О 2*s*-подобном релаксированном возбужденном состоянии *F*-центра в щелочно-галоидных кристаллах

© В.Г. Панов, А.Н. Вараксин*, А.Б. Соболев

Уральский государственный технический университет (УПИ), 620002 Екатеринбург, Россия * Институт промышленной экологии Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: vladimir.panov@usu.ru

(Поступила в Редакцию 17 августа 2007 г. В окончательной редакции 9 октября 2007 г.)

Приводятся энергетические и спектроскопические характеристики первого возбужденного 2*s*-подобного состояния *F*-центра, вычисленные в рамках вариационной модели, предложенной в работе Gourary–Adrian. Дана картина релаксации кристалла в окрестности возбужденного *F*-центра. Обсуждается вопрос пространственного распространения *F*-центра. Проведено сопоставление данных для 2*p*- и 2*s*-состояний *F*-центра, а также их сопоставление с экспериментальными данными.

PACS: 71.55.Ht, 61.72.Bb, 61.72.Ji

1. Введение

Изучение *F*-центров в щелочно-галоидных кристаллах довольно давно является предметом многочисленных теоретических и экспериментальных исследований [1,2]. Причина этого в том, что *F*-центр, т.е. электрон, захваченный анионной вакансией, является одним из простейших дефектов в твердых телах и, кроме того, прообразом более сложных локализованных электронных состояний [3].

Основным средством изучения F-центров являются различные резонансные методы, прежде всего электронный парамагнитный и двойной электронно-ядерный резонанс [4,5]. Данные оптического детектирования позволили установить многие тонкие характеристики F-центра как в основном, так и в первом возбужденном состоянии [1,2,6]. В результате эти измерения позволяют сделать заключение о том, что волновую функцию основного состояния F-центра можно взять в виде 1*s*-подобной волновой функции (ВФ).

Более сложным оказалось положение с исследованием первого возбужденного состояния F-центра. Несмотря на то что проблема описания этого состояния исследуется уже более 40 лет, вопрос выбора модели остается открытым [7]. Первоначально была предложена модель Фаулера, в которой релаксированное возбужденное состояние (PBC) описывалось пространственно распределенной 2*p*-подобной ВФ [1]. Хотя она оказалась недостаточной для объяснения всех наблюдаемых явлений, в некоторых случаях ее использование вполне оправдано [8].

Более эффективной оказалась модель, предложенная Боганом и Фитченом [9]. В ней РВС *F*-центра рассматривается состоящим из 2*s*-подобной электронной ВФ с добавлением 2*p*-подобной ВФ, связанных электронфононным взаимодействием. В дальнейшем эта модель была расширена до вибронной модели [10,11], которая удовлетворительно объяснила ряд наблюдаемых характеристик *F*-центров [12–14]. Более подробно с экспериментальными данными можно ознакомиться по работам [15,16].

2. Методика расчета

В работе [17] было приведено описание модели, расчетных формул и полученных данных для 2*p*-подобного состояния *F*-центра в щелочно-галоидных кристаллах. Основные идеи рассматриваемого подхода основаны на приближении молекулярной статики в оболочечной модели ионов решетки. Аналитическое описание использует идеи вариационного метода работы [18]. При этом в качестве волновой функции электрона *F*-центра берется ВФ с некоторым скалярным параметром λ , значение которого находится из условия минимизации функционала полной энергии кристалла с дефектом.

В рассматриваемом случае мы предполагаем, что *F*-центр находится в первом возбужденном (релаксированном) состоянии с волновой функцией вида (в сферических координатах)

$$\psi_{2s}(\lambda,r)=\frac{b^{3/2}}{\sqrt{\pi}}\exp(-br)(1-br),$$

где $b = \lambda/a$, a — постояннная решетки данного кристалла (здесь — это расстояние между ближайшими анионом и катионом).

Вычисления кулоновского потенциала, создаваемого этим зарядом, приводят к выражению

$$V_{2s} = \frac{1}{r} \left[1 - \exp(-2br) \left(1 + \frac{3}{2} br + (br)^2 + (br)^3 \right) \right].$$

3. Результаты расчетов и обсуждение

В табл. 1 приведены значения вариационного параметра λ , минимизирующего функционал полной энергии кристалла с дефектом E_{tot} для соответствующей волновой функции *F*-центра (рассмотрены ВФ типа 1s, 2s, 2p). Для 2p-состояния *F*-центра в некоторых кристаллах получить значение вариационного параметра λ оказывается невозможным из-за расходимости процедуры минимизации полной энергии (вероятно, это свидетельствует о неприменимости в данной задаче метода парных потенциалов для этих кристаллов).

