03

Модифицирование диэлектрических свойств монокристалла CdIn₂S₄ при легировании медью

© С.Н. Мустафаева¹, М.М. Асадов², Д.Т. Гусейнов¹

¹ Институт физики НАН Азербайджана, Баку, Азербайджан ² Институт химических проблем НАН Азербайджана, Баку, Азербайджан

E-mail: solmust@gmail.com

(Поступила в Редакцию 13 мая 2013 г. В окончательной редакции 14 июня 2013 г.)

Изучение диэлектрических свойств монокристалла CdIn₂S₄ $\langle 3 \text{ mol.}\% \text{ Cu} \rangle$ в переменных электрических полях частотой $f = 5 \cdot 10^4 - 3.5 \cdot 10^7$ Hz позволило установить природу диэлектрических потерь (релаксационные потери, сменяющиеся при высоких частотах потерями сквозного тока). Определено значение инкремента диэлектрической проницаемости $\Delta \varepsilon' = 123$, а также частоты релаксации $f_r = 2.3 \cdot 10^4$ Hz и времени релаксации $\tau = 43 \,\mu s$ в CdIn₂S₄ (Cu). Установлено, что легирование монокристалла CdIn₂S₄ медью (3 mol.%) приводит к существенному увеличению диэлектрической проницаемости (ε'), тангенса угла диэлектрических потерь (tg δ) и ас-проводимости (σ_{ac}). При этом частотная дисперсия ε' и tg δ возрастает, а дисперсия σ_{ac} уменьшается.

1. Введение

Монокристаллы CdIn₂S₄, кристаллизующиеся в кубической сингонии типа нормальной шпинели, характеризуются высокой фото- и рентгеночувствительностью [1,2] и являются перспективными материалами для создания на их основе фоторезисторов и рентгенодетекторов. Легирование монокристаллов CdIn₂S₄ металлами позволяет варьировать их физические свойства. Так, в [2] было показано, что легирование кристаллов CdIn₂S₄ медью существенно увеличивает их коэффициенты рентгенопроводимости и полностью снимает инерционность рентгенамперных характеристик. Введение железа в монокристаллы CdIn₂S₄ придавало им магнитные свойства [3]. В нашей предыдущей работе [4] были изучены электрические и диэлектрические свойства монокристаллов CdIn₂S₄ в переменных электрических полях и установлен прыжковый механизм переноса заряда по локализованным состояниям в запрещенной зоне.

Целью настоящей работы является изучение влияния легирования медью на диэлектрические характеристики монокристалла CdIn₂S₄ в переменных электрических полях.

2. Методика эксперимента

Рентгенофазовый анализ (ДРОН-3, Си K_{α} -излучение, $\lambda = 1.5406$ Å, Ni-фильтр) показал, что CdIn₂S₄ кристаллизуется в кубической структуре типа нормальной шпинели ($a = 10.79 \pm 0.01$ Å).

Согласно [5], соединение $CdIn_2S_4$ образуется в системе Cd-In-S по разрезу In_2S_3-CdS . Обнаружено, что $CdIn_2S_4$ имеет область гомогенности и стехиометрический состав плавится конгруэнтно при 1398 К.

В выбранном нами составе $CdIn_2S_4(3 \text{ mol.}\% \text{ Cu})$ концетрация меди находится в области гомогенности T-x-диаграммы $CdIn_2S_4$: In_2S_3-CdS [5]. Поэтому полученные нами кристаллы были однородными. Проведенная оценка растворимости меди в решетке $CdIn_2S_4$ с учетом известных эффективных ионных радиусов атомов указывает на то, что радиус внедряющегося атома примеси Cu^+ (0.96 Å) ближе к радиусу Cd^{2+} (0.97 Å), чем к радиусу In^{3+} (0.81 Å), т.е. частичное замещение кадмия медью в кристаллах $CdIn_2S_4$ соответствует условию образования раствора замещения. Поэтому используемое количество примесного элемента Cu (x = 0.03) мало влияет на значения параметров решетки.

Из предварительно синтезированных поликристаллов состава $CdIn_2S_4\langle 3 \text{ mol.}\% \text{ Cu} \rangle$ методом химических транспортных реакций в замкнутом объеме с использованием иода в качестве носителя были выращены монокристаллы [4].

