Сильно коррелированные электронные системы

Температурная эволюция кластерного состояния в $La_{0.8}Ca_{0.2}MnO_3$ и $La_{0.8}Ca_{0.2}CoO_3$

© В.А. Рыжов 1 , А.В. Лазута 1 , В.П. Хавронин 1 , П.Л. Молканов 1 , Я.М. Муковский 2 , А.Е. Пестун 2

E-mail: ryzhov@omrb.pnpi.spb.ru

Представлены результаты исследования транспортных и магнитных свойств монокристаллов $La_{0.8}Ca_{0.2}MnO_3$ и $La_{0.8}Ca_{0.2}CoO_3$: ас линейной и нелинейных (второго и третьего порядка) восприимчивостей. В парамагнитной фазе обоих соединений обнаружены ферромагнитные (Φ) кластеры с близкими магнитными характеристиками. При высоких температурах регистрируются Φ -кластеры, зародившиеся в предпочтительных узлах, связанных с химическими неоднородностями. С охлаждением при определенной температуре развивается процесс однородной нуклеации кластеров. Эти две стадии наблюдаются в обоих составах. В допированном кобальтите на третьей стадии начинается коалесценция кластеров, тогда как в манганите развитие Φ -упорядочения матрицы изменяет их поведение. Указанные особенности свидетельствуют в пользу общей природы кластерного состояния в допированных кобальтитах и манганитах. Разница в поведении — следствие магнитно-активного характера матрицы в случае манганитов и нейтрального в случае кобальтитов.

1. Введение

Образование ферромагнитных (Φ) металлических (M) кластеров в допированных дырками манганитах и кобальтитах в парамагнитной фазе ниже некоторой температуры T^* является одной из форм магнитно-электронного фазового разделения, которое играет важную роль в формировании их магнитных и транспортных свойств [1–3]. Однако вопрос об общности (или различии) природы кластерного состояния в этих соединениях, выражающейся в характере его зарождения, температурной эволюции и свойствах кластеров, остается в значительной степени открытым. Ясно, что определенный сравнительный анализ поведения кластерной фазы данных систем может разрешить эту проблему.

Во многих манганитах не только установлено существование Φ -кластеров выше T_C , но и обнаружена определенная универсальность их поведения в области от T^* до T_C . Первоначально кластеры образуются на предпочтительных узлах, связанных с химическими неоднородностями (т.е. с кислородной и допинговой нестехиометрией). С понижением температуры эта стадия сменяется относительно быстрым ростом плотности изолированных кластеров (однородная нуклеация), продолжающимся почти до T_C , где начинает развиваться Φ -упорядочение матрицы [4–7]. Данный сценарий соответствует поведению манганитов с Φ -изоляторным (И) основным состоянием. Иная ситуация в допированных кобальтитах, где матрица в магнитном отношении относительно нейтральна. Их родительские соединения

(например, LaCoO₃) — немагнитные изоляторы, поскольку ион Co^{3+} в основном состоянии имеет S=0. Лежащие выше состояние с конечным спином может индуцироваться термически, приводя к парамагнетизму при $T_{\rm Sp} \sim 100 \, {\rm K}$ (спиновый переход). Второй путь допирование двухвалентными ионами щелочно-земельных элементов (Ca, Sr...), которое не только приводит к образованию магнитного иона Со⁴⁺, но и индуцирует состояние с $S \neq 0$ для окружающих ионов Co^{3+} . Общепринято, что двойной обмен между ионами Со³⁺ и Co^{4+} ведет к образованию Φ -кластеров. Допирование также понижает T_{Sp} , и при некотором его уровне $T_{Sp} = 0$. При низком допировании формируются изолированные Ф-нанообласти ($\sim 3 \, \text{nm}$) в неферромагнитной полупроводниковой матрице, проявляющие при низких температурах кластерно-стекольные свойства. С увеличением допирования начинается коалесценция ФМ-кластеров, развитие которой при дальнейшем допировании обычно приводит к И-М-переходу перколяционного типа при $T_{\rm IM}$ и образованию дальнего магнитного порядка (переходу парамагнетик—ферромагнетик $(\Pi - \Phi)$) при $T_C \sim T_{\rm IM}$. В результате допированные кобальтиты могут проявлять сходные с манганитами основные свойства: переходы $\Pi - \Phi$ и И - M, а также значительное магнитосопротивление [3]. Описанный сценарий в значительной мере является результатом традиционных магнитных и транспортных измерений, позволяющих определить $T_C \sim T_{\rm IM}$ и переход к режиму кластерного стекла. Однако получить информацию о поведении Ф-кластеров при температурах выше этих областей и найти T^* они не

