Пиннинг уровня Ферми, вызванный адсорбцией

© С.Ю. Давыдов, С.В. Трошин*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия * Санкт-Петербургский государственный электротехнический университет (ЛЭТИ), 197376 Санкт-Петербург, Россия

E-mail: Sergei.Davydov@mail.ioffe.ru

(Поступила в Редакцию 1 августа 2007 г.)

Показано, что наведенный адсорбцией пиннинг уровня Ферми имеет место при степенях покрытия Θ^* , соответствующих мелкому экстремуму или насыщению работы выхода системы. В рамках модифицированной модели адсорбции Андерсона–Ньюнса получены уравнения для определения Θ^* . Приведен анализ экспериментальных данных по адсорбции атомов щелочных, щелочно-земельных (Ва) и редкоземельных металлов и водорода на полупроводниках (кремнии, арсениде галлия и диоксиде титана). Сделаны оценки положения уровня Ферми на поверхности полупроводника.

Работа выполнена при поддержке целевой программы "Развитие научного потенциала высшей школы Российской Федерации" (проект РНП 2.1.2.1716К).

PACS: 73.20.Hb, 71.55.Cn, 71.55.Eq

1. Под пиннингом уровня Ферми понимается его фиксация на поверхности полупроводника относительно краев разрешенных зон, вызванная наличием в приповерхностной области каких-либо квазилокализованных состояний [1]. К таким состояниям могут относиться собственные поверхностные уровни полупроводника, уровни приповерхностных дефектов, а также состояния, наведенные адатомами. В настоящей работе будем рассматривать именно состояния адатомов, считая, что в отсутствие таковых зоны в приповерхностной области являются плоскими.

В зависимости от взаиморасположения квазиуровня адатома и уровня Ферми (химического потенциала) субстрата адсорбированные атомы могут либо отдавать электроны подложке, выступая в качестве доноров, либо, наоборот, захватывать электроны, оставляя в подложке дырки и являясь при этом акцепторами [2,3]. Наличие заряженных адатомов вызывает изгиб зоны проводимости E_C и валентной зоны E_V полупроводника [4,5]

$$E_C(x) = E_{C0} - e\varphi(x),$$

$$E_V(x) = E_{V0} - e\varphi(x),$$
 (1)

где φ — электростатический потенциал: $\varphi > 0$, если зоны изгибаются вниз; $\varphi < 0$, если зоны изгибаются вверх: x = 0 — координата поверхности подложки, совпадающей с плоскостью (0 y z), причем подложка занимает правое полупространство, e — величина заряда электрона, E_{C0} и E_{V0} — положения зоны проводимости и валентной зоны в объеме полупроводника. Можно показать [5–7], что плотность поверхностного заряда адатомов σ_s связана с приведенным поверхностным потенциалом (безразмерной потенциальной энергией) $\psi_s = e\varphi_s/k_{\rm B}T$ ($k_{\rm B}$ — постоянная Больцмана, T — абсолютная температура, $\varphi_s > 0$ ¹ определенными соотношениями. При адсорбции отрицательно заряженных адатомов (акцепторов) на p(n)-подложке, когда зоны изгибаются вверх по направлению к поверхности, можно показать (см. Приложение), что

$$|\sigma_s| = \frac{\varepsilon_0 \varepsilon k_{\rm B} T}{e L_{p(n)}} \sqrt{e^{\pm \psi_s} \mp \psi_s - 1}, \qquad (2)$$

где ε_0 — диэлектрическая постоянная, ε — диэлектрическая проницаемость полупроводника; дебаевские длины имеют вид

$$L_p = \sqrt{\frac{\varepsilon_0 \varepsilon k_{\rm B} T}{2e^2 p}}, \quad L_n = \sqrt{\frac{\varepsilon_0 \varepsilon k_{\rm B} T}{2e^2 n}}.$$
 (3)

При адсорбции положительно заряженных адатомов (доноров) на p(n)-подложке, когда зоны изгибаются вниз по направлению к поверхности, имеем

$$\sigma_s = \frac{\varepsilon_0 \varepsilon k_{\rm B} T}{e L_{p(n)}} \sqrt{e^{\mp \psi_s} \pm \psi_s - 1}.$$
 (4)

Отметим, что при получении выражений (2) и (4) мы учитывали только основные носители.