Образцы из $CdIn_2S_4(Cu)$ были изготовлены в виде плоских конденсаторов. В качестве электродов использовалась серебряная паста. Толщина монокристаллических образцов из $CdIn_2S_4(Cu)$ составляла $300\,\mu$ m, а площадь обкладок — 0.1 cm².

Диэлектрические коэффициенты монокристаллов $CdIn_2S_4(Cu)$ измерялись резонансным методом, описанным в [6], в диапазоне частот переменного электрического поля от 50 kHz до 35 MHz при T = 300 K.

3. Результаты и их обсуждение

На рис. 1 приведены частотные зависимости диэлектрической проницаемости (ε') образцов CdIn₂S₄ (кривая *1*) и CdIn₂S₄(3 mol.% Cu) (кривая *2*). Сравнение кривых *1* и *2* показывает, что после введения меди в

Рис. 1. Частотная дисперсия диэлектрической проницаемости монокристаллов $CdIn_2S_4$ (1) и $CdIn_2S_4(3 \text{ mol.}\% \text{ Cu})$ (2).

Рис. 2. Частотные зависимости тангенса угла диэлектрических потерь в нелегированном (1) и легированном медью (3 mol.% Cu) (2) монокристалле CdIn₂S₄.

кристаллы CdIn₂S₄ их диэлектрическая проницаемость существенно увеличивается, особенно при сравнительно низких частотах. Так, при частоте $5 \cdot 10^4$ Hz значение ε' монокристалла CdIn₂S₄(Cu) в 3.6 раза превышало значение ε' в CdIn₂S₄. Обе кривые $\varepsilon'(f)$ на рис. 1 характеризуются монотонным уменьшением ε' с увеличением частоты от $5 \cdot 10^4$ до $1.6 \cdot 10^6$ Hz. В частотной области $f = 1.6 \cdot 10^6 - 3.5 \cdot 10^7$ Hz значения ε' как в CdIn₂S₄, так и в CdIn₂S₄(Cu) не претерпевали ощутимого изменения, т.е. оставались практически неизменными.

Следует отметить, что диэлектрическая проницаемость легированного медью образца $CdIn_2S_4$ претерпевает более сильную частотную дисперсию. Если в $CdIn_2S_4$ значение ε' уменьшалось в 3.7 раз при увеличении частоты от $5 \cdot 10^4$ до $3.5 \cdot 10^7$ Hz, то в $CdIn_2S_4 \langle Cu \rangle$ в этой же области частот значение ε' уменьшалось в 7.5 раз. Наблюдаемое в экспериментах монотонное уменьшение диэлектрической проницаемости образцов $CdIn_2S_4$ и $CdIn_2S_4 \langle Cu \rangle$ свидетельствует о релаксационной дисперсии [6]. На рис. 2 показаны частотные зависимости тангенса угла диэлектрических потерь в монокристаллах CdIn₂S₄ (кривая *I*) и CdIn₂S₄ (Cu) (кривая *2*). Как видно из рис. 2, после легирования CdIn₂S₄ медью диэлектрические потери в образце сильно возрастают при сравнительно низких частотах (почти на порядок при $f = 10^5$ Hz). Но по мере увеличения частоты разница в значениях tg δ уменьшается, а в частотном диапазоне (1.8–3.5) · 10⁷ Hz значения tg δ в CdIn₂S₄ (Cu) гораздо меньше, чем в CdIn₂S₄. После легирования CdIn₂S₄ медью величина tg δ в образце претерпевала существенную дисперсию (кривая 2, на рис. 2). На обеих кривых (рис. 2) зависимость tg $\delta(f)$ при $f = 10^5$ Hz проходила через максимум. В CdIn₂S₄ (Cu) этот максимум был более четким.

Наличие максимума на кривой tg $\delta(f)$ при сравнительно низкой частоте свидетельствует о релаксационных потерях [6] в образце CdIn₂S₄ (Cu), сменяющихся потерями на электропроводность при более высоких частотах.

При релаксационных процессах на частоте $f = f_t$ [7]

$$g \,\delta_{\text{max}} = \frac{\varepsilon_{\text{st}}' - \varepsilon_{\text{opt}}'}{2\sqrt{\varepsilon_{\text{st}}\varepsilon_{\text{opt}}'}},\tag{1}$$

где ε'_{st} и ε'_{opt} — статическая и оптическая диэлектрические проницаемости.