¹ Петербургский институт ядерной физики им. Б.П. Константинова, НИЦ "Курчатовский институт", Гатчина, Россия

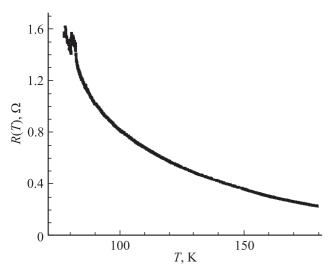
 $^{^{2}}$ Московский государственный институт стали и сплавов, Москва, Россия

позволяли. Только недавно это удалось сделать с помощью измерений второй гармоники намагниченности в параллельных постоянном Н и переменном магнитных полях $M_2(H, T)$. В исследованиях $La_{1-x}Sr_xCoO_3$ c x = 0.18 и 0.2 и был зарегистрирован сигнал от Ф-кластеров, оказавшийся весьма сходным с сигналом в манганитах; было показано, что развитие кластерного состояния проходит три стадии [8]. Первая связана с рождением кластеров на предпочтительных узлах, возникающих из-за вариаций в кислородной и допинговой стехиометрии. В конце этой стадии формируется сигнал регулярной формы, за который отвечают изолированные однодоменные Ф-частицы. При дальнейшем охлаждении на втором этапе сигнал (плотность кластеров) быстро нарастает в узком интервале Т. Это процесс однородной нуклеации Ф-фазы. Эти две стадии совпадают с описанными выше этапами для манганитов. Третья стадия ассоциируется с коалесценцией изолированных Ф-кластеров в крупномасштабные комплексы. Она сопровождается формированием Ф-доменов. Развитие этого процесса приводит к образованию протекательной сети, ведущей к М-режиму. Описанное поведение соответствует переходу первого рода. Хорошо выраженная третья стадия наблюдалась в этих кобальтитах, поскольку они испытывали И-М-переход. Те же стадии были обнаружены в $La_{1-x}Sr_xCoO_3$ и $La_{1-x}Ca_xCoO_3$ с x=0.15 (LSCO15 и LCCO15), находящихся в И-режиме, что вело к слабой выраженности третьего этапа [9]. Как видно, эти результаты свидетельствуют в пользу общей природы кластерного состояния в допированных кобальтитах и манганитах. Наконец, был выполнен сравнительный анализ поведения Ф-кластеров в La_{0.82}Sr_{0.18}CoO₃ и La_{0.83}Sr_{0.17}MnO₃ с близким уровнем замещения одинаковым ионом, испытывающих И-М-переход вблизи T_{C} [10]. В этих соединених две первые стадии формирования кластерного состояния носили сходный характер, тогда как третья различалась. В кобальтите происходила монотонно развивающаяся коалесценция Ф-кластеров с образованием Ф-доменов и перколяционной ФМ-сети. В манганите, где $T_{\rm IM} \approx 252\,{\rm K} < T_{C} \approx 263\,{\rm K},$ наблюдалась достаточно сложная трансформация кластерного сигнала в области от T_C до $T_{\rm IM}$, отражающая нетривиальный процесс формирования М-фазы при развивающемся Ф-упорядочении матрицы. Описанное поведение поддерживает предположение об общей природе кластерного состояния, основой которой является двойной обмен между магнитными ионами. Различие в температурной эволюции обусловлено свойствами матриц: магнитно-активным характером матрицы манганитов, связанным с сильным Ф-суперобменом между ее магнитными ионами, и относительно магнитно-нейтральной матрицей кобальтитов.

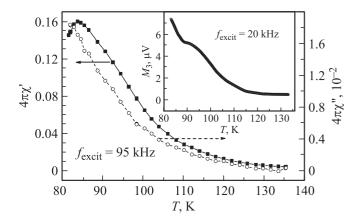
Как известно, поведение манганитов существенно зависит от допирующего иона. Например, в традиционно используемой для сравнения паре LaSr- и LaCa-манганитов первое соединение при совпадающих x имеет заметно более ярко выраженное М- и Φ -поведение. Или, иначе, $T_C \sim T_{\rm IM}$ в первом составе достигается при мень-

ших x, чем во втором. Наконец, LaSr-система переходит в М-состояние при $x\sim0.3$ и имеет существенно большее значение T_C , чем LaCa-манганит, который остается в ПИ-состоянии вплоть до x=0.5 [2]. В паре LaSr- и LaCa-кобальтитов описанная тенденция выражена даже более сильно [11,12]. Задача настоящей работы — изучить воздействие иона замещения на поведение Φ -кластеров, используя пару кобальтит—манганит с допированием Ca: La_{0.8}Ca_{0.2}CoO₃ (LCCO20) и La_{0.8}Ca_{0.2}MnO₃ (LCMO20). Ниже комнатной температуры они имеют орторомбическую Pbnm симметрию с когерентными ян-теллеровскими искажениями [12,13] и в отличие от LaSr-пары являются изоляторами.