Легко показать (см., например, [6,7]), что в случае адсорбции частиц с зарядом Z и концентрацией $N = N_{ML}\Theta$ плотность поверхностного заряда адатомов

$$\sigma_s = e Z \Theta N_{ML}. \tag{5}$$

Здесь степень покрытия $\Theta = N/N_{ML}$, где N и N_{ML} — концентрации частиц в адсорбированном слое и монослое соответственно (мы рассматриваем только субмонослой-

¹ В дальнейшем будем считать значение ψ_s всегда положительным, а направление изгиба зон учитывать с помощью соответствующего знака.

	Li/Si	K/Si	Rb/Si	Cs/Si	K/GaAs	Cs/GaAs
	(100)	(100)	(100)	(100)	(110)	(110)
Θ*,	0.75	0.40	0.40	0.30	0.70	0.80
теория	насыщение	насыщение	минимум	минимум	насыщение	насыщение
$\Theta^*,$ эксперимент	0.75 [11] насыщение	0.40 [12] насыщение	0.60 [9] минимум	0.35 [8] минимум; 0.40 [13] насыщение	0.80 [14] насыщение	0.90 [15] насыщение

Таблица 1. Адсорбция атомов щелочных металлов на кремнии и арсениде галлия (теоретические значения Θ^* взяты из работ [23–25])

ные покрытия $0 \le \Theta \le 1$). Из теории адсорбции также следует, что вызванное адатомами изменение работы выхода системы $\Delta \phi$ дается выражением

$$\Delta \phi = -\Theta Z \Phi, \quad \Phi = e^2 N_{ML} \lambda / \varepsilon_0, \tag{6}$$

где λ — длина адсорбционной связи.

2. Пиннинг уровня Ферми можно определить уравнением

$$\left(\frac{d\psi_s}{d\Theta}\right)_{\Theta \ge \Theta^*} = 0. \tag{7}$$

Действительно, при выполнении условия (7) края зон фиксируются на поверхности, так как при $\Theta \ge \Theta^*$ зависимость изгиба зон от увеличения концентрации адатомов исчезает. При этом фиксируется и положение уровня Ферми в запрещенной зоне. Отметим, что условие (7) отвечает случаю насыщения функции $\psi_s(\Theta)$. Может, однако, иметь место ситуация, когда функция $\psi_s(\Theta)$ имеет экстремум, соответствующий покрытию $\Theta = \Theta^*$. Если этот экстремум можно считать достаточно мелким, то в окрестности покрытия Θ^* значения ψ_s будут меняться мало. Такой случай также будем относить к пиннингу.

Из выражений (2) и (4) вытекает, что выражению (7) отвечает условие $(d\sigma_s/d\Theta)_{\Theta\geq\Theta^*}=0$. Далее, из сравнения формул (5) и (6) следует, что (7) эквивалентно уравнению

$$\left(\frac{d\Delta\phi}{d\Theta}\right)_{\Theta\geq\Theta^*} = 0.$$
 (8)