Примечательна довольно незначительная разница в полных энергиях кристалла для PBC 2s- и 2p-состояний *F*-центра. Это может означать, что при взаимодействии *F*-центра с фононами решетки первое возбужденное состояние испытывает спонтанные переходы $2s \leftrightarrow 2p$ с преимущественным пребыванием в состоянии 2s (как обладающем более высокой симметрией). Качественно это вполне согласуется с моделью PBC Богана-Фитчена.

Таблица 1. Оптимальные значения вариационнного параметра и полная энергия кристалла с *F*-центром (eV)

Кристалл	λ_{1s}	λ_{2s}	λ_{2p}	$E_{\rm tot}(\lambda_{1s})$	$E_{\mathrm{tot}}(\lambda_{2s})$	$E_{\mathrm{tot}}(\lambda_{2p})$
LiF	1.4889	1.0010	1.0198	-8.54	-6.49	-6.78
LiCl	1.7030	1.0372	1.1387	-6.99	-5.16	-5.39
LiBr	1.7790	1.0422	1.2131	-6.41	-4.64	-4.85
LiI	1.8449	1.0530	1.3567	-5.84	-4.20	-4.39
NaF	1.7123	1.0291	1.1815	-7.40	-5.06	-5.36
NaCl	1.8703	1.0694	1.9862	-6.22	-4.13	-4.46
NaBr	1.9229	1.0731	2.3100	-5.76	-3.71	-4.11
NaI	1.9878	1.0892	—	-5.23	-3.29	—
KF	1.8697	1.0544	1.8185	-6.84	-4.59	-4.91
KCl	1.9819	1.1050	_	-5.69	-3.57	_
KBr	2.0351	1.1018	_	-5.33	-3.20	_
KI	2.1114	1.1272	—	-4.87	-2.80	—
RbF	1.9587	1.0492	_	-6.78	-4.58	_
RbCl	2.0457	1.1021	_	-5.57	-3.46	_
RbBr	2.0742	1.1262	_	-5.18	-3.08	_
RbI	2.1442	1.1475	-	-4.76	-2.69	—
CsF	2.0847	1.0451	_	-7.05	-4.66	_
CsCl	2.3475	1.5491	2.8000	-5.21	-3.58	-4.09
CsBr	2.3837	1.5400	2.8483	-4.80	-3.23	-3.75
CsI	2.4205	1.5899	2.8950	-4.36	-2.88	-3.41

Таблица	2.	Смещения	ионов	ближайшего	окружения	PBC
<i>F</i> -центра в	в со	стоянии 2s				

Кристалл	ξ1	ξ2	ξ3	ξ4
LiF LiCl LiBr LiI NaF NaCl	0.095 0.095 0.096 0.101 0.071 0.077	$\begin{array}{r} -0.033 \\ -0.035 \\ -0.035 \\ -0.034 \\ -0.033 \\ -0.032 \\ 0.032 \end{array}$	0.012 0.006 0.005 0.003 0.013 0.007	0.008 0.012 0.012 0.012 0.012 0.007 0.013
NaBr NaI	0.078 0.079	-0.032 -0.031	0.009 0.007	0.013 0.014
KF	0.055	-0.028	0.013	0.002
KCl	0.065	-0.028	0.010	0.010
KBr	0.063	-0.028	0.010	0.011
KI	0.063	-0.027	0.009	0.013
RbF	0.041	-0.024	0.013	0.014
RbCl	0.055	-0.026	0.011	0.006
RbBr	0.057	-0.025	0.010	0.008
RbI	0.057	-0.024	0.009	0.010
CsF	0.001	-0.021	0.013	-0.040
CsCl	0.043	-0.061	0.003	-0.002
CsBr	0.042	-0.064	0.003	-0.002
CsI	0.041	-0.068	0.003	-0.003

Представляет интерес анализ характера релаксации решетки вблизи F-центра. Картина деформации для состояний 1s и 2p подробно описана в [17]. Для возбужденного состояния 2s все смещения ионов радиальны и направлены наружу (положительные значения) или внутрь ячейки, т.е. к F-центру (отрицательные значения). Величина смещения ξ_i ионов *i*-й координационной сферы приведена в единицах постоянной решетки соответствующего кристалла в табл. 2.