Исследовались транспортные и магнитные свойства обоих монокристаллов: ас линейная и нелинейные (второго и третьего порядка) восприимчивости.


2. Экспериментальная часть

Монокристаллы LCCO20 и LCMO20 получались методом зонной плавки из заготовок, созданных путем твердофазного синтеза исходных материалов La₂O₃, Mn₂O₃/Mn₃O₄, Co₃O₄ и CaCO₃. Содержание элементов в образцах определялось на рентгеновском микроанализаторе "YXA-5" фирмы Jeol (Япония), оснащенном энергодисперсионным спектрометром "Link AN10/85S" с полупроводниковым Si(Li)-детектором. Погрешности определения элементов не превышали 3%. Рентгеноструктурный анализ установил однофазность и монокристалличность образцов. Результаты анализов показали, что образцы имеют требуемый фазовый состав (> 99% необходимой фазы) и соответствующую кристаллическую структуру. Установки для измерения ас-восприимчивостей описаны в [4]. Отметим только, что измерения второй гармоники намагниченности M_2 проводились в параллельных постоянном и гармоническом магнитных полях $H(t) = H + h \sin \omega t$ ($h < 35 \,\mathrm{Oe}$, $\omega/2\pi=15.7\,\mathrm{MHz}$). Выдерживалось условие $M_2\propto h^2$, чтобы при анализе отклика использовать явное выражение для восприимчивости второго порядка кубического ферромагнетика вблизи T_{C} . Это позволяло контролировать вклад матрицы в манганитах. Полученные данные для M_2 приводились к одному значению h. Обе фазовые компоненты сигнала $ReM_2(H,T)$ и $ImM_2(H,T)$ регистрировались одновременно как функции постоянного магнитного поля H при разных температурах образца $(T = 98 - 315 \,\mathrm{K})$. Ошибка в определении температуры образца была менее 0.2 К. Использовалась симметричная относительно точки H=0 развертка постоянного магнитного поля $(\pm 300 \, \mathrm{Oe})$ для детектирования полевого гистерезиса сигнала.


Линейная ас-восприимчивость измерялась при $\omega/2\pi=95\,\mathrm{kHz}$, третья гармоника намагниченности — при $\omega/2\pi=20\,\mathrm{kHz}$. Амплитуда ас-полей равнялась 0.1 и 2 Ое соответственно. Сопротивление образцов определялось стандартным четырехконтактным методом.

3. Экспериментальные результаты и их обсуждение

3.1. La_{0.8}Ca_{0.2}CoO₃. Данный монокристалл находится в изоляторном состоянии (рис. 1) в согласии с данными для поликристалла [14]. Температурные зависимости х и $|M_3|$ представлены на рис. 2. Отметим следующие особенности. С понижением температуры $\chi'^{('')}(T)$ монотонно возрастают вплоть до $85\,\mathrm{K}$, где $\chi'(T)$ имеет максимум. Он, скорее всего, связан с особенностями поведения Ф-кластеров в режиме коалесценции, который, согласно данным для $M_2(H, T)$ (см. далее), стартует при $T_{\rm coal} \approx 99 \, {
m K.} \,$ Обычно особенности в $M_3(T)$ позволяют определить характерные температуры магнитного поведения. В данном случае $|M_3(T)|$ медленно монотонно возрастает при охлаждении в достаточно протяженном интервале Т от 115 К до 95 К и имеет "полку" в районе от 95 до 90 К. Ниже 90 К рост заметно ускоряется при охлаждении. Сопоставление с зависимостями $M_2(H,T)$

Рис. 1. Зависимость сопротивления от температуры для $La_{0.8}Ca_{0.2}CoO_3$.

