наименее вероятным — зарождение там же петель типа S-2. Петлям типа AI-2 соответствуют наименьшие значения критического несоответствия f_c порядка 0.027 (сплошные кривые на рис. 4, *a*), а петлям типа S-2 — наи-

большие значения f_c порядка 0.13 (сплошные кривые на рис. 4, *b*). В целом по этому критерию в порядке предпочтительности следуют петли типа AI-2, AI-1, NI-1, S-1, NI-2, S-2.

Сказанное о порядке предпочтительности появления петель в оболочке справедливо для относительно малых ее толщин. С ростом h этот порядок может меняться. Например, на рис. 4, a наблюдается пересечение кривых, соответствующих петлям AI-1 и AI-2 при R = 60 nm, в точке $h \approx 19$ nm. Точка пересечения означает, что более предпочтительным становится другой механизм зарождения ПДП. В данном случае на смену зарождению петель на свободной поверхности оболочки (AI-2) приходит зарождение петель на границе оболочки и ядра (AI-1).

Рассмотрим теперь приведенные на рис. 4 зависимости $f_c(h)$ для петель, зарождающихся в ядре (петли типа 3). Для этих петель критическое несоответствие f_c уменьшается с уменьшением радиуса наночастицы R и с ростом толщины оболочки h. Это объясняется тем, что снижение R при заданной толщине h или увеличение hпри заданном R означают уменьшение радиуса ядра, которое вызывает рост напряжений в ядре и соответствующее повышение энергии взаимодействия W_{int3}^* в выражении (13).

При заданном несоответствии f ПДП типа 3 могут зарождаться в ядре при выполнении неравенства $f > f_c(h, R)$, в котором функция $f_c(h)$ при фиксированном радиусе наночастицы R монотонно убывает с ростом *h*. В этом случае имеются только две возможности: 1) горизонтальная прямая, соответствующая постоянному уровню f, проходит ниже кривой $f_c(h)$, так что зарождение петель типа 3 невозможно; 2) эта прямая пересекает кривую $f_c(h)$ в одной точке $h = h_c^{(3)}$, так что для зарождения петель типа 3 толщина оболочки должна превысить некоторую критическую: $h > h_c^{(3)}$. С ростом уровня f критическая толщина оболочки $h_c^{(3)}$ уменьшается, а с ростом радиуса наночастицы R увеличивается. Таким образом, как и в случае петель типа 1 и 2, увеличение несоответствия f ведет к расширению интервала толщин оболочки, допустимых для зарождения ПДП.

Превышение толщиной оболочки некоторой критической величины как необходимое условие появления в тонкопленочных системах дислокаций несоответствия типично для плоских гетероэпитаксиальных структур, обычно представляющих собой тонкие пленки на массивных подложках [27–31]. Отличие в том, что в таких структурах изменение толщины тонкой пленки не приводит к заметному изменению однородного напряженного состояния несоответствия в пленке, и зарождение дислокаций несоответствия связано с необходимостью релаксации упругой энергии, накапливающейся в пленке по мере ее роста. В рассматриваемой здесь сферически симметричной наночастице фиксированного радиуса толщина оболочки должна достичь той критической величины, при которой в соответственно уменьшающемся ядре напряжение несоответствия достигнет уровня, необходимого для зарождения ПДП.

Как видно из рис. 4, при малых толщинах оболочки зарождение ПДП в оболочке всегда предпочтительнее, чем их прорастание в ядро. Однако с ростом толщины оболочки h до 10-20 nm зарождение петель типа NI-3 в ядре становится более предпочтительным, чем петель типа NI-2 и S-2, а петель типа S-3 — более предпочтительным, чем петель S-2 в оболочке (рис. 4, b, c). Точки пересечения кривых $f_{c}(h)$ на рис. 4, b, c соответствуют смене механизмов релаксации (направления роста ПДП в ядро или в оболочку). Увеличение радиуса наночастицы R приводит к смещению этих точек в область больших толщин оболочки h. Для петель типа AI-1, AI-2 и AI-3 такая смена механизма релаксации при малых h не наблюдается (рис. 4, a), хотя ее легко предсказать для бо́льших *h*. Несмотря на то, что проведенные здесь расчеты корректны только для малых h, поведение кривых $f_c(h)$ для петель типа 3 указывает на возможность перехода от зарождения петель в оболочке к их формированию в ядре при достаточных толщинах оболочки.