Таким образом, пиннинг уровня Ферми отвечает состоянию насыщения работы выхода системы при $\Theta \ge \Theta^*$ или слабо выраженному ее экстремуму при $\Theta = \Theta^*$. Это важный и, более того, весьма привлекательный результат. Действительно, влиянию адсорбции на работу выхода посвящено огромное число экспериментов, результаты которых можно разбить на две группы. К первой группе относятся системы, для которых зависимость $\Delta \phi(\Theta)$ не имеет экстремума и не демонстрирует насыщения, ко второй — системы, для которых такой экстремум или насыщение наблюдаются. При этом, что особенно важно, значение Θ^* может быть непосредственно определено из эксперимента. Рассмотрим типичные адсорбционные системы, а именно: субмонослойные слои металлических атомов и атомов (молекул) газа на полупроводниках [2]. Экспериментальные значения Θ^* для атомов щелочных металлов на Si(100) и GaAs(110) приведены в табл. 1, для атомов бария и редкоземельных металлов (P3M) на Si(111) — в табл. 2, для атомов щелочных металлов на TiO₂(110) — в табл. 3 [8–22]. В тех же таблицах приведены теоретические значения Θ^* , взятые из работ [23–28]. Согласие следует призначать вполне удовлетворительным.

При адсорбции атомов водорода на Ge(100) наблюдается максимум работы выхода при $\Theta^* \sim 0.1$ [29]. При адсорбции Н на Ge(111) имеют место минимум работы выхода при $\Theta^* \sim 0.1$ и максимум при $\Theta^* \sim 0.6$ [29]. Соответствующая теория представлена в работах [30,31].

Необходимо, однако, отметить следующее обстоятельство. В последние годы экспериментаторы, как правило, не затрудняют себя определением степени покрытия Θ , а приводят результаты опытов в виде $\Delta \phi(\tau)$, где τ время нанесения пленки (время экспозиции). Теоретику

Таблица 2. Адсорбция атомов бария и редкоземельных металлов на Si(111) (теоретические значения Θ^* взяты из работы [26])

	Ba	Sm	Eu	Yb
Θ*,	0.6	0.7	0.7	0.6
теория	насыщение	насыщение	насыщение	насыщение
Θ*,	0.4	0.7	0.6	0.6
эксперимент	насышение	минимум	насышение	минимум

Таблица 3. Адсорбция атомов щелочных металлов на $TiO_2(110)$ (теоретические значения Θ^* взяты из работ [27,28])

	Na	K	Cs
Θ^* ,	0.8	0.7	0.6
теория	насыщение	насыщение	минимум
Θ*,	0.8	0.7	0.5
эксперимент	насыщение	насыщение	минимум

приходится самому сопоставлять время τ с покрытием Θ . При этом, естественно, имеет место определенный произвол.

3. Покажем теперь, как можно рассчитать величину покрытия Θ^* , воспользовавшись моделью адсорбции Андерсона–Ньюнса (см., например, [23,24]), в рамках которой число заполнения состояния адатома n_a определяется уравнением

$$n_{a}(\Theta) = \frac{2}{\pi} \operatorname{arcctg} \frac{\Omega - \xi \Theta^{3/2} Z(\Theta)}{\Gamma},$$

$$\xi = 2e^{2} \lambda^{2} N_{ML}^{3/2} A. \tag{9}$$

Здесь Ω — положение центра тяжести квазиуровня адатома ε_a относительно положения уровня Ферми E_F^0 в объеме субстрата, Γ — полуширина квазиуровня, $A \sim 10$ — безразмерный коэффициент, слабо зависящий от геометрической структуры адсорбированного слоя, ξ — константа диполь-дипольного отталкивания адатомов, $Z = 1 - n_a$ — заряд адатомов. Отметим, что при исследовании адсорбщии газов [30,31] используется более сложная модель.