Из табл. 2, в частности, видно, что для ближайшего окружения F-центра (шесть или восемь ионов первой координационной сферы) наличие примесного электрона в 2s-подобном состоянии приводит к смещению ионов от F-центра наружу, что совпадает с картиной смещений для F-центра в состоянии 2p [17]. Однако сами величины смещений для состояния 2s заметно меньше, чем для состояния 2р. Это можно объяснить большим пространственным распространением заряда F-центра, находящегося в состоянии 2s, по сравнению с состоянием 2р. В результате на ионы ближайшего окружения приходится меньшая электронная плотность, и взаимодействие этих ионов с *F*-центром оказывается более слабым, чем для 2*p*-состояния *F*-центра. Действительно, поскольку основная часть заряда F-центра оказывается за пределами ближайших ионов, для них основное влияние дефекта проявляется в отсутствии аниона, т.е. F-центр для ближайших ионов ведет себя как анионная вакансия кристаллической решетки, что

Таблица 3. Заряд <i>F</i> -центра в состояниях 2 <i>s</i> и 2 <i>p</i> в пределах						
первых	четырех	координационных	сфер	(в	долях	полного
заряда э	лектрона))				

Кристалл	2s-co	2 <i>p</i> -состояние <i>F</i> -центра						
npiioraabi	Ι	II	III	IV	Ι	II	III	IV
LiF	0.0527	0.064	0.110	0.176	0.056	0.165	0.281	0.387
LiCl	0.0527	0.069	0.123	0.198	0.081	0.224	0.361	0.479
LiBr	0.0527	0.070	0.125	0.201	0.098	0.260	0.409	0.531
LiI	0.0527	0.071	0.129	0.208	0.142	0.341	0.507	0.633
NaF	0.0527	0.068	0.120	0.193	0.091	0.244	0.388	0.508
NaCl	0.0527	0.074	0.136	0.219	0.367	0.662	0.817	0.898
NaBr	0.0527	0.075	0.137	0.221	0.491	0.783	0.912	0.953
NaI	0.0528	0.078	0.145	0.232	—	_	—	_
KF	0.0527	0.072	0.129	0.209	0.301	0.585	0.754	0.851
KCl	0.0529	0.080	0.152	0.243	_	_	_	_
KBr	0.0528	0.080	0.150	0.241	_	-	_	_
KI	0.0530	0.085	0.162	0.258	—	_	—	_
RbF	0.0527	0.071	0.127	0.206	_	_	_	_
RbCl	0.0528	0.080	0.150	0.241	_	_	_	_
RbBr	0.0530	0.085	0.162	0.258	_	-	_	_
RbI	0.0532	0.089	0.172	0.273	—	_	—	_
CsF	0.0527	0.070	0.126	0.203	_	_	—	_
CsCl	0.0594	0.079	0.236	0.375	0.526	0.652	0.892	0.952
CsBr	0.0590	0.077	0.232	0.369	0.545	0.671	0.902	0.958
CsI	0.0622	0.086	0.261	0.406	0.563	0.687	0.911	0.963

приводит к известному эффекту удаления ближайших ионов от *F*-центра.

Более точно пространственные распределения заряда F-центра, находящегося в состояниях 2s или 2p, представлены в табл. 3 (римскими цифрами обозначен объем сферы вокруг F-центра, радиус которой равен радиусу соответствующей координационной сферы).

Сопоставление степени пространственного распространения электрона, находящегося в состояниях 2s и 2p, показывает, что в центрально-симметричном состоянии 2s *F*-центр оказывается значимо распределенным заметно дальше, чем в состоянии 2p. Это можно объяснить тем, что анизотропный заряд (*F*-центр в состоянии 2p) имеет более интенсивное взаимодействие как с кристаллическим полем решетки, так и с электронными оболочками ионов, окружающих *F*-центр.

Возможности программы MOLSTAT позволяют также вычислить энергию поглощения и излучения F-центра, находящегося в состоянии 2s или 2p. Так как кристаллическая решетка меняет свое состояние значительно медленнее, чем происходит изменение квантового состояния F-центра, в соответствии с принципом Франка-Кондона конфигурация решетки сохраняется при переходе электрона в возбужденное (или в основное из возбужденного) состояние. Рассчитанные таким образом значения энергий представлены в табл. 4, 5. Из данных таблицы видно, что энергия поглощения в целом лучше согласуется с экспериментальными данными для перехода $1s \rightarrow 2p$, а для энергии излучения лучше согласуются значения энергии для перехода $2s \rightarrow 1s$. Это может означать, что первоначальный переход из основного состояния 1s *F*-центр делает в состояние 2p, из которого (после испускания фононов) переходит в более стабильное состояние 2s. В последущем *F*-центр может излучить фотон, переходя из состояния 2s в 1s.