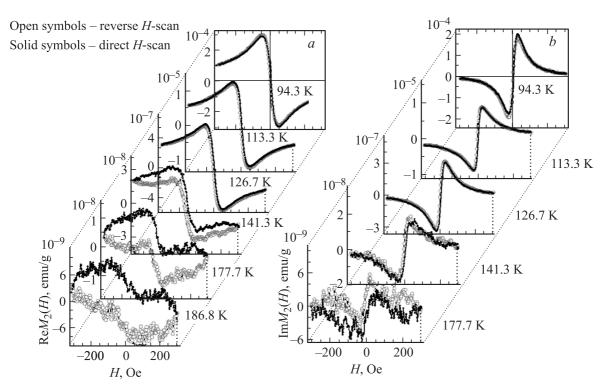
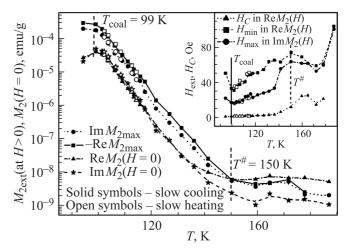


Рис. 2. Зависимость ас-восприимчивости и модуля третьей гармоники намагниченности (на вставке) от температуры для $La_{0.8}Ca_{0.2}CoO_3$.

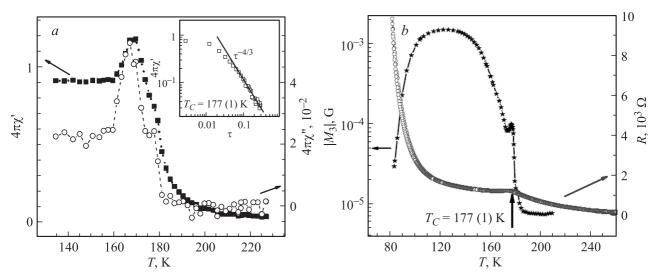
(см. далее) позволяет заключить, что "полка" связана с началом коалесценции изолированных Φ -кластеров ($T_{\rm coal} \approx 99\,{\rm K}$).

Рассмотрим зависимости $M_2(T, H)$, представленные на рис. 3 для некоторых характерных температур. Присутствие Н-гистерезиса — явное свидетельство сигнала от Ф-областей. При этом значение $M_2(H=0) \neq 0$ прямое следствие существования конечной остаточной намагниченности образца. Выраженный кластерный сигнал начинает наблюдаться ниже $T^* \approx 178 \, \mathrm{K}$. Первоначально носящий нерегулярный характер, он слабо растет с понижением температуры от T^* до 150 K, где приобретает отчетливо выраженную форму, характерную для изолированного Ф-кластера (см. рис. 3 для более низкой $T = 141.3 \,\mathrm{K}$). Это отмеченная выше первая стадия формирования кластеров, обусловленная химическими неоднородностями. Она заканчивается при $T^{\#} \approx 150 \, \mathrm{K}$, где начинается быстрое увеличение сигнала. Как показано далее, сигнал, несколько трансформируясь в процессе крайне значительного роста, сохраняет форму, характерную для изолированных Ф-кластеров. Поэтому данную стадию можно связать с ростом их плотности. Отклик естественно характеризовать температурными зависимостями экстремальных значений и Н-положений экстремумов, которые представлены на рис. 4. Как видно из этого рисунка, сигнал монотонно нарастает с охлаждением вплоть до максимума при 99 К. При этом H_{ext} в $\text{Re}M_2(H,T)$ и $\text{Im}M_2(H,T)$ уменьшаются, достигая минимума при 99 К, что можно объяснить некоторым увеличением размеров кластеров и их намагниченности, ниже 99 K падение $H_{\rm ext}$ сменяется ростом (вставка на рис. 4). В этом же интервале температур наблюдается рост $ReM_2(0)$ и $ImM_2(0)$, примерно пропорциональный росту экстремальных значений соответствующих компонент сигнала (рис. 4). На вставке к рис. 4 представлена также температурная зависимость "коэрцитивного" поля H_C для $\mathrm{Re} M_2(H)$, определяемого равенством ${\rm Re} M_2(H_C) = 0$. Данная величина служит дополнительной характеристикой температурного поведения формы гистерезисного сигнала. Некоторое ее уменьшение при охлаждении от 150 до 99 К можно объяснить тем же "одночастичным" фактором, что и уменьшение $H_{\rm ext}$. Таким образом, поведение всех существенных характеристик отклика на интервале быстрого роста 150-99 К свидетельствует об его "одночастичном" характере. Стадия однородной нуклеации Ф-кластеров заканчивается при $T_{\rm coal} \approx 99 \, {\rm K}$, где начинается их объединение в крупномасштабные комплексы.