Из приведенных выше результатов можно заключить, что наиболее предпочтительным из рассмотренных механизмов релаксации при малых толщинах оболочки является зарождение петель типа AI-2 у свободной поверхности оболочки. При больших толщинах оболочки можно ожидать сначала преимущественного зарождения петель типа AI-1 в оболочке у межфазной границы, а в конечном итоге — петель типа 3 в ядре наночастицы. Следует, однако, оговориться, что сделанные заключения основаны исключительно на анализе условий, необходимых для зарождения ПДП, и никак не учитывают кинетику их формирования. Выявление наиболее реалистичных механизмов образования ПДП и определение достаточных условий их срабатывания требуют отдельного исследования.

4. Заключение

В настоящей работе рассмотрены критические условия релаксации напряжений несоответствия в сферически симметричных композитных наночастицах типа "ядро-оболочка" за счет зарождения прямоугольных призматических дислокационных петель (ПДП) на внутренних и внешних границах раздела с последующим распространением в ядро или в оболочку. В приближении относительно массивного ядра и тонкой оболочки найдены изменения полной энергии системы, вызванные образованием таких ПДП, и рассчитаны критические условия их образования в случаях, когда петли имеют форму квадрата или вытянуты вдоль или поперек границы раздела. Таким образом, были изучены необходимые условия зарождения ПДП девяти типов с классификацией по форме петли и месту ее образования.

Расчеты показали, что основным фактором, определяющим энергетическую предпочтительность зарождения ПДП, является величина несоответствия. При заданном несоответствии f необходимым условием образования ПДП любого из девяти рассмотренных типов является выполнение неравенства $f > f_c(h, R)$, где $f_c(h, R)$ некоторое критическое несоответствие, которое зависит от толщины оболочки h, радиуса наночастицы R и типа ПДП. Для петель, формирующихся в оболочке наночастицы, выполнение этого условия возможно в том случае, если толщина оболочки h либо лежит в определенном интервале малых толщин оболочки, $h_{c1}^{(1,2)} < h < h_{c2}^{(1,2)}$, либо не превышает некоторую критическую толщину, $h < h_c^{(1,2)}$. С ростом несоответствия f и радиуса наночастицы R критическая толщина $h_{c1}^{(1,2)}$ уменьшается, а критические толщины $h_{c2}^{(1,2)}$ и $h_{c}^{(1,2)}$ увеличиваются. Для петель, образующихся в ядре наночастицы, выполнение условия $f > f_c(h, R)$ возможно в том случае, если толщина оболочки h больше некоторой критической, $h > h_c^{(3)}$. Увеличение несоответствия f приводит к снижению $h_c^{(3)}$, а увеличение радиуса наночастицы R — к росту $h_c^{(3)}$.

Показано также, что независимо от места образования ПДП энергетически выгоднее случай, когда она вытянута вдоль границы (при зарождении в ядре петли, вытянутые вдоль или поперек границы, равновероятны). При этом зарождение со свободной поверхности предпочтительнее. С увеличением толщины оболочки (при фиксированном радиусе наночастицы R) становится выгоднее зарождение аналогичных петель на границе раздела с последующим их ростом сначала в оболочку, а затем, при большей толщине оболочки — в ядро. Таким образом, изменение соотношения размеров ядра и оболочки должно сопровождаться сменой мест формирования ПДП при сохранении их предпочтительной формы — вытянутой вдоль границы раздела.