Легко показать, что условие (8) с учетом (6) приводит к уравнению

$$Z(\Theta) + \Theta \frac{dZ(\Theta)}{d\Theta} = 0, \qquad (10)$$

определяющему степень покрытия Θ^* . Подставляя (9) в (10), после ряда преобразований найдем

$$\xi \rho^* (\Theta^*)^{3/2} = 2, \tag{11}$$

где плотность состояний на адатоме

$$\rho^* \equiv \rho(\Theta^*) = \frac{2}{\pi} \frac{\Gamma}{[\Omega - \xi(\Theta^*)^{3/2} Z^*]^2 + \Gamma^2}, \qquad (12)$$

 $Z^* \equiv Z(\Theta^*)$. Как следует из (11), возможность существования покрытия Θ^* связана с выполнением неравенства $\xi \rho^* > 2$. Это означает, что, во-первых, константа энергии диполь-дипольного взаимодействия должна быть достаточно большой. Во-вторых, плотность состояний на адатоме при $\Theta = \Theta^*$ не должна быть слишком малой. Следовательно, при покрытии Θ^* квазиуровень адатома не должен быть чрезмерно удален по энергии от уровня Ферми подложки. Рассмотрим некоторые частные случаи. Если $\Omega \gg \xi(\Theta^*)^{3/2}Z^*$, то в наинизшем по Θ^* приближении получим из формулы (11)

$$\Theta^* \approx \left(\frac{\pi(\Omega^2 + \Gamma_0^2)}{\Gamma_0 \xi}\right)^{2/3}.$$
 (13)

Если
$$|\Omega - \xi(\Theta^*)^{3/2}Z^*| \ll \Gamma^*$$
, то

$$\Theta^* \approx \left(\frac{\pi\Gamma_0}{\xi}\right)^{2/3} \tag{14}$$

при условии, что выражение, стоящее в скобках, меньше единицы. При Ω , $\Gamma^* \ll \xi (\Theta^*)^{3/2} Z^*$ получим

$$\Theta^* \approx \left(\frac{\Gamma_0}{\pi \xi(Z_0)^2}\right)^{2/3}.$$
(15)

В выражениях (13)–(15) естественно предположить, что значение Θ^* должно быть меньше единицы. Необходимым условием выполнения такого неравенства является достаточно малое значение отношения Γ_0/ξ . Для щелочных металлов на поверхности Si(100) имеем $\Gamma_0 \sim 1.1 \text{ eV}$, а $\xi \sim 6-26 \text{ eV}$, т.е. неравенство $\Gamma_0/\xi \ll 1$ выполняется (исключение составляет случай адсорбции натрия, для которого $\Gamma_0 \sim 1.7 \text{ eV}$; как показывает эксперимент [12] (см. также [32]), в системе Na/Si(100) ни минимума, ни насыщения зависимости $\Delta \phi(\Theta)$ не наблюдается). Аналогичная картина имеет место и для щелочных металлов, адсорбированных на диоксиде титана ($\Gamma_0 = 1 \text{ eV}$, $\xi \sim 5-12 \text{ eV}$).

При адсорбции K, Rb и Cs на поверхности GaAs(110) полуширина квазиуровня $\Gamma_0 \sim 2.5 \text{ eV}$ и $\xi \sim 12 \text{ eV}$, так что отношение Γ_0/ξ достаточно мало. В результате для этих систем наблюдается насыщение. Аналогичная ситуация имеет место в случае адсорбции бария и P3M на поверхности Si(111), где $\Gamma_0 \sim 2 \text{ eV}$ и $\xi \sim 9 \text{ eV}$.

4. Перейдем теперь к непосредственным оценкам положения уровня Ферми относительно краев зон при пиннинге. Как следует из выражения (2), при адсорбции атомов акцепторов на p(n)-подложке

$$\Theta^* |Z^*| = C_{p(n)} \sqrt{e^{\pm \psi_s^*} \mp \psi_s^* - 1},$$
$$C_{p(n)} \equiv \frac{\varepsilon_0 \varepsilon k_{\rm B} T}{e^2 N_{ML} L_{p(n)}};$$
(16)

при адсорбции атомов-доноров на p(n)-подложке

$$\Theta^* Z^* = C_{p(n)} \sqrt{e^{\mp \psi_s^*} \pm \psi_s^* - 1}.$$
 (17)