Сигнал от матрицы здесь не наблюдается. Она находится в П-режиме со слабыми Ф-корреляциями. Это будет ясно из анализа отклика манганита, где характерный сигнал матрицы сильно выражен. Отметим, что в чисто П-области $(T>200\,\mathrm{K})~\chi(T)$ для исследуемого нами LCCO20 описывается выражением Кюри—Вейса с $\theta\sim47\,\mathrm{K}~[15]$. Наконец, сравнение с данными для LCCO15 $(T^{\#}\approx141\,\mathrm{K}$ и $T_{\mathrm{coal}}\sim90\,\mathrm{K})~[9]$ показывает, что


Рис. 3. Зависимости $\operatorname{Re} M_2(H)(a)$ и $\operatorname{Im} M_2(H)(b)$ при некоторых характерных температурах для $\operatorname{La}_{0.8}\operatorname{Ca}_{0.2}\operatorname{CoO}_3$.

все отличие поведения Φ -кластеров ограничивается увеличением $T^{\#}$, $T_{\rm coal}$ и величины сигнала в нашем случае, что обычно происходит при увеличении допирования.


3.2. La_{0.8}Ca_{0.2}MnO₃. Зависимость сопротивления от температуры, приведенная на рис. 5, b, указывает на диэлектрический характер соединения, имеет характерную особенность в окрестности T_C и совпадает с полученной ранее в [16]. На рис. 5 представлены температурные зависимости фазовых составляющих χ и $|M_3|$. Температура максимума $|M_3|(T)$ при наибольшей температуре определяет $T_C \approx 177$ К. Поведение $\chi'(\tau)$ ($\tau = (T - T_C)/T_C$) при $\tau > 0.04$ соответствует изотропному 3D-ферромагнетику $\chi'(\tau) \propto 1/\tau^{\gamma}$ с $\gamma \approx 4/3$ (вставка на рис. 5, a).

Рассмотрим зависимости $M_2(T)$, представленные на рис. 6. Для поведения системы, испытывающей фазовый переход второго рода, в далекой парамагнитной области $M_2 \propto H$, и только вблизи T_C при переходе к режиму сильного поля $(g\mu H \sim T_C au^{5/3})$ зависимость $M_2(H)$ становится нелинейной. Для $H = 300\,\mathrm{Oe}$ это происходит при $T - T_C \approx 1 \, \mathrm{K}$, и практически во всей критической П-области вклад от матрицы, возрастая с приближением к T_C , остается линейным по H. На рис. 6, b для ${\rm Im} M_2$ он отчетливо выражен на первых трех графиках начиная с $T = 233.6 \,\mathrm{K}$. Видно, что с охлаждением формируется и растет характерный гистерезисный отклик от Ф-кластеров, сосредоточенный вблизи H = 0. С понижением температуры до T_C сигнал трансформируется в соответствии с величинами вкладов от П-матрицы и кластеров. При интерпретации поведения $M_2(H)$ ниже T_C учтем, что кластерный сигнал может наблюдаться пока есть

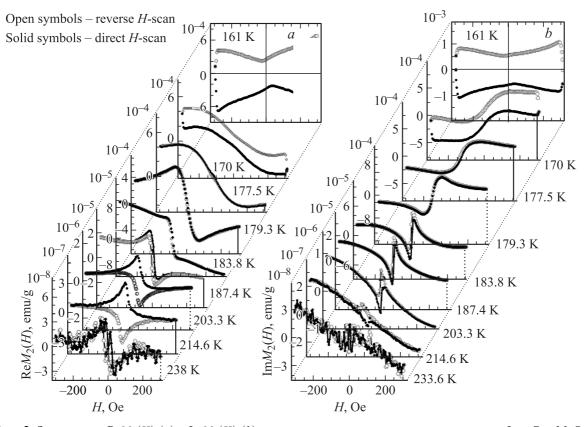

контраст между намагниченностями матрицы и кластеров, а отклик от матрицы в слабых полях в Φ -фазе связан с движением доменных стенок. Из сравнения зависимостей (рис. 6,b) при T=170 и $161\,\mathrm{K}$ видно, что в последнем сигнале доминирует вклад от движения доменных стенок в близком к однородному Φ -состоянии. Первый содержит заметный вклад от кластеров. Компонента $\mathrm{Re}M_2(H)$ демонстрирует сходное поведение (рис. 6,a). Здесь вклад от матрицы ясно выражен

Рис. 4. Зависимость экстремумов компонент сигнала и величин $\operatorname{Re} M_2(0)$, $\operatorname{Im} M_2(0)$ от температуры для $\operatorname{La}_{0.8}\operatorname{Ca}_{0.2}\operatorname{CoO}_3$. На вставке показаны значения положений экстремумов в поле и коэрцитивного поля H_C ($\operatorname{Re}(H_C)=0$) как функции температуры.