Список литературы

- [1] M.T. Swihart. Curr. Opin. Colloid Interf. Sci. 8, 127 (2003).
- [2] A. Burns, H. Ow, U. Wiesner. Chem. Soc. Rev. **35**, 1028 (2006).
- [3] A.H. Lu, E.L. Salabas, F. Schüth. Angew. Chem. Int. Ed. 46, 1222 (2007).
- [4] H. Zeng, S. Sun. Adv. Funct. Mater. 18, 391 (2008).
- [5] C. Wang, C. Xu, H. Zeng, S. Sun. Adv. Mater. 21, 3045 (2009).
- [6] W. Schärtl. Nanoscale 2, 829 (2010).
- [7] S. Behrens. Nanoscale **3**, 877 (2011).
- [8] C. De Mello Donegá. Chem. Soc. Rev. 40, 1512 (2011).
- [9] J. Liu, S.Z. Qiao, Q.H. Hu, G.Q. Lu. Small 7, 425 (2011).
- [10] D. Shi, N.M. Bedford, H.S. Cho. Small 7, 2549 (2011).
- [11] М.Ю. Гуткин. Прочность и пластичность нанокомпозитов. Изд-во Политехн. ун-та, СПб. (2011). 165 с.
- [12] Y. Ding, F. Fan, Z. Tian, Z.L. Wang. J. Am. Chem. Soc. 132, 12480 (2010).

- [13] Y. Ding, X. Sun, Z.L. Wang, S. Sun. Appl. Phys. Lett. 100, 111 603 (2012).
- [14] N. Bhattarai, G. Casillas, A. Ponce, M. Jose-Yacaman. Surf. Sci. 609, 161 (2013).
- [15] C. Wang, Y. Wei, H. Jiang, S. Sun. Nano Lett. 9, 4544 (2009).
- [16] L.I. Trusov, M.Yu. Tanakov, V.G. Gryaznov, A.M. Kaprelov, A.E. Romanov. J. Cryst. Growth 114, 133 (1991).
- [17] M.Yu. Gutkin. Int. J. Eng. Sci. 61, Special Issue, 59 (2012).
- [18] M.Yu. Gutkin. Nanomaterials & Energy 2, 180 (2013).
- [19] A.L. Kolesnikova, M.Yu. Gutkin, S.A. Krasnitckii, A.E. Romanov. Int. J. Solids Struct. 50, 1839 (2013).
- [20] М.Ю. Гуткин, А.Л. Колесникова, С.А. Красницкий, А.Е. Романов. ФТТ 56, 695 (2014).
- [21] X. Chen, Y. Lou, A.C. Samia, C. Burda. Nano Lett. 3, 799 (2003).
- [22] I.A. Ovid'ko, A.G. Sheinerman. Phil. Mag. 84, 2103 (2004).
- [23] M.Yu. Gutkin, I.A. Ovid'ko, A.G. Sheinerman. J. Phys.: Cond. Matter 15, 3539 (2003).
- [24] Дж. Хирт, И. Лоте. Теория дислокаций. Атомиздат, М. (1972). 600 с.
- [25] К. Теодосиу. Упругие модели дефектов в кристаллах. Мир, М. (1985). 352 с.
- [26] M.Yu. Gutkin, I.A. Ovid'ko, A.G. Sheinerman. J. Phys.: Cond. Matter 12, 5391 (2000).
- [27] Ю.А. Тхорик, Л.С. Хазан. Пластическая деформация и дислокации несоответствия в гетероэпитаксиальных системах. Наук. думка, Киев (1983). 304 с.
- [28] М.Г. Мильвидский, В.Б. Освенский. Структурные дефекты в эпитаксиальных слоях полупроводников. Металлургия, М. (1985). 160 с.
- [29] В.И. Владимиров, М.Ю. Гуткин, А.Е. Романов. Поверхность. Физика, химия, механика 6, 46 (1988).
- [30] М.Ю. Гуткин, А.Е. Романов. ФТТ 32, 1281 (1990).
- [31] M.Yu. Gutkin, A.L. Kolesnikova, A.E. Romanov. Mater. Sci. Eng. A 164, 433 (1993).