Таким образом, для определения величины ψ_s^* необходимо решить уравнения (17) при известных значениях Θ^* и Z^* .²

Сделаем некоторые оценки. Положим $\varepsilon = 10$, $T = 300 \,\mathrm{K}$ и $N_{ML} = 6 \cdot 10^{14} \,\mathrm{cm}^{-2}$. Тогда при p(n) = $= 10^{16} \,\mathrm{cm}^{-3}$ получим $C_{p(n)} \approx 0.9 \cdot 10^{-4}$, а при $p(n) = 10^{18} \,\mathrm{cm}^{-3} - C_{p(n)} \approx 0.9 \cdot 10^{-3} \,(C_{p(n)} \sim \sqrt{p(n)})$. Так как $\Theta^* |Z^*| < 1$ и $C_{p(n)} \ll 1$, при $\psi_s^* \gg 1$ получим для акцепторов, адсорбированных на *p*-подложке, следующее значение безразмерного поверхностного потенциала:

$$\psi_s^*(-/p) \approx \ln[(\Theta^* Z^*/C_p)^2].$$
 (18)

Здесь в круглых скобках в левой части уравнения первый символ отвечает знаку заряда адатома, второй — типу проводимости подложки. Полагая $\Theta^* = 0.8$ и $|Z^*| = 0.2$, для концентрации основных носителей, равной 10^{16} сm⁻³, для *p*-подложки получим $\psi_s^* \approx 15$, а при 10^{18} сm⁻³ — $\psi_s^* \approx 10.4$, что соответствует 0.40 и 0.27 eV.

² К сожалению, во многих экспериментальных работах по изменению работы выхода, вызванного адсорбцией, не приводятся данные по легированию подложки и начальное значение работы выхода, что делает вычисления невозможными.

Аналогичное выражение получается для доноров на *n*-подложке

$$\psi_s^*(+/n) \approx \ln[(\Theta^* Z^*/C_n)^2].$$
 (19)

Для акцепторов, адсорбированных на *n*-подложке, и доноров, адсорбированных на *p*-подложке, при $\psi_s^* \gg 1$

$$\psi_s^*(\mp/n(p)) \approx \left(\frac{\Theta^* Z^*}{C_{n(p)}}\right)^2.$$
 (20)

Сравнение выражений (20) и (19) показывает, что воздействие на изгиб зон акцепторов, адсорбированных на *n*-подложке, и доноров, адсорбированных на *p*-подложке, значительно сильнее, чем акцепторов на *p*-подложке и доноров на *n*-подложке. Таким образом, наибольший эффект вызывает инжекция адатомами в подложку неосновных носителей заряда.

Отметим, что для количественных оценок выражение (20) применимо только в том случае, если заряд адатома чрезвычайно мал. Так как заряд адатома $Z = 1 - n_a$, из уравнения (9) следует, что условие $Z \ll 1$ всегда выполняется, если

$$\varepsilon_a - \xi(\Theta^*)^{3/2} Z^* \approx E_{\rm F}^0. \tag{21}$$

Это условие означает, что уровень адатома при $\Theta = \Theta^*$ совпадает с уровнем Ферми субстрата. На подобный характер пиннинга уже указывалось в работе [33].

Если $\psi_s^* \ll 1$, из выражений (16) и (17) получим

$$\psi_s^* = \sqrt{2} \Theta^* |Z^*| / C_{p(n)}.$$
 (22)

При этом заряд адатома практически равен нулю. Здесь вновь должно выполняться сотношение (21). В принципе подобная ситуация (очень малый заряд) возможна при адсорбции газов, например при адсорбции О₂ на поверхности TiO₂(110) [34].