Исходя из экспериментальной зависимости $\varepsilon'(f)$ образца CdIn₂S₄(Cu) (кривая 2, на рис. 1) значение $\varepsilon' = 6.78$ при высоких частотах можно считать оптической диэлектрической проницаемостью. Тогда, зная значения tg δ_{max} и ε'_{opt} , с помощью соотношения (1) можно рассчитать статическую диэлектрическую проницаемость монокристалла CdIn₂S₄(Cu). Для ε'_{st} было получено значение 130. Инкремент диэлектрической проницаемости ($\Delta \varepsilon' = \varepsilon'_{st} - \varepsilon'_{opt}$) монокристалла CdIn₂S₄(Cu) составил ~ 123.

Экспериментально полученное значение $f_t = 10^5$ Hz, при котором tg δ проходит через максимум, позволило по соотношению

$$f_t = f_r \sqrt{\frac{\varepsilon_{\rm st}'}{\varepsilon_{\rm opt}'}} \tag{2}$$

определить частоту релаксации f_r , значение которой составило $2.3 \cdot 10^4$ Hz. При этом время релаксации в монокристалле CdIn₂S₄(Cu) составило $\tau = 43 \,\mu$ s.

Нами изучена также проводимость монокристалла CdIn₂S₄(Cu) на переменном токе (σ_{ac}). На рис. 3 показана частотная зависимость ас-проводимости монокристалла CdIn₂S₄(Cu) (кривая 2) и для сравнения приведена кривая для нелегированного монокристалла CdIn₂S₄ [4] (кривая 1). Как видно из рис. 3, легированный медью монокристалл CdIn₂S₄ характеризовался более высокой проводимостью по сравнению с CdIn₂S₄. Так, при $5 \cdot 10^4$ Hz значение σ_{ac} для CdIn₂S₄(Cu) почти в 40 раз превышало σ_{ac} в CdIn₂S₄. При высоких частотах значения σ_{ac} CdIn₂S₄ и CdIn₂S₄(Cu) мало отличались друг от друга, и при f = 35 MHz кривые 1 и 2 на рис. 3 пересекались.

Рис. 3. Частотные зависимости ас-проводимости монокристаллов CdIn₂S₄ (1) и CdIn₂S₄ (3 mol.% Cu \rangle (2) при T = 300 К.

Как было показано в [4], частотная зависимость ас-проводимости монокристалла $CdIn_2S_4$ подчинялась закономерности $\sigma_{ac} \sim f^{0.8}$, характерной для прыжкового механизма переноса заряда по локализованным вблизи уровня Ферми состояниям. В отличие от $CdIn_2S_4$ в $CdIn_2S_4$ (Cu) ас-проводимость изменялась с частотой по закону $\sigma_{ac} \sim f^{0.2}$ в частотной области $5 \cdot 10^4 - 1.8 \cdot 10^7$ Hz. При $f > 1.8 \cdot 10^7$ Hz частотная дисперсия σ_{ac} проявляла тенденцию к увеличению. Экспериментальные возможности не позволили нам провести измерения σ_{ac} на более высоких частотах (f > 35 MHz) для того, чтобы достичь прыжковой частоты в монокристалле $CdIn_2S_4$ (Cu).

4. Заключение

Таким образом, установлено, что легирование медью монокристалла $CdIn_2S_4$ оказывает существенное влияние на диэлектрические характеристики и проводимость, измеренные в радиочастотном диапазоне. Установлена релаксационная природа диэлектрических потерь в монокристалле $CdIn_2S_4(Cu)$ и определены частота и время релаксации.

Список литературы

- [1] С.Н. Мустафаева, М.М. Асадов, Д.Т. Гусейнов. Перспективные материалы *I*, 45 (2010).
- [2] С.Н. Мустафаева, М.М. Асадов, Д.Т. Гусейнов. ЖТФ 81, 1, 144 (2011).
- [3] G. Attolini, C. Frigeri, V. Sagredo, M. Solzi, G. Delgado. Res. Technol. 46, 8, 761 (2011).
- [4] С.Н. Мустафаева, М.М. Асадов, Д.Т. Гусейнов. Неорган. материалы 47, 8, 936 (2011).
- [5] V.R. Kozer, A. Fedorchuk, L.D. Olekseyuk, O.V. Parasyuk. J. Alloys Comp. 480, 360 (2009).
- [6] С.Н. Мустафаева. Журнал радиоэлектроники 5, 11 (2008).
- [7] В.В. Пасынков, В.С. Сорокин. Материалы электронной техники. Высш. шк., М. (1986). 368 с.