19

Теплоемкость $Tm_2Cu_2O_5$ в области $431-1004\,\mathrm{K}$

© В.М. Денисов, Л.Т. Денисова, Л.Г. Чумилина, С.Д. Кирик

Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск, Россия

E-mail: antluba@mail.ru

(Поступила в Редакцию 7 июня 2013 г.)

Методом дифференциальной сканирующей калориметрии исследована молярная теплоемкость ${\rm Tm_2Cu_2O_5}$ в интервале температур 431—1004 К. По экспериментальным данным $C_p=f(T)$ рассчитаны термодинамические функции твердого оксидного соединения.

1. Введение

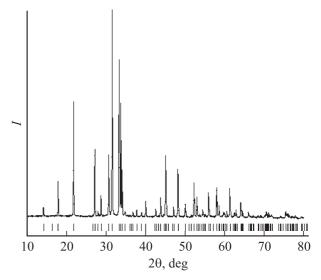
Несмотря на длительное исследование ВТСП-купратов, многие проблемы этих материалов продолжают оставаться объектом исследований [1]. Высказано предположение, что для понимания природы ВТСП нужно проводить исследования не только таких материалов, но и близких к ним по кристаллической структуре и химическому составу соединений, не являющихся сверхпроводниками [2]. К подобным соединениям относят купраты R_2 Cu₂O₅ (R = Tb-Lu и Y) [2,3]. Одним из наименее изученных является соединение $Tm_2Cu_2O_5$ [3–7]. Сложность получения Tm₂Cu₂O₅ связана с тем, что соединение плавится инконгруэнтно и может быть получено либо твердофазным синтезом, либо из растворарасплава. В то же время для оптимизации условий его получения необходимо термодинамическое изучение фаз, которое возможно лишь при наличии сведений об их термодинамических свойствах. Данные о теплоемкости $Tm_2Cu_2O_5$ имеются только для очень низких температур $(2-30 \,\mathrm{K})$ [5].

Цель настоящей работы — исследование высокотемпературной теплоемкости $Tm_2Cu_2O_5$ и определение по этим данным его термодинамических свойств.

2. Эксперимент

Соединение Тт2Си2О5 получено методом твердофазной реакции из исходных оксидов Tm₂O₃ и CuO. После предварительного прокаливания этих оксидов готовилась стехиометрическая смесь, которая после прессования отжигалась на воздухе при 1273 К в течение 25 h с промежуточными перетираниями и прессованиями через каждые 5 h. Запись рентгенограмм проводилась на дифрактометре X'Pert Pro (Panalytical, Нидерланды) с полупроводниковым детектором и графитовым монохроматором. Полученные данные приведены на рис. 1. При комнатной температуре образцы имеют орторомбическую кристаллическую структуру (пр. гр. $Pna2_1$) и относятся к так называемым "голубым фазам" $R_2 \text{Cu}_2 \text{O}_5$ (R — редкоземельный элемент) [8]. По нашим данным параметры решетки равны a = 10.7418(7) Å, b = 3.4556(2) Å, c = 12.3811(8) Å.

Эти результаты достаточно близки к данным [8]: a = 10.7353(1) Å, b = 3.4575(1) Å, c = 12.3704(2) Å.


Теплоемкость C_p измерялась в платиновых тиглях методом дифференциальной сканирующей калориметрии на приборе STA 449 C Jupiter (NETZSCH). Методика измерений описана нами ранее в работах [9,10].

3. Результаты и их обсуждение

Проведенные нами калориметрические измерения (рис. 2) показывают, что в интервале температур $431-1004\,\mathrm{K}$ значения молярной теплоемкости закономерно увеличиваются, а на зависимости $C_p=f(T)$ нет экстремумов. Полученная зависимость может быть описана уравнением Майера–Келли (в единицах J/mol· K)

$$C_p = a + bT + cT^{-2}$$

= 210.32 + 33.7 \cdot 10^{-3}T - 5.45 \cdot 10^5T^{-2}. (1)

Используя уравнение (1), по известным термодинамическим соотношениям мы определили изменение

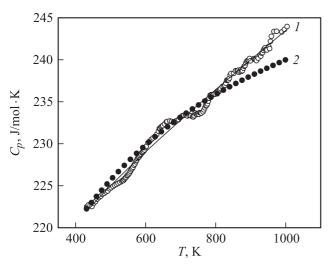
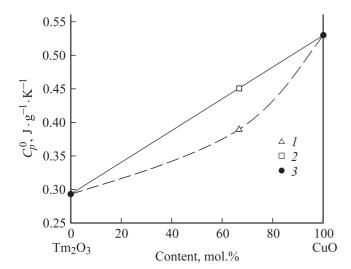


Рис. 1. Дифрактограмма $Tm_2Cu_2O_5$ при комнатной температуре.


энтальпии $H_T^0 - H_{431}^0$ и энтропии $S_T^0 - S_{431}^0$. Эти данные приведены в таблице.

Можно отметить, что при температурах выше $450 \,\mathrm{K}$ теплоемкость превышает классический предел Дюлонга—Пти, равный 3Rs, где R — универсальная газовая постоянная, s — число атомов в формульной единице $\mathrm{Tm}_2\mathrm{Cu}_2\mathrm{O}_5$ (s=9).

Используя полученное нами значение характеристической температуры Дебая $\Theta_{\rm D}=250\,{\rm K}$ и воспользовавшись таблицами функций Дебая $D(\Theta_{\rm D}/T)$ [11], мы рассчитали C_p , которые в первом приближении считали близкими к C_V . Полученные данные показывают, что имеется существенная разница между экспериментальными и рассчитанными значениями C_p . С ростом температуры это различие увеличивается. В то же время для описания температурной зависимости теплоемко-

Рис. 2. Температурная зависимость теплоемкости $Tm_2Cu_2O_5$. 1 — экспериментальные данные, 2 — расчет по формуле (2).