Положим, что в объеме п-полупроводника имеем $E_{C0} - E_{Fn}^0 = \Delta$, а в объеме *р*-полупроводника — $E_{Fp}^0 - E_{V0} = \Delta$, где E_{Fn}^0 и E_{Fp}^0 — положения уровня Ферми в объеме *n*- и *p*-подложек соответственно. Будем отсчитывать положение уровня Ферми на поверхности полупроводника $E^s_{\mathrm{F}n(p)}$ от потока изогнутой валентной зоны. При адсорбции акцепторов на n-подложке положение уровня Ферми $E_{Fn}^s \approx E_g - \psi_s^* - \Delta$, где $E_g = E_{C0} - E_{V0}$ — ширина запрещенной зоны. В случае *p*-подложки $E_{Fp}^s \approx \Delta - \psi_s^*$. Если $\psi_s^* > \Delta$, уровень Ферми оказывается внутри валентной зоны, т.е. имеет место вырождение. При адсорбции доноров на n-подложке $E_{\mathrm{Fn}}^s \approx E_g + \psi_s^* - \Delta$ (вырождение наступает при $\psi_s^* > \Delta$), тогда как при адсорбции на *p*-подложке $E_{\mathrm{F}p} \approx E_g - \psi_s^* - \Delta$. Таким образом, в случае электроотрицательной адсорбции на п-подложке и электроположительной адсорбции на *p*-подложке уровень Ферми на поверхности полупроводника сдвигается к центру запрещенной зоны. В узкозонных полупроводниках такой сдвиг может приводить к инверсии проводимости.

Авторы благодарят А.Н. Пихтина за стимулирующую дискуссию.

Приложение

Рассмотрим адсорбцию атомов-акцепторов на p-подложке. Значение $(d\psi/dx)$ найдем из решения уравнения Пуассона

$$\frac{d^2\psi}{dx^2} = -\frac{e\rho}{\varepsilon_0\varepsilon k_{\rm B}T}.\tag{\Pi1}$$

Здесь ε_0 — диэлектрическая постоянная, ε — статическая диэлектрическая проницаемость, а плотность заряда ρ дается соотношением

$$\rho = e[p(x) - N_a^-], \tag{\Pi2}$$

где $p(x) = pe^{\psi(x)}$ и $N_a^- = p$ ($\psi > 0$). Тогда имеем уравнение Пуассона

$$\frac{d^2\psi}{dx^2} = \frac{e^2p}{\varepsilon_0\varepsilon k_{\rm B}T} \left[e^{\psi(x)} - 1 \right] \tag{II3}$$

с граничными условиями

$$\psi(x \to \infty) = 0, \quad \left(\frac{d\psi}{dx}\right)_{x \to \infty} = 0.$$
 (II4)

Умножая уравнение (ПЗ) на $2\left(\frac{d\psi}{dx}\right)$ и интегрируя по ψ , получим

$$\left(\frac{d\psi}{dx}\right)^2 = \frac{1}{L_p^2} \left(e^{\psi} - \psi\right) + C,\tag{II5}$$

где C — постоянная интегрирования, а L_p дается выражением (3). Учитывая граничные условия (П4), получим

$$\frac{d\psi}{dx} = -L_p^{-1}\sqrt{e^{\psi} - \psi - 1}.\tag{\Pi6}$$

Здесь взят знак минус, так как с ростом x функция $\psi(x)$ убывает. Свяжем теперь поверхностный потенциал ψ_s с величиной плотности поверхностного заряда $|\sigma_s|$:

$$\sigma_{s}| = (\varepsilon_{0}\varepsilon k_{\mathrm{B}}T/e) \left| \left(\frac{d\psi}{dx}\right)_{x=0} \right|, \qquad (\Pi7)$$

что с учетом (Пб) соответствует первому из выражений (2).