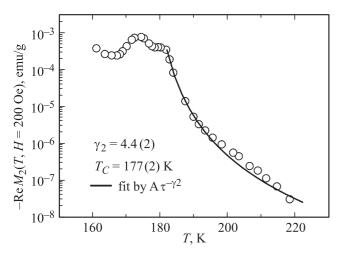

Рис. 5. Температурные зависимости линейной восприимчивости (a), сопротивления и модуля третьей гармоники намагниченности (b) для La_{0.8}Ca_{0.2}MnO₃. На вставке — $\chi'(\tau)$ и ее аппроксимация степенной функцией.

Рис. 6. Зависимости $\operatorname{Re} M_2(H)$ (a) и $\operatorname{Im} M_2(H)$ (b) при некоторых характерных температурах для $\operatorname{La}_{0.8}\operatorname{Ca}_{0.2}\operatorname{MnO}_3$.

при $T=183.8\,\mathrm{K}$, где преобладающий в больших полях отклик матрицы приводит к двум примерно линейным H-зависимостям с изломом.

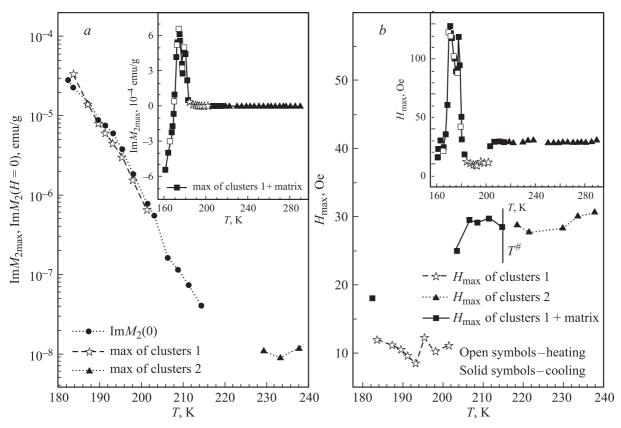
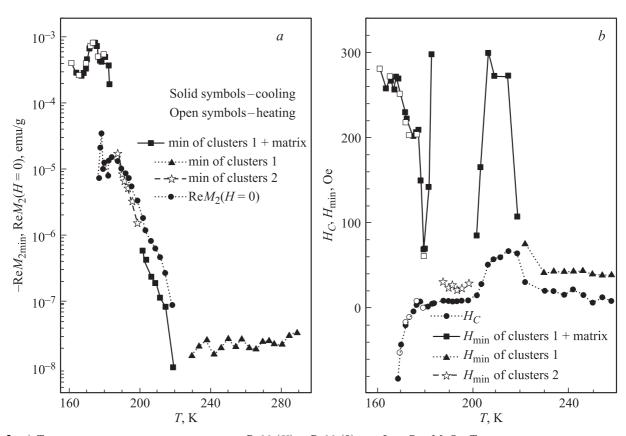

Обсудим детальнее температурную эволюцию отклика в П-области начиная с температурной зависимости сигнала матрицы. Поскольку сигнал от кластеров сосредоточен в слабом поле и быстро падает с его увеличением, рассмотрим ${\rm Re}M_2(H,T)$ при $H=200~{\rm Oe}$, где доминирует матрица. Как видно из рис. 7, увеличение ${\rm Re}M_2(T,H=200~{\rm Oe})$ более чем на два порядка хорошо описывается степенной зависимостью, давая критический индекс M_2 , соответствующий изотропному 3D-ферромагнетику в режиме слабого поля $M_2 \propto H/\tau^{\gamma 2}$ $(\gamma_2 \approx 14/3)$.

Рис. 7. Зависимость от температуры $-\text{Re}M_2$ при $H=200\,\text{Oe}$ и ее аппроксимация степенной функцией (сплошная линия) для $\text{La}_{0.8}\text{Ca}_{0.2}\text{MnO}_3$.