Рис. 3. Связь состава и удельных значений теплоемкости системы Tm_2O_3 —CuO. 1— наши данные, 2— расчет методом Неймана—Коппа, 3— литературные данные.

Термодинамические свойства Tm₂Cu₂O₅

T,K	C_p , J/mol · K	$H_T^0 - H_{431}^0$, kJ/mol	$S_T^0 - S_{431}^0$, J/mol · K
431	221.9	_	_
450	222.8	4.225	9.592
500	225.0	15.42	33.18
550	227.1	26.72	54.72
600	229.0	38.12	74.56
650	230.9	49.62	92.97
700	232.8	61.22	110.2
750	234.6	72.90	126.3
800	236.4	84.68	141.5
850	238.2	96.54	155.9
900	241.0	108.5	169.5
950	241.7	120.5	182.6
1000	243.5	132.7	195.0

5

сти можно использовать комбинации функций Дебая и Эйнштейна $E(\Theta_{\rm E}/T)$ [11]. В нашем случае подбор комбинаций этих функций дает следующее уравнение:

$$C_{p} = D\left(\frac{\Theta_{D}}{T}\right) + mE\left(\frac{\Theta_{E}}{T}\right)$$
$$= D\left(\frac{250}{T}\right) + 0.12E\left(\frac{2521}{T}\right), \tag{2}$$

которое удовлетворительно описывает экспериментальные данные по теплоемкости (рис. 2). Обращает на себя внимание близость коэффициента перед функцией Эйнштейна к 1/s=0.11.

Сравнить полученные нами значения C_p для ${\rm Tm_2Cu_2O_5}$ с данными работы [5] не представляется возможным, так как они приведены только для интервала $2{-}30\,{\rm K}.$

Ранее была установлена корреляция между составом оксидов систем ${\rm GeO_2-PbO}$ [9], ${\rm Bi_2O_3-Fe_2O_3}$ [12] и их удельной теплоемкостью C_p^0 . В предположении, что подобная корреляция наблюдается и для системы ${\rm Tm_2O_3-CuO}$ (рис. 3), можно, несмотря на малое количество экспериментальных точек, оценить значение C_p^0 для ${\rm Tm_2Cu_2O_5}$. Из рис. 3 следует, что в данном случае оценочное значение C_p^0 имеет меньшее значение, чем полученное методом Неймана–Коппа [13]. Значения C_p^0 для ${\rm CuO}$ и ${\rm Tm_2O_3}$ взяты из [14] и [14,15] соответственно. Из рис. 3 видно, что значения C_p^0 закономерно увеличиваются в ряду ${\rm Tm_2O_3-Tm_2Cu_2O_5-CuO}$.

4. Заключение

Исследовано влияние температуры на теплоемкость ${\rm Tm_2Cu_2O_5}.$ Показано, что комбинация функций Дебая и Эйнштейна удовлетворительно описывает экспериментальные данные $C_p=f(T).$

Список литературы

- [1] Е.И. Шнайдер, С.Г. Овчинников, М.М. Коршунов, С.В. Николаев. Письма в ЖЭТФ **96**, *5*, 381 (2012).
- [2] Я. Зоубкова, З.А. Казей, Р.З. Левитин, Б.В. Милль, В.В. Мошалков, В.В. Снегирев. Письма в ЖЭТФ 49, 9, 524 (1989).
- [3] П.А. Арсеньев, Л.М. Ковба, Х.С. Багдасаров, Б.Ф. Джуринский, А.В. Потемкин, Б.И. Покровский, Ф.М. Спиридонов, В.А. Антонов, В.В. Илюхин. Соединения редкоземельных элементов. Системы с оксидами элементов І—ІІІ групп. Наука, М. (1983). 280 с.
- [4] W. Wong-Ng, Z. Yang, L.P. Cook, J. Frank, M. Loung, Q. Huang. J. Electron. Mater. 36, 10, 1279 (2007).
- [5] V.V. Moshchalkov, N.A. Samarin, Y. Zoubkova, B.V. Mill. Physica B 163, 237 (1990).
- [6] M. Kopyto, K. Fitzner. J. Mater. Sci. 31, 2797 (1996).
- [7] K.P. Jayadevan, K.T. Jacob. High Temp. Mater. Proc. 19, 6, 389 (2000).
- [8] J.L. Garcia-Munoz, J. Rodriguez-Carvajal. J. Solid State Chem. 115, 324 (1995).
- [9] В.М. Денисов, Л.А. Иртюго, Л.Т. Денисова. ФТТ 53, 4, 642 (2011).
- [10] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ 52, 7, 1274 (2010).
- [11] С.М. Скуратов, В.П. Колесов, А.Ф. Воробьев. Термохимия. Изд-во МГУ, М. (1966). Ч. II. 434 с.
- [12] В.М. Денисов, Н.В. Волков, Л.А. Иртюго, Г.С. Патрин, Л.Т. Денисова. ФТТ 54, 6, 1234 (2012).
- [13] Г.К. Моисеев, Н.А. Ватолин, Л.А. Маршук, Н.И. Ильиных. Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ. УрО РАН, Екатеринбург (1977). 230 с.
- [14] J. Leitner, P. Chuchvalec, D. Sedmidybský, A. Strejc, P. Abrman. Thermochim. Acta 395, 27 (2003).
- [15] С.П. Гордиенко, Б.В. Феночка, Г.Ш. Виксман. Термодинамика соединений лантаноидов. Наук. думка, Киев (1979). 376 с.