Таблица 4. Энергия поглощения *F*-центром (переходы $1s \rightarrow 2p$ и $1s \rightarrow 2s$) (eV)

Кристалл	$E_{ab}(1s \rightarrow 2p)$	$E_{ab}(1s \rightarrow 2s)$	Эксперимент [1]
LiF	2.597	3.198	5.102
LiCl	2.176	3.052	3.3
LiBr	2.055	3.037	2.77
LiI	1.859	2.919	3.42
NaF	2.687	3.733	3.72
NaCl	2.142	3.428	2.77
NaBr	2.010	3.383	2.35
NaI	1.821	2.870	2.06
KF	2.374	3.748	2.85
KC1	1.911	3.009	2.31
KBr	1.823	2.865	2.06
KI	1.679	2.631	1.87
RbF	2.325	3.913	2.43
RbCl	1.835	2.882	2.05
RbBr	1.728	2.709	1.86
RbI	1.603	2.505	1.71
CsF	2.284	4.193	1.89
CsCl	1.584	2.422	2.17
CsBr	1.469	2.303	1.93
CsI	1.336	2.092	1.65

Таблица 5. Энергия излучения *F*-центром (переходы $2p \rightarrow 1s$ и $2s \rightarrow 1s$) (eV)

Кристалл	$E_{em}(2p \rightarrow 1s)$	$E_{em}(2s \rightarrow 1s)$	Эксперимент [1]
LiF	0.91	1.29	_
LiCl	0.79	0.98	_
LiBr	0.8	0.91	—
LiI	0.81	0.78	_
NaF	1.12	1.33	1.665
NaCl	1.41	1.11	0.975
NaBr	1.37	1.07	—
NaI	_	0.99	_
KF	1.45	1.19	1.66
KCl	_	1.14	1.215
KBr	_	1.13	0.916
KI	_	1.10	0.827
RbF	_	1.09	1.328
RbCl	_	1.12	1.09
RbBr	_	1.11	0.87
RbI	_	1.10	0.81
CsF	_	1.00	1.42
CsCl	0.71	0.82	1.255
CsBr	0.64	0.77	0.91
CsI	0.58	0.73	0.74

Список литературы

- Physics of color center / Ed. W.B. Fowler. N.Y.-London (1968). 625 p.
- [2] J.J. Markham. F-centers in Alkali-Halides. Academic Press, N.Y.-London (1966).
- [3] Э. Маделунг. Физика твердого тела. Локализованные состояния. Наука, М. (1985). 184 с.
- [4] Г. Вертхейм, А. Хаусман, В. Зандер. Электронная структура точечных дефектов. Атомиздат, М. (1977). 208 с.
- [5] A.M. Stoneham. Phys. Stat. Sol. (b) 52, 9 (1972).
- [6] П.Г. Баранов, Ю.П. Вещунов, Н.Г. Романов. Письма в ЖЭТФ 32, 3 (1980).
- [7] J.-M. Spaeth, F. Lohse. J. Phys. Chem. Sol. 51, 861 (1991).
- [8] L.F. Mollenauer, G. Baldacchini. Phys. Rev. Lett. 29, 465 (1972).
- [9] L.D. Bogan, D.B. Fitchen. Phys. Rev. B 1, 4122 (1970).
- [10] F.S. Ham. Phys. Rev. B 8, 2926 (1973).
- [11] K. Iwahana, T. Iida, H. Ohkura. J. Phys. Soc. Jpn. 47, 599 (1979).
- [12] H. Ohkura, K. Imanaka, P. Kamada, Y. Mori, T. Iida. J. Phys. Soc. Jpn. 42, 2137 (1976).
- [13] R.E. Hetric, W.D. Compton. Phys. Rev. 155, 649 (1967).
- [14] N. Akiyama, H. Ohkura. Phys. Rev. B 40, 3232 (1989).
- [15] N. Akiyama, H. Ohkura. Phys. Rev. B 53, 10632 (1996).
- [16] H.J. Reyher, K. Hahn, Th. Vetter, A. Winnacker. Z. Physik B 33, 357 (1979).
- [17] А.Н. Вараксин, А.Б. Соболев, В.Г. Панов. ФТТ **48**, 427 (2006).
- [18] B.S. Gourary, F.J. Adrian. Phys. Rev. 105, 1180 (1957).