Перейдем к ${\rm Im} M_2$. Слабый кластерный сигнал ($\sim 10^{-8}~{\rm emu/g}$) начинает наблюдаться при $T^* \sim 290~{\rm K}$. Он практически не растет с понижением температуры и связан с химическими неоднородностями. При

 $T \sim 240 \, {\rm K}$ к нему добавляется вклад от матрицы, и ниже 240 К образуется смешанный отклик, примеры которого приведены на рис. 6, b (233.6 и 214.6 К). Новый сигнал, обусловленный однородной нуклеацией кластеров, формируется при $T^{\#} \approx 215 \, \mathrm{K}$ (где он превосходит "примесный"), ниже которой наблюдается его сильный рост. Первоначально вклад матрицы заметно модифицирует форму кластерного отклика, что отражается в уменьшении H_{max} при охлаждении от $T^{\#}$ до $T \approx 202 \, \text{K}$ (рис. 8, b). В интервале $184-202 \, \text{K}$ наблюдается характерный чисто кластерный сигнал, который сильно растет, сохраняя форму (фиксированное поле H_{max}) (рис. 8). Компонента $\text{Im} M_2(0)$ изменяется пропорционально $\text{Im} M_{2\,\text{max}}$ (рис. 8,a). Поскольку она определяется только Ф-кластерами, начало ее роста сравнительно легко определяется и совпадает с температурой $T^{\#}$, найденной выше. Ниже 183 K сигнал начинает существенно трансформироваться из-за вклада матрицы, что отражается в росте H_{max} (рис. 8, b). Наконец, отклик достигает максимума в точке $T_C \approx 177 \, {
m K}$ (вставка на рис. 8, a). Поведение смешанного сигнала ниже T_C описано выше. В определенной мере оно характеризуется температурными зависимостями ${\rm Im} M_{2\,{\rm max}}$ и H_{max} (рис. 8).


Рис. 8. a) Температурные зависимости максимума $Im M_2(H)$ и $Im M_2(0)$ для $La_{0.8}Ca_{0.2}MnO_3$. Треугольники — максимум сигнала от Φ -кластеров, связанных с химическими неоднородностями. Звездочки — максимум отклика кластеров, когда он доминирует в режиме нуклеации. На вставке — зависимость $Im M_2(H)$ во всем интервале измерений. Квадраты — максимум смешанного сигнала матрицы и кластеров. b) Зависимость от температуры положения максимума $Im M_2(H)$ соответствующих сигналов в ограниченном и полном интервале измерений (вставка).

Кратко рассмотрим сходную с предыдущей температурную эволюцию $ReM_2(H)$ (рис. 9). Слабый "примесный" сигнал наблюдается в области от $T^* \sim 290\,\mathrm{K}$ до $T^{\#} \approx 220\,\mathrm{K}$. В окрестности $T^{\#}$ происходит трансформация сигнала, связанная с началом однородной нуклеации кластеров (рис. 9, окрестность 220 К). В интервале от $T^{\#}$ до $T\approx 198\,\mathrm{K}$ наблюдается смешанный отклик с быстро увеличивающимся кластерным сигналом, модифицированным вкладом матрицы (резкое уменьшение H_{\min}) (рис. 9). В интервале 187—198 K преобладает чисто кластерный сигнал с фиксированными H_{max} и H_C . Отметим, что компонента $\text{Re} M_2(H)$ кластерного сигнала в начале его развития изменяется матрицей заметно сильнее, чем $Im M_2(H)$. Так, при $T = 210 \, {
m K}$ величина $H_{
m min}$ сравнима с границей развертки поля. Это связано с тем, что кластерный отклик $\operatorname{Re} M_2(H)$ центрирован при $H_{\min} \approx 25\,\mathrm{Oe}$ (рис. 9, b), а ${\rm Im} M_2(H)$ — при $H_{\rm max} \approx 10\,{\rm Oe}$ (рис. 8,b). Сигнал тем сильнее модифицируется линейным вкладом матрицы, чем больше значение его экстремума. Далее, в узком интервале 182-187 К отклик не имеет максимума (рис. 6, *a*, 183.8 K). Ниже 182 K наблюдается смешанный сигнал, достигающий максимума в точке $T_C \approx 177 \, \mathrm{K}$, где его положение H_{\min} испытывает минимум. Компонента

 ${\rm Re}M_2(0)$, определяемая исключительно Φ -кластерами, возрастает примерно пропорционально $-{\rm Re}M_{2\,{\rm min}}$ в интервале от 218 до 187 K, где достигается первый максимум (рис. 9, a). Основной максимум возникает в точке T_C (это становится ясным при увеличении температурного масштаба). Стадия нуклеации завершается вблизи T_C , ниже которой идет формирование однородного Φ -состояния, обусловленное развитием Φ -упорядочения матрицы.