Список литературы

- [1] У. Харрисон. Электронная структура и свойства твердых тел. Мир, М. (1983).
- [2] Л.А. Большов, А.П. Напартович, А.Г. Наумовец, А.Г. Федорус. УФН 122, 125 (1977).
- [3] О.М. Браун, В.К. Медведев. УФН 157, 631 (1989).
- [4] В.Л. Бонч-Бруевич, С.Г. Калашников. Физика полупроводников. Наука, М. (1977).
- [5] В.Л. Бонч-Бруевич, И.П. Звягин, И.В. Карпенко, А.Г. Миронов. Сборник задач по физике полупроводников. Наука, М. (1968).
- [6] С.Ю. Давыдов, А.В. Павлык. ФТП 39, 1068 (2005).
- [7] Д.Г. Аньчков, С.Ю. Давыдов, С.В. Трошин. Письма в ЖТФ 33, 47 (2007).

- [8] S. Halas, T. Durakiewicz. J. Phys.: Cond. Matter 22, 10819 (1998).
- [9] L.S.O. Johanson, T. Dütemeyer, L. Duda, B. Reihl. Phys. Rev. B 58, 5001 (1998).
- [10] В.С. Фоменко. Эмиссионные свойства материалов. Справочник. Наук. думка, Киев (1981).
- [11] C.Y. Kim, R.S. Shin, K.D. Lee, J.W. Chang. Surf. Sci. 324, 8 (1995).
- [12] T. Kan, K. Mitsukawa, T. Ueyama, M. Takada, T. Yasue, T. Koshikawa. Surf. Sci. 460, 214 (2000).
- [13] L. Adamowitcz, M. Zbroszczyk. Surf. Sci. 352–354, 730 (1996).
- [14] J.E. Ortega, R. Miranda. Appl. Surf. Sci. 56-58, 211 (1992).
- [15] Э.Я. Зандберг, Н.И. Ионов. Поверхностная ионизация. Наука, М. (1969).
- [16] Т.В. Кравчино, М.В. Кузьмин, М.В. Логинов, М.А. Митцев. ФТТ 39, 1672 (1997).
- [17] Т.В. Кравчино, М.В. Кузьмин, М.В. Логинов, М.А. Митцев. ФТТ 40, 1937 (1998).
- [18] M. Komai, M. Sasaki, R. Ozawa, S. Yamamoto. Appl. Surf. Sci. 146, 158 (1999).
- [19] Т.В. Кравчино, М.В. Кузьмин, М.В. Логинов, М.А. Митцев. ФТТ **42**, 553 (2000).
- [20] M. Brause, S. Skordas, V. Kempter. Surf. Sci. 445, 224 (2000).
- [21] H. Onishi, T. Aruga, C. Egawa, Y. Iwasawa. Surf. Sci. 199, 54 (1988).
- [22] R. Casanova, G. Thornton, J. Phys.: Cond. Matter 3, S91 (1991).
- [23] С.Ю. Давыдов, А.В. Павлык. ФТП 35, 831 (2001).
- [24] С.Ю. Давыдов, А.В. Павлык. ЖТФ 74, 95 (2004).
- [25] С.Ю. Давыдов, А.В. Павлык. ЖТФ 74, 98 (2004).
- [26] С.Ю. Давыдов, А.В. Павлык. ФТТ 45, 1325 (2003).
- [27] С.Ю. Давыдов, И.В. Носков. Письма в ЖТФ 27, 1 (2001).
- [28] С.Ю. Давыдов, И.В. Носков. ЖТФ 72, 137 (2002).
- [29] L. Surnev, M. Tikhov. Surf. Sci. 138, 40 (1984).
- [30] С.Ю. Давыдов. ЖТФ 75, 112 (2005).
- [31] С.Ю. Давыдов. ЖТФ 75, 141 (2005).
- [32] Y.-C. Chao, L.S.O. Johanson, R.I.G. Uhrberg. Phys. Rev. B 55, 7198 (1997).
- [33] J.E. Klepeis, W.A. Harrison. Phys. Rev. B 40, 5810 (1989).
- [34] С.Ю. Давыдов, В.А. Мошников, А.А. Федотов. Письма в ЖТФ 30, 39 (2004).