4. Заключение

Полученные результаты продемонстрировали существование Ф-кластеров с близкими магнитными характеристиками в П-матрицах LCCO20 и LCMO20. В обеих системах две первые стадии зарождения и развития кластерного состояния, главная из которых однородная нуклеация, совпадают. Третья стадия различается. В LCCO20 начинается коалесценция кластеров, тогда как в LCMO20 она не наблюдается, поскольку развитие Ф-упорядочения матрицы изменяет температурную эволюцию Ф-кластеров. Указанные особенности свидетельствуют в пользу общей природы кластерного состояния в допированных кобальтитах и манганитах. Разница в

Рис. 9. a) Температурная зависимость минимума $ReM_2(H)$ и $ReM_2(0)$ для $La_{0.8}Ca_{0.2}MnO_3$. Треугольники — минимум сигнала от Φ -кластеров, связанных с химическими неоднородностями. Звездочки — минимум отклика кластеров, когда он доминирует в режиме нуклеации. Квадраты — минимум смешанного сигнала матрицы и кластеров. b) Зависимость от температуры положения минимума $ReM_2(H)$ соответствующих сигналов и "коэрцитивного" поля H_C ($Re(H_C)=0$).

поведении Ф-кластеров обусловлена магнитно-активным характером матрицы в случае манганитов и относительно нейтральным в случае кабальтитов. Таким образом, настоящая работа подтвердила вывод, сделанный при изучении LaSr-пары манганит—кобальтит.

Список литературы

- [1] E. Dagotto. New J. Phys. 7, 67 (2005).
- [2] E. Dagotto, T. Hotta, A. Moreo. Phys. Rep. 344, 1 (2001).
- [3] Н.Б. Иванов, С.Г. Овчинников, М.М. Коршунов, И.М. Еремин, Н.В. Казак. УФН 179, 837 (2009).
- [4] В.А. Рыжов, А.В. Лазута, И.Д. Лузянин, И.И. Ларионов, В.П. Хавронин, Ю.П. Черненков, И.О. Троянчук, Д.Д. Халявин. ЖЭТФ 121, 678 (2002).
- [5] V.A. Ryzhov, A.V. Lazuta, V.P. Khavronin, I.I. Larionov, I.O. Troaynchuk, D.D. Khalyavin. Solid State Commun. 130, 803 (2004).
- [6] V.A. Ryzhov, A.V. Lazuta, I.A. Kiselev, V.P. Khavronin, P.L. Molkanov, I.O. Troaynchuk, S.V. Trukhanov. J. Magn. Magn. Mater. 300, e159 (2006).
- [7] A.V. Lazuta, V.A. Ryzhov, I.A. Kiselev, Yu.P. Chernenkov, O.P. Smirnov, P.L. Molkanov, I.O. Troyanchuk, V.A. Khomchenko. Functional Mater. 15, 178 (2008).
- [8] A.V. Lazuta, V.A. Ryzhov, A.I. Kurbakov, V.P. Khavronin, P.L. Molkanov, Ya.M. Mukovskii, A.E. Pestun, R.V. Privezentsev. Solid State Phenom. 168–169, 457 (2011).
- [9] A.V. Lazuta, V.A. Ryzhov, A.I. Kurbakov, V.P. Khavronin, P.L. Molkanov, Ya.M. Mukovskii, A.E. Pestun, R.V. Privezentsev. Solid State Phenom. 190, 679 682 (2012).
- [10] V.A. Ryzhov, A.V. Lazuta, P.L. Molkanov, V.P. Khavronin, A.I. Kurbakov, V.V. Runov, Ya.M. Mukovskii, A.E. Pestun, R.V. Privezentsev. J. Magn. Magn. Mater. 324, 3432 (2012).
- [11] D. Samal, P.S. Anil Kumar. J. Phys.: Cond. Matter **23**, 016 001 (2011).
- [12] M. Kriener, M. Braden, H. Kiersper, D. Senff, O. Zabara, C. Zobel, T. Lorenz. Phys. Rev. B 79, 224104 (2009).
- [13] M. Pissas, I. Margiolaki, G. Papavassiliou, D. Stamopoulos, D. Argyriou. Phys. Rev. B 72, 064425 (2005).
- [14] M. Kriener, C. Zobel, A. Reichl, M. Cwik, K. Berggold, H. Kiersper, O. Zabara, A. Freimuth, T. Lorenz. Phys. Rev. B 69, 094417 (2004).
- [15] H. Szymczak, M. Baran, G.-J. Babonas, R. Diduszko, J. Fink-Finowicki, R. Szymczak. J. Magn. Magn. Mater. 285, 386 (2005).
- [16] P. Dai, J.A. Fernandez-Baca, N. Wakabayashi, E.W. Plummer, Y. Tomioka, Y. Tokura. Phys. Rev. Lett. 85, 2553 (2000).